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Abstract Parental care requires a complex integration of
physiology and behaviour, yet little is known about the
physiological and energetic consequences or correlates of
these behaviours. Using two species of male black bass
(smallmouth bass, Micropterus dolomieu; largemouth bass,
M. salmoides) as a model, the focus of this study was to
determine the biochemical and hematological indicators of
change in nutritional status and potential for chronic stress.
This was accomplished by randomly sampling individuals
at four stages across parental care. Additionally, a subset of
individuals was repeatedly sampled at three brood develop-
ment stages to track changes in biochemical factors within
the individual. Though there were changes in physiological
factors across parental care in randomly sampled Wsh of
both species (declines in plasma glucose in largemouth
bass; decreases in hematocrit and plasma chloride in small-
mouth bass), repeated sampling of individuals was deter-
mined to be a more appropriate sampling technique due to
natural variability in biochemical factors among individual
Wsh. Repeated sampling of smallmouth bass did not
adversely inXuence physiological metrics or brood aban-
donment. However, there were higher incidences of nest
abandonment in repeatedly sampled largemouth bass.
Amongst the repeatedly sampled smallmouth bass, nutri-
tional indicators such as plasma triglyceride levels
decreased indicating individual fasting across the majority
of parental care. Increases in plasma calcium and magne-
sium towards the end of care indicated that feeding most

likely resumed when the brood was close to independence
after »3 weeks of care. Lastly, several indicators of chronic
stress, such as plasma glucose and chloride levels,
increased throughout the parental care period. These suble-
thal stressors are indicative of decreasing body condition
associated with prolonged activity and fasting which may
have marked impacts on the ability of an individual to con-
tinue parental care for the current brood and impact subse-
quent individual Wtness. Further research into the
mechanistic relationships between behaviour, physiology,
and energetics during the parental care period will provide
a better understanding of the decisions by individuals fac-
ing multiple trade-oVs that ultimately lead to diVerences in
individual Wtness.

Keywords Physiology · Energetics · Parental care · 
Individual variation · Smallmouth bass · Largemouth bass

Introduction

Several syntheses have explored the links between Wtness
and morphology, behaviour, and life history (Endler 1986;
Lessells 1991). However, there is a paucity of research
investigating the relationship between individual physio-
logical variation, behaviour, and individual Wtness, even
though these links have been theorized (Endler 1986; Feder
1987; Ricklefs and Wikelski 2002). Generally, links
between physiological variation and Wtness have been
inferred from data rather than implicitly tested (Spicer and
Gaston 1999). Amongst behaviours, parental care requires
a complex integration of physiology and behaviour (medi-
ated by the endocrine system) to secure individual Wtness,
yet little is known about the physiological consequences of
these behaviours. Parental care represents a trade-oV
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between multiple interests of the adult providing the care.
Adult individuals sacriWce their own health and body con-
dition (Horak et al. 1999; Steinhart et al. 2005), at the risk
of mortality (Sabat 1994), as well as other opportunities to
mate (both current and future) to ensure increased survival
of oVspring and subsequent Wtness (Williams 1966a; Gross
and Sargent 1985; Sargent et al. 1987). As the brood devel-
ops towards independence and the probability of individual
survivorship increases, the care-giving adult should adjust
the amount of care given in favour of minimizing current
costs to conserve future reproductive opportunities (Wil-
liams 1966a; Gross and Sargent 1985; Gross 2005).

Parental care, especially uniparental male care, is a
widespread reproductive behaviour amongst teleost Wshes
ranging from simple forms such as concealment of eggs to
complex forms such as rearing the brood within the body
cavity of an adult or live bearing of young (Gross and Sar-
gent 1985). While the energetic costs of parental care have
been studied for a number of species (e.g., Sargent and
Gross 1986; Coleman and Fischer 1991; Mackereth et al.
1999), little information is currently available about
changes to the physiological status of the adult across the
parental care period. The majority of previous work on the
physiology of parental care in Wshes has focused on the
endocrine correlates of paternal care (e.g., Knapp et al.
1999; Páll et al. 2002, 2005; Magee et al. 2006; Rodgers
et al. 2006). One study has documented the diVerences in
muscle enzyme activity between parental versus bachelor
male Wsh (Guderley and Guevara 1998), but to our knowl-
edge no studies have documented variation in nutritional
physiology and biochemistry of individual Wsh across the
parental care period. Furthermore, no studies have repeat-
edly sampled the same Wsh throughout the parental care
period to document changes at the level of the individual,
an approach that has the potential to elucidate inter-individ-
ual variation.

Both largemouth (Micropterus salmoides) and small-
mouth bass (M. dolomieu), collectively termed “black
bass,” exhibit extended parental male care. Black bass are
an ideal model for the study of the physiology of parental
care in the wild because individual Wsh can be repeatedly
captured via angling (to enable tissue sampling), are large
enough to enable the collection of tissue samples (relative
to many of the smaller-bodied Wshes that have been the
focus of behaviour-oriented parental care studies; e.g., cich-
lids, sticklebacks), have been well-studied with respect to
parental care behaviour and energetics providing suYcient
information to interpret physiological Wndings, and because
their reproductive success can be easily visually quantiWed.
For both species, when water temperatures reach approxi-
mately 14°C in spring, male bass move into the littoral zone
where nest construction (the digging out of saucer shaped
depressions in the substrate), courtship, spawning, and egg

deposition and fertilization occur (Kramer and Smith 1962;
Ridgway 1988). After spawning, the female bass leaves the
area of the nest while the male bass initiates parental care in
the form of active nest defense from potential brood preda-
tors as well as fanning the brood to provide proper oxygen-
ation and prevent sedimentation (Hinch and Collins 1991).
The male bass will continue to participate in parental care
activities until the brood becomes independent, which can
often require 1 month (Cooke et al. 2006).

