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ABSTRACT 
 

Anthropogenic alterations to terrestrial habitat (e.g., urbanization, deforestation, 

agriculture) can have a variety of negative effects on riverine systems that flow through disturbed 

landscapes.  These in-stream changes can alter aquatic population size and community structure; 

however, the underlying causal mechanisms remain poorly understood.  Although patterns in 

population size presumably reflect underlying variation in organismal health and condition, such 

individual-level metrics are rarely evaluated in the context of ecosystem disturbance.  Using 

physiological sampling, we can examine the effects of land use on the health of resident fishes, 

and improve our understanding of the mechanisms causing population declines.  Therefore, the 

goal of my thesis is to define the relationship between human land use, habitat quality, and the 

physiological condition of stream fish.  To accomplish this goal, I performed two distinct studies 

that examine these relationships in different ways.  Chapter 1 quantified blood parameters 

relating to nutrition, oxidative stress, and the glucocorticoid (GC) stress response across streams 

differing in land-use practices at the watershed scale.  Results from this study demonstrate 

natural lands (i.e., forests and wetlands) have stronger influences physiological condition than 

human land uses (e.g., agricultural and urban areas).  Streams with the highest proportions of 

natural lands resulted in greater free energy, resistance to oxidative stress, and glucocorticoid 

function.  In my second chapter, I used tissue cortisol extraction to examine the relationship 

between stream quality and the glucocorticoid function of a stream fish community.  Results 

revealed that largemouth bass Micropterus salmoides, brown bullhead Ameiurus nebulosus, and 

logperch Percina caprodes had altered GC function as a result of anthropogenic stream 

degradation, whereas white sucker Catostomus commersonii and pumpkinseed Lepomis gibbosus 

did not.  Together, my results show that different species residing in identical habitats can 
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demonstrate a variety of responses to environmental stress, highlighting the variation in 

physiological ability to cope under poor environmental conditions, as well as the difficulty of 

predicting the GC dynamics in wild animals.  These studies have the potential to provide 

managers, conservationists, and restoration practitioners with mechanistic information on the 

effects of land use practices on stream fishes, improving our ability to predict and mitigate the 

consequences of anthropogenic habitat degradation. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

Human activities have degraded most ecosystems on earth, with over 83 % of terrestrial 

landscapes being under direct human impact (Meybeck 2004).  This is particularly important for 

riverine systems because they are heavily influenced by surrounding environments (Allan & 

Flecker, 1993; Allan, 2004; Hynes, 1975).  As a result, these ecosystems are becoming 

increasingly degraded from human activities, which is concerning for resident fauna considering 

their limited ability to disperse and escape the affected area ( Allan 2004, Olden et al. 2010, 

Wang et al. 2011).  Rivers and streams are home to some of the most diverse and unique 

ecosystems on the planet. However, habitat loss and degradation has led to a significant decrease 

in aquatic biodiversity worldwide (Allan and Flecker 1993).  Freshwater fishes had the highest 

extinction rate among vertebrates in the 20th century (Burkhead 2012), while freshwater fauna 

are projected to have a future extinction rate five times that of their terrestrial counterparts 

(Ricciardi and Rasmussen 1999).  Despite vast literature on human disturbances in lotic 

ecosystems (see Paul and Meyer 2001; Allan 2004), we lack information on the chain of cause 

and effect that links landscape changes to community responses, causing major problems for 

conservation and management. 

Streams are heavily influenced by the landscapes through which they flow (Hynes, 1975).  

As a result, a large portion of anthropogenic influence on streams and their fauna arise from 

terrestrial activities rather than direct alterations within the stream (Meybeck 2003, Allan 2004).  

Natural terrestrial features, such as forests and wetlands, are beneficial to stream ecosystems.  

For example, they stabilize banks, reduce sedimentation, provide in-stream habitat, and regulate 

hydrologic and thermal regimes (Lenat and Crawford 1994, Richardson 1994, Allan 2004).  

Human actives often remove these natural features, resulting in drastic changes to stream 
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characteristics (Meybeck 2003).  Urbanization and agriculture are two of the most influential 

anthropogenic disturbances on lotic habitat quality (Laub and Palmer 2009, Wang et al. 2011).  

Urbanization directly reduces the amount of riparian vegetation, increases the variety and 

amount of pollutants, and creates a large amount of impervious surfaces (Paul and Meyer 2001, 

Allan 2004).  Impervious surfaces increase runoff, causing larger and more frequent periods of 

high flow and leading to habitat destruction, bank destabilization, erosion of streambeds, and 

sediment displacement (Lenat and Crawford 1994, Poff et al. 1997).  Agricultural development 

has a similar suite of consequences, while also causing an increase in nutrient input and 

sedimentation of the adjacent waterways (Laub and Palmer 2009, Smith 2009).  These effects of 

land use on streams have direct consequences for resident fauna.  Transitions from natural to 

disturbed landscapes reduce abundance and diversity in macroinvertebrate and fish communities 

(Lenat and Crawford 1994, Paul and Meyer 2001, Allan 2004, Miserendino and Masi 2010, 

Wang et al. 2011).  Due to the inseparable nature of streams and their watersheds, land use 

alterations have profound impacts on lotic systems and are a main cause for changes in stream 

communities (Allan 2004). 