The parental care period of black bass has been noted to
be one of the most energetically demanding time periods of
an individual’s life (Hinch and Collins 1991; Cooke et al.
2002, 2006). While guarding the nest, individuals greatly
curtail foraging activities due to the fact that they are
unable to leave the brood unattended (Hinch and Collins
1991). At the same time, nest guarding male Wsh are also
some of the most active Wsh in the population as localized
movements on and around the nest equate to movements
over tens of kilometers per day (Hinch and Collins 1991;
Cooke et al. 2002; Hanson et al. 2007a). Male Wsh engaged
in parental care must rely on endogenous energy reserves to
fuel activity during this time (Mackereth et al. 1999). Nest
guarding male bass continually move about the nest, exe-
cuting tight turns to remain above the nest as well as scull-
ing all Wns at the same time to remain stationary above the
nest while providing oxygenation and preventing silt depo-
sition on the brood (Hinch and Collins 1991; Cooke et al.
2002). As such, it has been theorized that the combination
of reliance on endogenous energy supply with increased
energy consumption from nest guarding activities results in
a continual decline in the energetic and nutritional status of
nest guarding males across the parental care period
(Mackereth et al. 1999). Drastic declines in endogenous
energy reserves can lead to brood abandonment as the cur-
rent brood is abandoned to secure future reproductive suc-
cess (Trivers 1972; Sargent and Gross 1986). Additionally,
it has been theorized that individual survival through the
following winter may be compromised if internal energy
reserves are over-utilized (Mackereth et al. 1999).

Using nest-guarding male black bass as a model, the
objective of the present study was to determine the nature
and magnitude of the energetic and nutritional decline and
associated stress physiology across the parental care period
through the use of non-lethal sampling. We predicted that
blood based indicators of nutritional and energetic status
would change as the brood developed and the adult male
remained on the nest unable to forage normally and fueling
activity through endogenous energy reserves. Additionally,
we predicted that patterns in hematology and plasma bio-
chemistry indicative of chronic stress would be evident as
parental care progressed. We also tested the utility of
repeated blood sampling of individuals across the parental
care period. SpeciWcally, we predicted that repeated sampling
123
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of individuals would more accurately show the decline of
nutritional indicators across parental care than would com-
paring the means of separate, randomly sampled groups,
while not causing detrimental eVects to individuals.

Methods

Field techniques

This study was carried out from May 1st to June 1st, 2006
on Lake Opinicon, eastern Ontario, Canada (44°30�N,
76°20�W). Daily snorkel surveys of the littoral zone were
conducted to locate largemouth and smallmouth bass that
were actively guarding nests with newly deposited eggs.
Upon locating an active bass nest [deWned as male guarding
newly deposited (<1 day old) eggs], the snorkeler placed a
numbered PVC tile near the nest and recorded nest loca-
tion, nest depth, and number of eggs within the nest (visual,
categorical assessment ranging from low of 1 to high of 5;
Suski and Philipp 2004). At the time of nest discovery,
individuals were randomly assigned to sampling groups.
Control Wsh were not handled beyond that as described
above to provide a baseline estimate of nest abandonment
within the lake for each species. Subsets of individuals
were sampled at each of the four brood developmental
stages [eggs (sampled within 1 day of spawning), egg sac
fry (newly hatched embryos, approximately 1.5 weeks after
spawning), swim up fry (larvae begin to swim >0.5 m
above the nest, approximately 2 weeks after spawning), and
free swimming fry (larvae swim <1 m above and around
the nest, prior to independence, approximately 3 weeks
after spawning]. Fish were captured using heavy-action rec-
reational Wshing equipment that could be used to angle Wsh
from the boat or underwater (by the diver). In total, 41
largemouth bass (total length mean § SD; 381 § 40 mm)
and 50 smallmouth bass (total length mean § SD;
366 § 38 mm) were blood sampled for this study. All Wsh
were landed within 20 s of hooking to minimize non-paren-
tal care related anaerobic exercise. During the entire period
that angled Wsh were held on the boat, they were always in
water. Upon capture, Wsh were quickly blood sampled by
the caudal puncture method using a 1.5�, 21 gauge vacu-
tainer syringe (Houston 1990) while being held within a
foam lined trough containing fresh lake water. Up to 1.5 ml
of blood (representing approximately 3.7% of total blood
volume) was collected in a 3-ml, Xat-bottomed vacutainer
containing lithium heparin to prevent blood coagulation.
Total length was recorded as well as the presence or
absence of any injury. Individuals were then released
within 5 m of the nest in less than 2 min. During the sam-
pling procedure, a snorkeler remained at the nest site and
defended the brood until the male returned (typically in