As a result of the prevalence of anthropogenic aquatic habitat degradation, much effort 

has recently focused on conserving aquatic ecosystems via management initiatives and 

restoration activities.  Ecological restoration can be defined as the process of repairing damage 

caused by humans to the diversity and dynamics of indigenous ecosystems (Jackson et al. 1995).  

One of the largest efforts in restoration projects is riparian zone management (Bernhardt et al. 

2007, Kondolf et al. 2007).  The knowledge that riparian corridors have a large influence on 

streams (Gregory et al. 1991) has caused the majority of focus to be aimed away from 

understanding watershed-scale effects (Allan et al. 1997).  This de-emphasis has led to a poor 
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understanding of watershed-scale effects, and has been recognized as major cause of failure in 

restoration efforts (Roni et al. 2008).  To properly manage and conserve aquatic biodiversity, we 

must improve our understanding of how broad-scale human activities affect stream ecosystems. 

 Traditional methods to assess the relationship between human activities and stream 

ecosystems involve community monitoring.  Using indices that quantify abundance and species 

richness, community assessments provide information on the end result of disturbance, but they 

provide no information on causal mechanisms, and can also be misleading.  For example, Van 

Horne (1983) demonstrated that the link between habitat quality and population density is more 

complex than a simple positive correlation, meaning that a higher quality habitat does not 

necessarily have greater fish densities.  This decoupling has been demonstrated in degraded 

environments that resulted in changes to species composition, but not abundance of organisms 

(Lenat and Crawford 1994, Davies and Jackson 2006).  Conversely, species diversity and 

taxonomic distinctness indices can be poor reflections of anthropogenic disturbance (Heino et al. 

2007), and studies that focus on the presence-absence of species have also been shown to provide 

an inaccurate representation of true species diversity (Mackenzie 2005).  Clearly, the effects of 

human disturbance on fish communities is complex, and developing additional metrics to 

quantify this relationship could improve our ability to predict the impacts of watershed land use 

on stream ecosystems. 

Physiological indices could help with quantifying the effects of terrestrial disturbance.  

Physiology represents the link between an organism and its environment, and has much to offer 

the field of ecological restoration (Ricklefs and Wikelski 2002, Cooke and Suski 2008).  

Physiological indices, particularly in terms of stress and nutrition, can reflect many aspects of 

habitat quality, including food availability (Congleton and Wagner 2006, van de Crommenacker 
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et al. 2011), land use practices (Blevins et al. 2013), pollution levels (Hontela et al. 1992), and 

restoration effectiveness (Adams and Ham 2011).  Blood-based indices of health and condition 

can respond quickly to environmental conditions, as opposed to population or community 

metrics, which may take years to show a response.  This is especially important in cases where 

populations residing in low quality habitats have decreased fitness and reproduction but are 

maintained through immigration from source populations (Pulliam and Danielson 1991, Dunning 

et al. 1992, Paul and Meyer 2001, Guisan and Thuiller 2005).  In these cases, population-level 

metrics would not show a response, however, a physiological assessment would allow the 

detection of impaired organismal health and condition.  Physiology also offers a series of metrics 

that are measured as continuous variables (e.g., concentration of a parameter in mg/L), providing 

a graded response to environmental conditions.  Therefore, physiological indices can improve 

our understanding of how human land use practices shape aquatic communities by providing 

early warning signals, information on causal mechanisms, sensitive processes, and areas of 

ecological concern (Adams, 1990). 

There are several blood-based nutritional metrics that can be used to quantify links 

between organisms and habitat quality, such as cholesterol, and total protein.  These metrics can 

decrease in response to sustained fasting, and may not immediately increase after feeding 

(Farbridge and Leatherland 1992, Congleton and Wagner 2006).  As food availability is known 

to have a large impact on perceived habitat quality (Mägi et al. 2009, Jenkins and Keeley 2010), 

and is often used as an indication of habitat quality (Dhondt 2010, van de Crommenacker et al. 

2011), these indices represent excellent surrogates, or complements, for traditional habitat 

quality metrics.  Similarly, oxidative stress is responsive to the quality of habitat in which an 

animal resides.  Reactive oxygen species, generated through cellular metabolism, can damage 
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proteins, lipids, and nucleic acids and speed the aging and death of cells (Harman 1956, 

Halllwell and Gutteridge 1985, Beckman and Ames 1998).  To combat oxidative damage, 

animals have evolved extensive antioxidant machinery, a substantial portion of which is 

exogenously-derived from food (van de Crommenacker et al. 2011).  Because of this, low habitat 

quality can lead to increased oxidative stress (van de Crommenacker et al. 2011) and increased 

susceptibility to disease (Beckman and Ames 1998).  A quantification of total antioxidant 

capacity and cellular oxidative damage can be used to assess food availability (van de 

Crommenacker et al. 2011), food quality (Costantini 2008), and pathogen burden (Costantini and 

Dell’Omo 2006).   

Stress hormones and the stress response are also important indicators of organismal 

health, and can directly relate to habitat quality.  Catecholamines and glucocorticoids are the two 

main hormonal groups that form the endocrine stress response.  The catecholamines, epinephrine 

and norepinephrine, comprise the initial response, commonly called the fight-or-flight response 

because they immediately increase the readiness and activity of an animal (Romero and Butler 

2007).  Glucocorticoids, cortisol and corticosterone, are much slower at responding to a stress 

event, usually taking three to five minutes for increased concentrations in the blood to be 

detected (Romero and Butler 2007).  Glucocorticoids induce short-term responses beneficial to 

an animal’s survival (e.g., liberating energy reserves).  Of potentially greater importance, 

however, are the consequences of repeated or long-term glucocorticoid expression, which alter 

behavior, inhibit growth and reproduction, and impair immune function (Romero 2004).  

Because of this, exposure to a chronic stressor may become detrimental to an organisms health, 

fitness, and inevitably their survival.  For example, animals residing in disturbed or polluted 

environments often display elevated baseline cortisol levels (Martínez-Mota et al. 2007).  
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Alternatively, animals within degraded environments may become acclimatized to the chronic 

stress of a poor environment and demonstrate normal baseline cortisol levels, but show an 

elevated response to a novel stressor, a process referred to as facilitation (Dobrakovová et al. 

1993, Bhatnagar and Vining 2003).  If a chronic stressor is relatively severe, facilitation may not 

occur (Dallman and Bhatnagar 2001), resulting in an impaired stress response from animals 

occupying exceptionally poor habitats.  Yellow perch (Perca flavescens) and northern pike (Esox 

lucius), for example, demonstrated an impaired stress response in areas with high levels of 

contaminants (Hontela et al. 1992).  While this relationship is complex, the glucocorticoid stress 

response can reflect the health of an animal, as well as its environment.  Therefore, physiological 

metrics allow researchers to assess the ability of an organism to perform ecological function 

within its environment, which is the true indicator of whether or not it is occupying a suitable 

habitat (Cooke and O’Connor 2010).  Despite this potential, the use of physiological metrics in 

quantifying the effects of human land use practices has not received a great deal of attention, 

leaving its efficacy unknown. 

Based on this background, the goal of my research is to define the relationship between 

human land use, habitat quality, and the physiological condition of stream fish.  My thesis 

consists of two chapters that apply this knowledge to evaluate fish health across a gradient of 

habitat quality and land use practices.  Chapter 1 one is an extensive survey of largemouth bass 

across a gradient of land use characteristics to define how land use drives stress and nutrition, 

while chapter 2 was an intensive study that examined an entire fish community between a 

degraded and pristine environment to quantify if and how different species respond to human 

disturbance.  This has the potential to provide managers, conservationists, and restoration 

practitioners with mechanistic information on the effects of land use practices on stream fishes, 
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improving our ability to predict and mitigate the consequences of anthropogenic habitat 

degradation. 

This research was conducted in the area of Cornwall, ON, Canada, using several 

tributaries of the St. Lawrence Seaway (Figure 1.1).  This area has experienced dramatic 

degradation of aquatic habitats due to eutrophication, habitat destruction, and exposure to a 

variety of contaminants, such as mercury, PCB, and bacteria, largely caused by urbanization and 

agriculture development (AECOM Canada Ltd., 2009).  In an effort to monitor these problems 

the U.S. and Canadian governments established the International Joint Commission (IJC) (Hartig 

and Thomas 1988). Since 1973, the IJC has identified Areas of Concern (AOC) where water 

quality has been degraded to the extent that it has or may impair the area’s ability to support life 

(Hartig and Thomas 1988).  With little being done to improve these AOC, in 1985 the eight 

Great Lakes states and the Province of Ontario decided it was necessary to develop a remedial 

action plan (RAP) for each AOC to better guide and monitor their progress (Hartig and Thomas 

1988).  As such, since 1985 there have been extensive efforts by several agencies to determine 

the main generators of anthropogenic degradation in this area.  These efforts have resulted in an 

abundance of data on water chemistry variables, land use, and habitat type.  In addition, there is 

also a minimally impacted stream within the same area that serves as a reference (Hoople Creek).  

Thus, the Corwall AOC is a system that consists of several streams in close proximity to each 

other with known land use practices, providing a valuable opportunity to measure the impacts of 

watershed land use.  For these reasons, the Cornwall AOC was the perfect area to conduct my 

research.  
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CHAPTER 2: WATERSHED-SCALE LAND USE ACTIVITIES INFLUENCE THE 
PHYSOLOGICAL CONDITION OF STREAM FISH 

 

Abstract 

Land use changes within watersheds can have large effects on stream ecosystems, but the 

mechanistic basis of those effects remains poorly understood.  While changes to population size 

presumably reflect underlying variation in organismal health and condition, such individual-level 

metrics are rarely evaluated in the context of ecosystem disturbance.  To address this deficiency, 

we combined physiological sampling with geographic information systems to quantify the 

effects of land use on the health largemouth bass.  More specifically, we first quantified blood 

parameters relating to nutrition, oxidative stress, and the glucocorticoid (GC) stress response 

from largemouth bass residing in eight watersheds.  We then used Akaike’s Information 

Criterion to define relationships between these blood parameters and land cover including forest, 

agriculture, urban area and wetlands.  The proportion of forest cover in a watershed was the best 

predictor of blood parameters representing free energy and resistance to oxidative stress, whereas 

wetland proportion was the best predictor of GC function.  Patterns in energy reserves were not 

influenced by any land use practices.  Interestingly, anthropogenic land use categories, such as 

urban and agriculture, were not the best predictor for any blood parameters.  Together, our 

results indicate that fish health is largely driven by natural features of a landscape rather than 

anthropogenic land uses.  Furthermore, these findings suggest that physiological methods could 

supplement traditional population and community assessments to develop a more comprehensive 

understanding of ecosystem interactions and improve stream management. 
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Introduction 

Habitat selection has important physiological consequences for animals (Huey 1991).  