under 5 min). Blood samples were centrifuged immediately
at 10,000£ gravity for 5 min (Clay Adams Compact II
Centrifuge). Hematocrit was assessed in the Weld by mea-
suring the volume of red blood cells by volume of total liq-
uid on centrifuged blood collection tubes using micrometer
calipers. Plasma samples were stored in liquid nitrogen for
subsequent analysis. Individuals in the last treatment group,
repeatedly sampled Wsh, were sampled at each stage of
brood development (with the exception of the swim up fry
stage). At the Wnal stage of brood development, due to the
fact that Wsh at this stage roam across large areas and cap-
ture by angling becomes ineVective, Wsh were captured by a
snorkeler using a spear gun. Following sampling, Wsh were
euthanized by cerebral percussion. After non-lethal sam-
pling, a snorkeler revisited each nest every 2 days to record
presence or absence of the male as well as the progression
of the brood through developmental stages.

Lab analyses

Samples were analysed for concentrations of various bio-
chemical constituents indicative of individual nutritional sta-
tus [alkaline phosphatase (ALP; enzyme number 3.1.3.1),
aspartate transaminase (AST; enzyme number 2.6.1.1), crea-
tine kinase (CK; enzyme number 2.7.3.2), lactate dehydroge-
nase (LDH; enzyme number 1.1.1.27), total protein,
phosphorous, triglycerides, cholesterol, and glucose] as well
as ions (Mg+, Ca++, Cl¡, Na+, K+) (Wagner and Congleton
2004; Congleton and Wagner 2006). In previous work con-
ducted on PaciWc salmonids (Oncorhynchus spp.) these bio-
chemical constituents have been shown to reXect the short-
and long-term nutritional status of individual Wsh subjected
to fasting or feeding (Wagner and Congleton 2004; Congle-
ton and Wagner 2006). In particular, we measured variables
that have been shown to respond to fasting and feeding activ-
ity (ALP, CK, total protein, phosphorous, triglycerides, cho-
lesterol, Mg+, and Ca++; Lall 2002; Wagner and Congleton
2004; Congleton and Wagner 2006) as well as indicators of
tissue damage (AST, LDH; Morrissey et al. 2005), and
chronic stress (glucose, Cl¡, Na+, and K+; Wendelaar Bonga
1997; Barton 2002). All biochemical analyses were con-
ducted on a Roche Hitachi 917 analyzer (Basal, Switzerland)
and based upon the International Federation of Clinical
Chemistry and Laboratory Medicine (IFCC) standard refer-
ence model (Dimension AR-1MT, Dade Behring Inc., New-
ark, DE, USA). To ensure proper quality control, all assays
(performed by laboratory personnel at Vita-Tech, Markham,
ON, Canada) followed procedural guidelines for standardiza-
tion and quality assurance established by the Veterinary Lab-
oratory Association Quality Assurance Program, New York
State Department of Health, College of American Patholo-
gists, and the Canadian Food Inspection Agency External
ProWciency Panel.
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Statistical analysis

All analyses were performed in the statistical package JMP
IN v 4.0 and the level of signiWcance for all tests (�) was
assessed at 0.01 to minimize Type I error associated with
multiple statistical tests (Zar 1999). All values presented
represent mean § S.E. unless otherwise noted. Normality
and heterogeneity of variance of initial physiological data
was assessed to determine whether variables needed to be
transformed before analysis. Non-normal variables were
log-10 transformed prior to subsequent analysis. To deter-
mine diVerences in physiological variables between brood
stages, one-way ANOVA’s followed by Tukey’s HSD post
hoc tests were employed (Zar 1999). In instances where
homogeneity of variance was violated, Welch’s ANOVA
was utilized (Zar 1999). To determine the utility of
repeated sampling, the mean values of each physiological
variable from the repeated sampling events were compared
to the means of randomly sampled Wsh from the same brood
developmental period through paired t-tests (Zar 1999).
Additionally, nest abandonment rates between repeated
sampling groups and natural whole lake abandonment were
analysed by Chi-square contingency table analysis (Zar
1999). Multiple comparisons across proportions were per-
formed to determine signiWcant diVerences in abandonment
rates according to methods in Zar (1999). Repeatedly sam-
pled Wsh were analysed separately, but in a similar manner.
Repeated measures ANOVA’s (or Welch’s ANOVA as
described above) and Tukey’s HSD post hoc tests were
used to determine signiWcant diVerences between sampling
periods.

Results

Randomly sampled Wsh

Overall, very few parameters diVered signiWcantly over the
course of parental care in both largemouth and smallmouth
bass (Tables 1, 2). For largemouth bass across the parental
care period, there were only signiWcant alterations in one
blood biochemistry variable. SpeciWcally, blood glucose
levels in individuals signiWcantly increased after the egg
stage of brood development (P < 0.01; Fig. 1, Table 3). All
other physiological variables did not show any diVerences
across brood development (Table 3).