For example, forage quality and availability can affect antioxidant capacity in avian species 

(Costantini 2008), and land use bordering streams can dictate an animal’s ability to mount a 

stress response (Blevins et al. 2013).  The consequences of habitat choice are particularly 

important in challenging habitats, where costs to maintain homeostasis may increase.  If sub-

optimal habitat conditions persist over extended periods, allostatic overload may occur. This can 

negatively affect physiological processes including immune function, energy availability, and 

stress response, potentially hindering survival and reproduction (Romero et al. 2009).  Although 

individual-level physiological characteristics underpin population-level processes (Ricklefs and 

Wikelski 2002), such physiological parameters are rarely incorporated into field assessments of 

landscape-level environmental change (Cooke and Suski 2008). 

In natural systems, forests and wetlands provide beneficial services for stream 

ecosystems (Richardson 1994, Allan 2004) and contribute to healthy aquatic systems and 

community structure (Miserendino and Masi 2010, Blevins et al. 2013).  As human populations 

increase, the destruction of natural habitats for urban and agricultural development not only 

impedes ecosystem services but also increases runoff, raising pollutant, sediment and nutrient 

loads in impacted watersheds (Meybeck 2004).  Combined, these factors result in the 

degradation of aquatic systems, which can alter species distributions, reduce biodiversity and 

cause significant population declines (Allan 2004). 

Improving our understanding of the physiological consequences of watershed land use 

has the potential to improve conservation and restoration efforts.  Physiological indices, 

particularly in terms of stress and nutrition, offer a mechanistic understanding of many aspects of 
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habitat quality, including food availability (Congleton and Wagner 2006), land use influences 

(Nagrodski et al. 2012, Blevins et al. 2013), and pollutants (Hontela et al. 1992).  Furthermore, 

these indices can respond more rapidly to environmental conditions than population-level 

metrics, in which effects are only evident after significant changes in mortality, reproductive 

output, or distribution (Ellis et al. 2011).  The continuous nature of physiological variables (e.g., 

concentration of glucose in mg/L) also provides a graded response to environmental conditions, 

improving explanatory power.  An improved understanding of the physiological consequences of 

watershed land use could therefore guide restoration efforts to the most effective strategies prior 

to population declines or extirpation (Cooke and Suski 2008). 

Within this context, the objective of this study was to quantify the relationship between 

watershed-scale land cover and the physiological properties of resident fishes.  This will allow us 

to determine land covers that most affect stream fish and the organismal processes that are 

affected.  To accomplish this goal, we collected Micropterus salmoides (largemouth bass) from 

streams that varied in their watershed land use practices, and obtained blood samples to examine 

health and condition.  Micropterus salmoides was chosen as the model species for this study 

because their sedentary nature during this season ensured residence in the streams where they 

were collected (Winter 1977).  This research will improve our understanding of the effects of 

land use practices on physiological processes, generating mechanistic insight into the effects of 

land cover on stream fish populations, and enabling better prediction of population responses 

prior to decline.  

 

Methods 

Site Selection 
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This study took place in a portion of the St. Lawrence Seaway near Cornwall, ON (45° 

01’ 17.5” N, 74° 43’ 50.42” W). To quantify the effect of land use on the physiological 

properties of M. salmoides, watersheds with various proportions of land use practices were 

selected. This area was chosen because of the available land use data, the abundance of 

watersheds in a small study area, and the variability in land use across watersheds.   

Land use data were gathered by the Ontario Ministry of Natural Resources and compiled 

into the Southern Ontario Land Resource Information System (SOLRIS, Land Classification 

Data [computer file]. Version 1.2. Peterborough, Ontario: The Ontario Ministry of Natural 

Resources, 2008.).  Using Quantum GIS Lisboa (1.8.0), this database was integrated with a GIS 

layer developed by the Raisin Region Conservation Authority that delineated watershed 

boundaries within the study area.  The SOLRIS database divides land use variables into many 

classes; for the purposes of this study, these classes were reduced into eight general land use 

categories (Table 2.1).  Once these general land use categories were established, the proportion 

each category occupied per watershed was determined (Table 2.2).  Using these data, eight 

watersheds representing a range of land use practices were chosen for field sampling. 

Field Sampling 

The field-sampling component of this study was performed between July 12 and 21, 

2012, in the eight watersheds described above.  Using pulsed direct current (PDC) boat 

electrofishing gear (Smith-Root, INC., 2.5GPP Electrofisher System [01868]) M. salmoides (n = 

9 – 12, totaling 84) were collected from the lower portions of each stream.  Similar to sample 

sizes used in other studies relating physiology to habitat quality (Homan et al. 2003, Martínez-

Mota et al. 2007, Blevins et al. 2013). Sampling occurred from the confluence of each tributary 

with the St. Lawrence Seaway to the most upstream portion accessible by boat, typically 1 – 2 
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km, except for Pattingale Creek, where only the lower ~150 m was able to be sampled by boat.  

If 10 fish were not caught on the first pass of the stream, at least 48 hours was allowed before 

returning to sample remaining fish.  This delay allowed any potential cortisol elevations in 

disturbed but uncaptured fish to return to baseline levels (Mommsen et al. 1999).   

Once a M. salmoides was stunned by the electrofishing gear, it was immediately netted 

and placed in a moist, foam lined trough with the ventral side exposed and gills partially 

submerged in fresh stream water.  To define baseline plasma cortisol levels, approximately 1.0 

mL of whole blood was drawn via caudal puncture into a sodium-heparinized 1.0 mL syringe.  

All blood was drawn within 3 minutes of the fish being stunned by electrofishing gear to ensure 

baseline cortisol concentrations were not influenced by sampling (Mesa and Schreck 1989, 

Maule and Mesa 1994, Romero and Reed 2005).. 

To quantify cortisol and glucose responsiveness, we used a standardized challenge 

previously shown to induce maximal elevations of circulating cortisol in other Micropterus 

species (O’Connor et al. 2011). Each fish was subjected to 3 minutes of air exposure in a moist, 

padded, and covered container immediately following the initial blood sample.  M. salmoides 

were then placed in a ‘fish bag’ in the stream for 25 minutes to allow circulating cortisol 

concentrations to reach maximal elevations.  The ‘fish bag’ was a cylindrical sack (1 m long × 

0.2 m diameter) constructed from hypalon rubber (chlorosulfonated polyethylene synthetic 

rubber) with mesh on both ends to allow for continuous water exchange.  After the 25 minute 

confinement in the fish bag, M. salmoides were bled a second time in a manner identical to that 

of the first before being weighed, measured, fin clipped to prevent resampling, and released. 

Immediately following withdrawal, extracted blood samples were spun in a centrifuge for 3 

minutes at 6,000 rpm to separate plasma from erythrocytes (Liss et al. 2013).  Following 
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centrifugation, the plasma layer was removed and divided into two other microcentrifuge tubes.  

All three samples were placed in a dry shipper charged with liquid nitrogen for future laboratory 

analysis.   

 

Laboratory analyses 

We quantified cholesterol (milligrams per deciliter) and triglycerides (mg dL-1) with 

EnzyChrom Cholesterol Assay Kit [ECCH-100] and EnzyChrom Triglyceride Assay Kit 

[ETGA-200], respectively (BioAssay Systems, Haywood, CA, USA).  Total antioxidant capacity 

(in mM) and lipid peroxide levels (in µM malondialdehyde [MDA]) were quantified using 

Antioxidant Assay Kit [709001] and TBARS Assay Kit [10009055], respectively (Cayman 

Chemical, Ann Arbor, MI).  Plasma cortisol (ng mL-1) was measured using a Cortisol EIA Kit 

(Enzo Life Sciences ADI-901-071) previously validated for use on M. salmoides (Sink et al. 

2008).  Total protein (g dL-1) was measured using a hand-held protein refractomenter (AST 

model 1250, Thomas Scientific, Swedesboro, New Jersey, USA), which has been certified for 

the use in the range of 0 – 12 g dL-1 (Wells and Pankhurst 1999). 

 

Statistical Analysis 

To reduce the dimensionality of the physiological data and quantify relationships among 

parameters, a principal component analysis (PCA) on correlations was performed (Liss et al. 

2013).  Our ratio of samples to predictor variables met those recommended by (Grossman et al. 

1991) and principal components (PCs) with eigenvalues >1 were used for analysis (Kaiser 1960).  

These PCs were rotated using varimax rotation on the maximum likelihood solution (Kaiser 

1960, Liss et al. 2013).  Variables with factor loadings >│0.4│ were considered maximal 
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contributors to each PC (Kaiser 1960, Liss et al. 2013).  Positive factor loadings indicate a 

positive correlation between the PC and raw data, while negative factor loadings indicate 

negative correlation.  Rotated PCs were used as response variables in all subsequent analyses 

(Table 2.3).  Once the rotated components were obtained normality and homoscedasticity were 

assessed using visual inspection of fitted residuals (Williams 1959); all data met necessary 

assumptions and no transformations were required.   

Principal components were fitted to biologically relevant models chosen a priori that 

sought to define the relationship between land use practices and physiological response variables 

(Table 2.4).  We did not include models with multiple land use types, as we were interested in 

determining the land use variables with the largest impact on M. salmoides physiological 

condition. While all fish were captured from the same stream, fish were kept as individual data 

points, as opposed to averaging stream values, to prevent artificially reducing the variance and 

retain information provided by each individual (Schank and Koehnle 2009).  Watershed land use 

variables, considered treatments, were modeled against each principal component using linear 

and nonlinear regression to determine the best predictor variable.  For this, land use variables 

were also modeled with their square term as biological responses to environmental conditions 

can often be nonlinear (Allan 2004, Mouillot et al. 2013). To account for the unequal size of our 

watersheds, we considered land use as a proportion of the total watershed area, rather than 

absolute area of each land use.  Models were ranked using Akaike’s Information Criterion 

adjusted for small sample size (AICc) to determine the best approximating model (Hegyi and 

Garamszegi 2010).  Upon ranking models, those with a ∆i AICc < 2 of the best-fit model were 

deemed to be a competitor for drawing inference (Mazerolle 2006). 
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Relative weight (Wr), a measure of fish condition that relates actual fish weight to the 

expected weight at a given length, was also compared between streams.  This was done on all 

largemouth bass over the minimum recommended length of 150 mm with the Wr index using the 

RLP equation developed and presented by Murphy et al. (1991).  Principal component analyses 

were performed using JMP 10.0, while regression models and AICc values were obtained using 

the maximum likelihood estimation in PROC MIXED with SAS 9.3 (SAS Institute, Cary, NC, 

USA).  Rejection of the null hypothesis (α) for all tests was P ≤ 0.05, and all values are reported 

as means ± standard error (SE) where appropriate. 