In smallmouth bass, changes in the levels of hematocrit
and chloride levels were noted across parental care. Hemat-
ocrit was highest at the commencement of parental care
(41.69 § 2.45%) and declined throughout brood develop-
ment, reaching its lowest level at the free-swimming fry
stage (29.78 § 2.30%; P < 0.01; Fig. 2, Table 3). Chloride
levels followed a pattern in which levels declined to the

lowest levels during the free swimming fry stage when
compared to the egg and egg sac fry stages (P < 0.01;
Fig. 2, Table 3).

Validation of repeated sampling

Due to high levels of brood abandonment, only compari-
sons between physiological variables in the second
repeated sampling event and control Wsh at the egg sac fry
stage could be performed for largemouth bass. Repeatedly
sampled largemouth bass showed decreased levels of phos-
phorous when compared to controls (P < 0.01; Fig. 3,
Table 4). No signiWcant diVerences were detected for other
blood biochemistry variables (P > 0.01, Table 4).

Similarly, at the same stage of brood development, sev-
eral diVerences were noted between values from small-
mouth bass that were sampled for the second time and
control smallmouth bass at the egg sac fry stage. SpeciW-
cally, smallmouth bass sampled twice showed had
decreased levels of magnesium when compared to control
Wsh at the same brood development stage (P < 0.01; Fig. 3,
Table 4). No signiWcant diVerences were detected for other
blood biochemistry variables (P > 0.01; Table 4). When
comparing smallmouth bass sampled for a third time to
control Wsh at the free swimming fry stage, no signiWcant
diVerences in values of physiological variables were noted
(P > 0.01; Table 4).

Finally, when compared to natural nest abandonment,
repeated sampling was found to increase brood abandonment
in largemouth bass (�2 = 9.31, df = 2, P < 0.01; Fig. 4). Spe-
ciWcally, brood abandonment amongst repeatedly sampled
Wsh at the third sampling period increased to >80%, more
than double the natural abandonment rate (Fig. 4). Though
there were statistically signiWcant diVerences between
repeated sampling abandonment rates and natural abandon-
ment rates for smallmouth bass, the Wnal abandonment rate
did not increase signiWcantly above control rates for repeat-
edly sampled Wsh (�2 = 25.93, df = 2, P < 0.01; Fig. 4).

Repeated sampling

Between the egg and egg sac fry brood development stages,
repeatedly sampled largemouth bass did not vary in physio-
logical parameters (Table 5). Due to the increased levels of
brood abandonment amongst repeatedly sampled large-
mouth bass, no statistical analyses could be performed that
included Wsh at the free swimming fry stage. Conversely,
smallmouth bass showed diVerences in multiple physiolog-
ical parameters. In particular, magnesium levels decreased
in the egg sac fry stage as compared to the egg and free
swimming fry stages (P < 0.01; Fig. 5, Table 5). Chloride
and hematocrit decreased across the parental care period
(P < 0.01; Fig. 5, Table 5). Lastly, plasma calcium levels
123
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increased between the egg sac fry and free swimming fry
stages (P < 0.01; Fig. 5, Table 5).

Discussion

Evidence of changing nutritional status across the parental
care period at the population level (i.e., randomly sampled

Wsh that were not repeatedly sampled) was diYcult to
obtain in the current study despite the fact that we predicted
such alterations given the high levels of parental care activ-
ity (i.e., brood defense and nest aeration; Hinch and Collins
1991; Cooke et al. 2002, 2006) and reduced foraging activ-
ities (Hinch and Collins 1991; Mackereth et al. 1999). Pre-
vious studies have documented large individual variation in
biochemical nutritional indicators (Congleton and Wagner
2006). Similarly, in this study, extensive individual varia-
tion was noted in the majority of parameters measured
(Tables 1, 2). For example, individual values for the
enzyme creatine kinase (in U/l) ranged from a low of 608
for to a high of 15,870 within one sampling period (i.e., at
the swim up fry stage; Tables 1, 2), though measurements
of the enzymatic variables in the current study (especially
LDH and CK) may be inXuenced by sampling strategy (i.e.,
blood collection via the caudal vasculature can cause eleva-
tions in these parameters; Morrissey et al. 2005). AST is a
more reliable metric given this blood sampling approach
(Morrissey et al. 2005) and it showed similar patterns.
Regardless, with natural variation of this magnitude within
the measured biochemical parameters, only large eVects
could be resolved via statistical testing. Many nutritional
changes across the parental care period may not be suY-
ciently large to be noticed with this degree of background
variation. Such variation is common in physiological stud-
ies and may be indicative of individual diVerences in
behaviour and Wtness and reXective of diVerences in geno-
type, environment, or individual health and condition (Ben-
nett 1987). For example, in the current study, local
environmental conditions (water temperature, wave activ-
ity, oxygen levels) and nest predator burdens undoubtedly

Table 3 Comparison of nutri-
tional indicators of nest guarding 
male largemouth and small-
mouth bass (Micropterus spp.) 
randomly sampled across four 
stages of brood development 
during the parental care period 
(eggs, egg sac fry, swim up fry, 
and free swimming fry) in Lake 
Opinicon, Ontario