 

Results 

Agriculture was the dominant land use practice in the watersheds examined, occupying 

33 to 84 % of each watershed.  Forests and wetlands were the next most abundant land use 

categories, and ranged from 8.7 to 18.1 %, and 2.2 to 27 %, respectively.  Resource extraction 

and recreation were the two least abundant land uses, with both categories averaging ~2 % of 

total watershed area.  

Physiological parameters were highly variable across streams (Table 2.3).  Lipid peroxide 

level, a measure of cellular oxidative damage, was the most variable metric with a three-fold 

increase from the lowest to the highest-ranking watershed.  The second most variable 

physiological metric was triglycerides, with watershed means ranging from 1.36 to 3.92 mg dL-1.  

It is also worth noting that total antioxidant capacity was the third most variable metric, with the 

highest watershed mean being 2.5 times greater than the lowest.  The two least variable 

parameters were total protein and cholesterol, with a respective 20 and 26 % increase from the 

lowest to the highest watershed means.  One fish displayed a low cortisol and glucose response, 

with the baseline and responsiveness values interacting to generate a negative scope.  We chose 
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to not exclude this individual from analyses because both the baseline and post-stress values 

were within the range of baseline levels observed in this study and attributed the negative value 

to a muted stress response, recovery in the fish bag, or inherent error (+/- 8 %) in the cortisol 

assay (Cortisol ELISA kit Product Manual 2013).  Both total length (Analysis of Variance 

[ANOVA], F(7, 56) = 1.7098, P=0.2481) and weight (ANOVA, F(7, 56) = 1.7833, P = 0.2351) of 

sampled M. salmoides did not differ across streams. 

 Principal component analysis produced 4 PCs with eigenvalues >1, which explained 55 

% of the total variation in physiological parameters measured (Table 2.4).  PC1 explained 18 % 

of the total variation and was characterized by positive factor loadings for baseline glucose and 

triglycerides, indicating readily available, or free, energy (German 2011) (Table 2.4).  PC2 

explained 14.1 % of total variation and was characterized by positive factor loadings for total 

protein and cholesterol, indicating energy reserves (Wagner and Congleton 2004, German 2011) 

(Table 2.4).  PC3 explained 12.7 % of the total variation, and was characterized by a positive 

factor loading for total antioxidant capacity and a negative factor loading for lipid peroxide 

levels, therefore representative of oxidative stress resistance (Beckman and Ames 1998) (Table 

2.5).  Finally, PC4 explained 10.5 % of the total variation and was characterized by a negative 

factor loading for baseline glucose and positive factor loadings for cortisol and glucose 

responsiveness, indicating both current nutritional status and glucocorticoid responsiveness 

(Romero 2004). 

 Variation in PC1 (free energy) was best explained by the model containing the quadratic 

term for proportion of forest in a watershed (Table 2.5).  No other models received a ∆i AICc of 

< 2, and were therefore not considered competitive.  The greatest PC1 scores occurred in 

watersheds with an intermediate proportion of forest (between 11 and 15 %), while M. salmoides 
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residing in watersheds with greater or less than this intermediate proportion displayed lower PC1 

scores (Figure 2.1). 

 Variation in PC2 (energy reserves) did not receive substantial support from any model 

examined.  Of the 12 models examined, nine were competitors for best-fit model receiving a ∆i 

AICc of < 2.  The top six were the linear models for each land use category, and the next three 

also contained the quadratic term for proportion of forest, urban, and agriculture (Table 2.5).   

 Variation in PC3 (resistance to oxidative stress) was explained by several competing 

models.  The top ranked model contained the quadratic term for the proportion of forest in a 

watershed (Table 2.5).  More specifically, the lowest PC3 scores occurred in watersheds with an 

intermediate proportion of forest area (between 12 and 16 %), and watersheds with proportions 

of forest greater or less than this intermediate amount showed higher PC3 scores for resident M. 

salmoides (Figure 2.2a).  The first competing model contained the linear term for the proportion 

of forest in a watershed, demonstrating a positive relationship between the proportion of forest in 

the watershed and PC3 scores (Figure 2.2a).  The next competing model contained the linear 

term for the proportion of recreational land, demonstrating a negative relationship between PC3 

scores and the amount of recreational land in the watershed (Figure 2.2b).  The final competing 

model contained the quadratic term for proportion of wetlands in a watershed.  Similar to the 

relationship between PC3 and forests, the lowest PC3 scores occurred in watersheds with an 

intermediate proportion of wetland area, and watersheds greater or less than this intermediate 

proportion showed higher PC3 scores for resident M. salmoides (Figure 2.2c).  

 Variation in PC4 (baseline glucose and GC responsiveness) was explained by two 

competing models: proportion of wetland and proportion of agriculture in the watershed.  The 

top model overall contained the proportion of wetland in the watershed (Table 2.5), which 
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demonstrated a positive relationship between PC4 scores and the proportion of wetland in the 

watershed (Figure 2.3a).  The competing model for PC4 contained proportion of agriculture and 

other fields in a watershed.  This model received a ∆i AICc of 0.5 and PC4 scores demonstrated 

a negative relationship with the amount of agriculture and other fields in a watershed. (Figure 

2.3b). 

 There were no differences in fish condition between the streams sampled in this study.  

Across all streams, 54 fish exceeded 150 mm (n = 3 – 11) with relative weights (Wr) ranging 

from 97.9 – 108.3 (Table 2.3).  When compared across streams, no difference was found in 

resident largemouth bass Wr (F(7, 46) =0.77, P = 0.62).  

 

Discussion 

The proportion of forest and wetland were found to be the strongest watershed-scale 

drivers of physiological condition of resident M. salmoides.  More specifically, for PC1, 

representing free energy, and for PC3, representing resistance to oxidative stress, the best-fit 

model was the proportion of forest in a watershed.  For PC4, which contained baseline glucose 

and GC responsiveness, the best-fit model was the proportion of wetland in a watershed.  The 

importance of these variables in our study is likely the result of forests and wetlands creating 

better habitat by generating more stable hydrologic regimes (Richardson 1994), reducing inputs 

(Allan 2004), and increasing forage availability and quality (Theodoropoulos and Iliopoulou-

Georgudaki 2010, Miserendino et al. 2011).  The relationship between the extent of these natural 

areas and M. salmoides physiology is particularly informative, as our analysis did not discern 

location of the land use practices within the watershed, meaning these natural areas have a large 

impact on streams even though they were not necessarily riparian.  Together our results indicate 
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the proportion of forests and wetlands within a watershed are the strongest drivers of 

physiological condition in resident M. salmoides in relation to other land use types, such as 

agriculture and urban areas. 

Interestingly, for some of the parameters examined, the relationship between land use 

(forested area in particular) and physiological metrics was parabolic rather than linear.  More 

specifically, the best-fit model between land use type and PC1 (free energy) peaked in 

watersheds with intermediate proportions of forested area and decreased when proportions of 

forested area were higher or lower.  PC1 contained the energy sources triglycerides and glucose, 

which have been demonstrated to decrease during periods of fasting and increase after feeding 

(Wagner and Congleton 2004, Congleton and Wagner 2006).  As forests can increase water 

quality and aquatic community structure and diversity (including taxa M. salmoides use for 

forage), increasing triglyceride and glucose concentrations from low to intermediate proportions 

of forest is likely related to increasing water and forage quality/quantity (Miserendino and Masi 

2010, Theodoropoulos and Iliopoulou-Georgudaki 2010).  Decreased PC1 scores at high 

proportions of forests may indicate reduced feeding caused by changes in community and habitat 

structure, such as increased competition for food in higher quality habitats (Ward et al. 2006) or 

increased prey refugia if forests are creating more in-stream habitat (Savino and Stein 1989).  

While the mechanism is unclear, results clearly show that the proportion of forest in a watershed 

influences the free energy in M. salmoides. 

The influence of land use on PC3 scores (resistance to oxidative stress) received the most 

competition of our physiological components.  Five models had ∆i AICc scores < 2; however, 

four of these five were the natural land uses, forests and wetlands.  Similar to PC1, PC3 scores 

demonstrated a parabolic relationship with the proportion of forest and wetland in a watershed, 
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declining in watersheds with intermediate proportions and increasing at high and low 

proportions.  PC3 was composed of a positive factor loading for total antioxidant capacity and a 

negative factor loading for lipid peroxide levels, therefore representing resistance to oxidative 

stress.  Oxidation can damage proteins, lipids, and nucleic acids, increase susceptibility to 

disease, and speed the aging and death of cells, (Beckman and Ames 1998).  Because a 

substantial portion of antioxidants are exogenously-derived from food, oxidative stress has been 

shown to relate to habitat quality, food availability, and food quality (Costantini 2008, van de 

Crommenacker et al. 2011).  In the current study, decreased PC3 scores at intermediate 

proportions of forest and wetlands were likely related to poor quality forage, while increased 

PC3 scores at high proportions were likely related to higher quality forage (Miserendino and 

Masi 2010, Theodoropoulos and Iliopoulou-Georgudaki 2010).  The elevated PC3 scores from 

watersheds with low levels of forest and wetlands in the watershed is not clear, but may have 

resulted from up-regulation of endogenously produced antioxidants in M. salmoides 

experiencing a mild but chronic shortage of exogenous antioxidants (Monaghan et al. 2009).  

This may not be the case, however, as the competing models of the proportion of forest and 

wetland demonstrate a positive linear relationship with resistance to oxidative stress, indicating 

that low levels of forests and wetlands result in decreased resistance to oxidative stress.  The 

high ranking of the model containing recreational land suggests that these areas (e.g. golf 

courses, playing fields) may have a large impact on stream fish even at very low densities.  

Regardless of the mechanism, results from the current study clearly indicate that natural land 

cover and recreational land is an important driver of M. salmoides oxidative stress. 