Largemouth bass Smallmouth bass

Physiological variable df F-ratio P-value df F-ratio P-value

ALP (U/l) 3, 28 0.81a 0.51 3, 26 3.25 0.04

AST (U/l) 3, 28 0.22 0.88 3, 26 1.53 0.23

Calcium (mmol/l) 3, 25 0.73 0.55 3, 17 2.51a 0.14

Chloride (mmol/l) 3, 23 1.88a 0.19 3, 17 6.30 <0.01

Cholesterol (mmol/l) 3, 27 1.78a 0.18 3, 24 1.87 0.16

CK (U/l) 3, 28 0.69a 0.58 3, 25 1.66 0.20

Glucose (mmol/l) 3, 27 5.80a <0.01 3, 22 3.31 0.04

Hematocrit (proportion) 3, 28 3.88 0.02 3, 26 5.20 <0.01

LDH (U/l) 3, 28 0.20 0.90 3, 24 1.82a 0.20

Magnesium (mmol/l) 3, 25 0.56 0.65 3, 18 1.67 0.21

Phosphorous (mmol/l) 3, 26 1.48 0.24 3, 18 3.88a 0.05

Potassium (mmol/l) 3, 23 1.44 0.26 3, 17 1.21 0.34

Sodium (mmol/l) 3, 23 0.30 0.83 3, 17 1.47 0.26

Total protein (g/l) 3, 27 0.47 0.71 3, 22 0.41 0.76

Triglycerides (mmol/l) 3, 27 1.64a 0.23 3, 24 0.95 0.43

Italicized and boldfaced statisti-
cal output indicates signiWcant 
diVerences at � = 0.01. If vari-
ances were homogeneous for 
these data, analyses were con-
ducted with one-way ANOVA; 
otherwise, Welch ANOVA was 
used
a Denotes use of Welch 
ANOVA

Fig. 1 Changes in plasma glucose levels in randomly sampled nest
guarding male largemouth bass across four stages of brood develop-
ment (egg, egg sac fry, swim up fry, and free swimming fry) during the
parental care period. Letter assignments of “a” and “b” denote signiW-
cant (P < 0.01) diVerences among brood development stages for large-
mouth bass. Error bars show mean § 1 SE
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varied from nest to nest, which may have contributed to
variation in organismal behaviour and physiological status.

Comparison of sampling techniques

In the current study, two separate sampling methods (ran-
domly sampling individuals once at a given brood stage or
repeatedly sampling individuals at each brood stage) were
employed. Repeated sampling had a negative eVect on
parental care behaviour in largemouth bass. Largemouth
bass subjected to repeated sampling had nest abandonment
rates that were approximately 2.5 times higher than the nat-
ural abandonment rate for largemouth bass in the lake
(Fig. 4). Smallmouth bass, however, did not abandon nests
at any higher rates than natural nest abandonment (Fig. 4).
This increased abandonment by largemouth bass relative to
smallmouth bass can be attributed to a diVerence in parental

care investment due to egg size and value (Sargent et al.
1987) and is consistent with parental investment and life-
history theory (Cooke et al. 2006). These Wndings are also
consistent with data from catch-and-release studies that
reveal that largemouth bass tend to have higher post-
angling abandonment rates than smallmouth bass (Hanson
et al. 2007b). Also, this could reXect interspeciWc variation
in response to stress, though largemouth bass are generally
regarded as being less sensitive to hypoxia and stress than
smallmouth bass (Furimsky et al. 2003). Due to the higher
incidence of nest abandonment of largemouth bass relative
to smallmouth bass, repeated sampling of largemouth bass
at the free swimming fry stage was impossible.

To test the utility of repeatedly sampling Wsh without
having the sampling alter physiological and nutritional

Fig. 2 Changes in a hematocrit and b plasma chloride levels in ran-
domly sampled nest guarding male smallmouth bass across four stages
of brood development (egg, egg sac fry, swim up fry, and free swim-
ming fry) during the parental care period. Letter assignments of “a”
and “b” denote signiWcant (P < 0.01) diVerences among brood devel-
opment stages for smallmouth bass. Error bars show mean § 1 SE
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condition, we compared the values found for each repeated
sampling period to control values determined by singly
sampling Wsh at the analogous brood development stage.
The only detectable biochemical diVerences between
repeatedly sampled Wsh and singly sampled Wsh occurred at
the second sampling period which coincides with the egg
sac fry brood stage. SpeciWcally, repeatedly sampled large-

mouth bass had lower levels of plasma phosphorous than
singly sampled Wsh (Table 4; Fig. 3), and repeatedly sam-
pled smallmouth bass had lower levels of plasma magne-
sium than singly sampled Wsh (Table 4; Fig. 3), though the
reasons for these diVerences are unclear. Additionally,
there were no diVerences in any hematology or biochemical
parameters between repeatedly sampled smallmouth bass at
the third blood sampling period and singly sampled Wsh at
the free swimming fry brood stage (Table 4). The lack of
diVerences between repeated and singly sampled Wsh indi-
cates that repeated sampling does not have a marked eVect
on the biochemical parameters measured in this study. In
our study, between 3 and 7 days elapsed between repeat
sampling periods. Another commonly cited explanation for
changes in physiological metrics across stages of oVspring
development is that environmental conditions were vari-
able. However, the only environmental factor that changed
modestly across the parental care period was water temper-
ature (increasing »3°C between the Wrst and last sampling
periods). It was not possible to control for this thermal vari-
ation, but these temperatures (both the range and absolute
values) are all well within the tolerances of both species
and would be considered moderate. As such, we will dis-
cuss results from both randomly and repeatedly sampled
Wsh together in the context of changes in physiology across
parental care.

Indications of fasting and resumption of feeding

We noted several changes in biochemical parameters that
indicate that individuals fasted for the beginning portion of
parental care and resumed feeding by the time the brood

Table 4 Contrast between the 
second sampling of repeatedly 
sampled nest guarding male 
largemouth and smallmouth bass 
(Micropterus spp.) at the egg sac 
fry and free swimming fry brood 
development stages with control 
values for Wsh randomly 
sampled Wsh in Lake Opinicon, 
Ontario

Physiological variable Largemouth bass egg 
sac fry stage

Smallmouth bass egg 
sac fry stage

Smallmouth bass free 
swimming fry stage

df t-value P-value df t-value P-value df t-value P-value

ALP (U/l) 17 0.86a 0.43 16 ¡0.19 0.85 16 ¡0.49 0.63

AST (U/l) 17 ¡2.20 0.04 16 ¡2.21 0.04 16 ¡0.22 0.83

Calcium (mmol/l) 16 0.39 0.70 14 1.71a 0.11 12 0.86a 0.42

Chloride (mmol/l) 16 2.15a 0.05 14 ¡2.26 0.04 11 ¡0.83 0.43

Cholesterol (mmol/l) 16 2.17a 0.05 15 ¡2.29 0.04 15 ¡2.21 0.04

CK (U/l) 17 2.23a 0.04 15 ¡1.06 0.31 16 ¡1.12 0.28

Glucose (mmol/l) 16 1.27a 0.23 15 0.14 0.89 15 ¡0.77 0.45

Hematocrit (proportion) 17 1.28 0.22 16 ¡1.82 0.09 16 0.86 0.40

LDH (U/l) 17 ¡2.57 0.02 15 1.58a 0.14 16 0.69a 0.50

Magnesium (mmol/l) 16 ¡1.71 0.11 15 ¡4.19 <0.01 12 ¡0.40 0.70

Phosphorous (mmol/l) 16 ¡3.22 <0.01 15 0.59a 0.57 12 0.99a 0.35

Potassium (mmol/l) 16 ¡1.89 0.08 14 0.98 0.35 11 ¡1.14 0.28

Sodium (mmol/l) 16 ¡0.58 0.57 14 ¡2.77 0.02 11 ¡2.11 0.06

Total protein (g/l) 16 ¡0.48 0.64 15 ¡1.68 0.11 15 ¡1.34 0.20

Triglycerides (mmol/l) 16 2.15a 0.05 15 ¡0.83 0.42 15 ¡0.92 0.37

Italicized and boldfaced statisti-
cal output indicates signiWcant 
diVerences at � = 0.01. If vari-
ances were homogeneous for 
these data, analyses were con-
ducted with one-way ANOVA; 
otherwise, Welch ANOVA was 
used
a Denotes use of Welch 
ANOVA

Fig. 4 Abandonment rates of repeatedly sampled largemouth and
smallmouth bass compared to non-sampled bass (representing natural,
whole-lake abandonment levels). Letter assignments of “a”, and “b”
denote signiWcant (P < 0.01) diVerences among groups for largemouth
bass, and number assignments of “1” and “2” denote signiWcant diVer-
ences among groups for smallmouth bass
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developed into free swimming fry. Plasma triglyceride lev-
els decreased throughout the parental care period, though
this result was not statistically signiWcant at � = 0.01
(Table 5). Currently, research indicates that parental care is
powered through endogenous energy reserves, primarily

muscle energy stores in the form of lipids (Mackereth et al.
1999). Recent research has indicated that circulating levels
of lipids in the blood stream are indicative of nutritional
status and internal energy stores of the individual as well as
recent feeding activity (Wagner and Congleton 2004;

Table 5 Comparison of nutri-
tional indicators of repeatedly 
sampled nest guarding male 
largemouth bass (Micropterus 
salmoides) across two stages of 
brood development (eggs and 
egg sac fry) and smallmouth 
bass (Micropterus dolomieu) 
across three stages of brood 
development during the parental 
care period (eggs, egg sac fry, 
and free swimming fry) in Lake 
Opinicon, Ontario

Largemouth bass Smallmouth bass

Physiological variable df F-ratio P-value df F-ratio P-value

ALP (U/l) 1, 14 1.83 0.20 2, 27 1.75 0.20

AST (U/l) 1, 14 1.62 0.23 2, 27 1.28 0.30

Calcium (mmol/l) 1, 13 0.08 0.92 2, 22 8.17 <0.01

Chloride (mmol/l) 1, 12 0.41 0.67 2, 21 7.21 <0.01

Cholesterol (mmol/l) 1, 14 0.25 0.78 2, 27 0.04 0.95

CK (U/l) 1, 14 1.06 0.37 2, 27 3.07 0.06

Glucose (mmol/l) 1, 14 2.90 0.09 2, 25 5.54 0.01

Hematocrit (proportion) 1, 14 2.45 0.12 2, 27 6.79 <0.01

LDH (U/l) 1, 14 3.36 0.06 2, 26 1.93 0.17

Magnesium (mmol/l) 1, 13 1.35 0.29 2, 22 6.61 <0.01

Phosphorous (mmol/l) 1, 14 2.18 0.15 2, 22 3.15 0.06

Potassium (mmol/l) 1, 12 0.04 0.96 2, 21 4.66 0.02

Sodium (mmol/l) 1, 12 0.10 0.90 2, 21 4.82 0.02

Total protein (g/l) 1, 14 0.04 0.96 2, 25 0.48 0.62

Triglycerides (mmol/l) 1, 14 1.79 0.20 2, 27 4.93 0.02

Italicized and boldfaced statisti-
cal output indicates signiWcant 
diVerences at � = 0.01

Fig. 5 Comparison of plasma a 
chloride, b magnesium, c hemat-
ocrit, and d calcium levels be-
tween three repeated sampling 
periods of nest guarding male 
smallmouth bass at the egg, egg 
sac fry, and free swimming fry 
brood development stages. Let-
ter assignments of “a” and “b” 
denote signiWcant (P < 0.01) 
diVerences among brood devel-
opment stages for smallmouth 
bass. Error bars show mean § 1 
SE
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Congleton and Wagner 2006; Polakof et al. 2007). There-
fore, the decline of plasma triglyceride across the parental
care period is an indicator of extended fasting and is consis-
tent with videographic observations for smallmouth bass
during nesting (Hinch and Collins 1991).

Additionally, hematocrit levels decreased from the com-
mencement of parental care to the egg sac fry stage and
then remained stable through to the end of sampling in both
randomly and repeatedly sampled Wsh (Figs. 2, 5). Due to
the fact that whole blood is being removed from the animal,
decreases in hematocrit may be caused by sampling tech-
nique. However, the pattern of hematocrit decline within
repeatedly sampled Wsh is consistent with a similar decline
amongst singly sampled Wsh. Since this pattern is conserved
through both sampling strategies, we believe that the Xuctu-
ations in hematocrit are due to a physiological response to
parental care rather than our sampling practices. Consistent
with the idea forage intake is markedly decreased during
parental care, decreases in hematocrit may be indicative of
the use of internal energy stores (rather than exogenous for-
age) to power parental care activities at the cost of main-
taining tissues such as replacing senescent erythrocytes
(Rios et al. 2005).

Plasma magnesium levels also Xuctuated in a manner
indicative of fasting in the current study. Interestingly, the
pattern of change in plasma magnesium may also be indica-
tive that fasting only occurs during the Wrst 2 weeks of
parental care and normal foraging resumes during the free
swimming fry stage (approximately the third week of
parental care). Plasma magnesium decreased by
0.16 mmol/l (»16% change from the baseline value at the
egg stage) at the egg sac fry stage of brood development
and then, by the free swimming fry stage, increased back to
the levels at the commencement or parental care (Fig. 5).
Plasma magnesium is also a required mineral for enzymatic
processes in teleost Wshes and is primarily recruited from
dietary sources (Lall 2002). In fasted salmonids, circulating
magnesium levels decreased in response to fasting (Congle-
ton and Wagner 2006) similar to what was seen in the pres-
ent study. However, the magnitude of change was greater
for salmonids. Incidentally, much research has focused on
the role of water temperature in inXuencing circulating
magnesium levels, speciWcally in the fact that low tempera-
tures tend to decrease levels of plasma magnesium within
Wsh (Burton 1986; Congleton and Wagner 2006). As bass
spawning coincides with increasing water temperatures in
the spring (Kramer and Smith 1962; Ridgway 1988),
decreases in plasma magnesium are more likely to be attrib-
utable to the eVects of fasting rather than ambient tempera-
ture. Additionally, the increase of plasma magnesium at the
free swimming fry stage to levels similar to those found at
the commencement of parental care are indicative of
increased feeding during this time.

Besides Xuctuations in plasma magnesium levels, other
biochemical metrics indicate that bass may resume feed-
ing towards the end of parental care. By the free swim-
ming fry stage in brood development, the fry have moved
into a loosely associated group that fans out over a larger
area (Friesen and Ridgway 2000), forcing the male to
swim over larger distances to guard the brood and thereby
increasing the area over which a male may encounter and
consume prey items (Cooke et al. 2002). Circulating cal-
cium levels increased by approximately 0.2 mmol/l
(»7%) in parental males by the free swimming fry stage
of brood development (Fig. 5). In general, most teleost
Wsh satisfy calcium requirements through the absorption
of mineralized calcium from dietary sources (Lall 2002),
so increases in circulating levels may be due to digestion
of forage. Additionally, increases in circulating calcium
levels may be bolstered by the response of the organism to
long term fasting in which internal reserves of calcium are
mobilized to maintain homeostasis (Yamada 1956; Ikeda
et al. 1974; Persson et al. 1997). Calcium is required for
various metabolic functions within the body such as nerve
transmission, cell membrane function and integrity, and
enzyme activity (Lall 2002) as well as the formation of
hard structures such as scales and the skeletal system
(which may account for up to 95% of body calcium; Berg
1968; Fleming 1974; Persson et al. 1997). Further sup-
porting the idea that feeding resumes by the end of paren-
tal care, total protein levels remained relatively consistent
across parental care (Table 5). In a study of fasting salmo-
nids, Congleton and Wagner (2006) noted that total circu-
lating protein levels decreased dramatically after the Wrst
3 weeks of fasting. These decreases in circulating plasma
protein are thought to be due to the digestion of endoge-
nous proteins for metabolism when outside sources of
protein usually derived from forage are unavailable
(Sauer and Haider 1979; Navarro and Gutiérrez 1995;
Rehulka 1993; Wagner and Congleton 2004). In the pres-
ent study, no decreases in the levels of plasma protein
were noted at the free swimming fry stage (roughly 3
weeks from the onset of parental care), possibly indicative
of the resumption of feeding (and intake of exogenous
protein) by this time period to preserve homeostasis in the
individual.

Indications of chronic stress

Indicators of chronic stress in parental individuals varied
considerably as parental care progressed. In randomly sam-
pled largemouth bass, only plasma glucose varied signiW-
cantly across stages of brood development, representing a
30% increase (0.6 mmol/l) above the baseline values at the
egg stage (Fig. 1). Increased plasma glucose is among a
suite of commonly measured indicators of chronic stress
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and acute stress in Wshes (Wedemeyer et al. 1990; Momm-
sen et al. 1999; Barton 2002) as glucose levels increase as
energy reserves are mobilized in response to an acute stres-
sor (Wendelaar Bonga 1997; Barton 2002). In previous
studies of Wsh nutrition, increases in plasma glucose have
been frequently attributed to stress due to handling (Wag-
ner and Congleton 2004; Congleton and Wagner 2006) and
plasma glucose levels typically peak about 1 h after expo-
sure to an acute stressor (Milligan 1996; Mommsen et al.
1999; Barton 2002). In the current study, handling eVects
would not be detected given that Wsh were sampled within
seconds of capture, which is reXected by the fact that glu-
cose levels recorded in this study are within the typical
range of lab controls for black bass in previous studies
(Suski et al. 2003).

In addition, randomly sampled smallmouth bass showed
declines in levels of plasma chloride of »12mmol/l (repre-
senting a 10% decrease from the egg stage by the end of
parental care) (Fig. 2). Decreases in plasma ion concentra-
tions, such as chloride, often reXect hydromineral imbal-
ances that can result in osmoregulatory dysfunction
(Mazeaud and Mazeaud 1981; Barton and Iwama 1991;
McDonald and Milligan 1997; Wendelaar Bonga 1997;
Wagner and Congleton 2004). Similar to the randomly
sampled Wsh mentioned above, plasma chloride decreased
by »17mmol/l (representing a 14% decrease from the egg
stage) across the entire parental care period within the
group of repeatedly sampled smallmouth bass (Fig. 5).
There is a possibility that the repeated handling of these
individual Wsh across the approximately 3 week-long sam-
pling period could account for the stress response noted in
the data. We believe this is not the case due to the fact that a
similar pattern in decline in plasma chloride was noted in
the singly sampled Wsh, providing support that these
changes are a response to the chronic stress associated with
parental care. Furthermore, stress associated with recrea-
tional Wshing practices (i.e., our capture technique), includ-
ing ionic imbalances, are rectiWed within hours and
certainly within days for black bass (Gustaveson et al.
1991; Suski et al. 2004, 2006). Together, the Xuctuations in
plasma glucose and ion concentrations suggest that parental
care behaviours represent a chronic stress to the individual
for the duration of parental care.

Conclusions

In summary, our results have shown that hematology and
biochemical factors associated with endogenous energy
stores and parental condition vary across parental care.
Interestingly, a rise in indicators of feeding at the free
swimming fry stage denotes the resumption of feeding as
the brood gains independence. Additionally, factors associ-

ated with the response to chronic stress increase across
parental care. Overall, changes in nutritional status across
the parental care period can have marked impacts on indi-
vidual Wtness (Pottinger 1999). Currently, it is believed that
parental care giving male bass largely power brood defense
and maintenance behaviours through the use of endogenous
energy stores (Mackereth et al. 1999). Many of the bio-
chemical parameters measured in this study reXect either
metabolism of these endogenous energy reserves in
response to fasting or mobilization of nutrients from
ingested food (Congleton and Wagner 2006). Individuals
characterized by nutritional indices that indicate poor rela-
tive condition prior to spawning, or increased use of energy
reserves during parental care relative to conspeciWcs, may
run the risk of expending energy reserves prior to the inde-
pendence of the brood. Also, the combined sublethal eVects
of energy depletion coupled with chronic stress could prove
to be lethal to the individual. In such a case, the male
should abandon the current brood at a cost of any current
Wtness to ensure his own survival and future reproductive
opportunities in keeping with the William’s Principle (Wil-
liams 1966b; Sargent and Gross 1986). Continuing research
into the relationships between the interplay of parental care
behaviour and its underlying physiological and energetic
consequences will help to elucidate the links between phys-
iology, behaviour, and Wtness. This work will aVord
researchers a better understanding of the trade-oVs encoun-
tered by the individual that dictate parental decisions and,
ultimately, diVerences in individual Wtness.
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