PC4, comprised of baseline glucose along with both cortisol and glucose responsiveness, 

was best predicted by the model containing proportion of wetland area in a watershed, with 
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which there was a positive linear relationship.  Cortisol and glucose responsiveness represent the 

ability of M. salmoides to mount a GC stress response (Romero 2004).  Glucose is released 

during a stress event and was negatively associated with cortisol and glucose responsiveness in 

this component.  This suggests that M. salmoides inhabiting streams with a low proportion of 

wetlands in the watershed had elevated baseline stress levels and a reduced ability to mount a 

stress response relative to those from streams with high proportions of wetlands.  Natural areas 

have previously been shown to increase a fish’s ability to mount a glucocorticoid stress response 

(Blevins et al. 2013), which is critical to the short-term survival of an animal (Romero 2004).  In 

our watersheds, higher proportions of wetland areas likely confer greater hydrological stability 

and reduced inputs from runoff, lowering the frequency of stress events caused by floods and 

chronic stress caused by pollutants (Hontela et al. 1992, Richardson 1994).  The result of this PC 

clearly indicates that increased proportions of wetlands in a watershed increases the ability of M. 

salmoides to mount a proper GC stress response, likely resulting in increased survival and 

reproduction.  

Baseline cortisol did not result in a maximally contributing factor loading for any PC, 

indicating that it did not account for a significant amount of the variance explained by any PC.  

This was unexpected as many studies have found baseline cortisol concentrations to be 

influenced by habitat quality(Homan et al. 2003, Martínez-Mota et al. 2007). However, Dickens 

and Romero (2013) examined existing literature on chronically stressed wild animals and found 

that there is not a predictable GC response to chronic stress and there can often be no change to 

baseline levels.  Therefore, the small amount of variation explained by baseline cortisol 

concentrations does not necessarily mean it is an inconsequential variable or that watershed land 

use is not causing chronically stressed M. salmoides. 
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Interestingly, PC2, which was representative of energy reserves, did not appear to be 

influenced by any land use practices in this study.  Examination of data revealed that nine 

models had ∆i AICc values < 2, which indicates no strong support for any land use.  This result 

is not too surprising as total protein and cholesterol, which comprise PC2, were the two least 

variable metrics, with a respective 20 and 26 % increase across all streams.  Total protein and 

cholesterol respond to changes in nutritional status (e.g., food consumption, growth, and body 

condition) (Wagner and Congleton 2004).  The lack of a land use effect on energy reserves could 

indicate that the land use practices within our study watersheds were not variable enough to 

result in any effects on body condition.  Indeed, Wr, a measure of fish condition, agreed with this 

conclusion and was also consistent across streams.  These results further demonstrate the 

importance of in-depth physiological assessments.  Studies assessing condition factor would 

have concluded that there was no difference among streams within our study area; however, our 

results show that land cover within these watersheds is affecting the physiological condition of 

these fish.  Although M. salmoides energy reserves show resilience to changes in watershed land 

use, the effects can still be seen in other parameters, which demonstrate the benefit of forests and 

wetlands. 

Our results also indicate that the extent of anthropogenic land use had less impact on 

physiological properties than natural landscape features.  Although land use characterized as 

“recreational” and “agriculture and other fields” did result in competitors for best-fit model in 

two PCs, no anthropogenic land use category resulted in a top model predicting physiological 

variables despite the large impact human land use has on stream ecosystems (see Meybeck 

2004).  This result is similar to other studies that found human land use to be a poor predictor of 

stream quality in areas of widespread anthropogenic influence (Allan 2004).  Anthropogenic land 
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use is indeed widespread in our study watersheds, with disturbed land ranging from 54 – 87 %.  

As major degradation can occur at levels as low at 5 – 15 % (Paul and Meyer 2001), the lack 

human land use resulting in top models predicting M. salmoides physiology suggests that 

disturbances may have little influence once a certain level is reached. 

The physiological properties of resident stream fishes are driven by the proportion of 

forest and wetland area in these watersheds.  This finding demonstrates that physiological 

consequences of habitat use can be quantified (Huey 1991) and used to assess the health of a fish 

community to improve the understanding of the relationship between watershed-scale processes 

and stream quality.  This improved mechanistic understanding can increase the success rate of 

restoration projects by enabling them to target the most influential land-use practices in their 

system (Cooke and Suski 2008).  Determining natural land use at the watershed-scale created the 

best predictor models for the physiological condition of M. salmoides highlights their importance 

for resident stream fishes.  Appreciating this relationship is critically important as a poor 

understanding of watershed-scale effects was found to be a major cause of restoration project 

failures worldwide (Roni et al. 2008).  For these projects to be successful, practitioners must gain 

a mechanistic understanding by determining both the land use practices that affect the stream and 

the in-stream processes that are affected (Allan 2004).  Our results show that, in these 

watersheds, it is the forests and wetlands that are affecting resident stream fish by influencing 

their feeding, resistance to oxidative stress and ability to mount a stress response.  This result 

improves the understanding of watershed-scale land use effects and can be used by restoration 

practitioners to develop projects directed towards these natural areas and strategies that will most 

benefit the impaired processes.  
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CHAPTER 3: STRESS IN THE NEIGHBORHOOD: TISSUE GLUCOCORTICOID 
FUNCTION RELATIVE TO CHANGES IN STREAM QUALITY FOR FIVE SPECIES 

OF STREAM FISH 
 

Abstract 

Anthropogenic alterations to terrestrial habitat (e.g., urbanization, deforestation, 

agriculture) can have a variety of negative effects on watercourses that flow through disturbed 

landscapes.  Currently, the relationship between stream habitat quality and fish condition remains 

poorly understood.  The use of physiological metrics such as glucocorticoids (GCs) provides a 

powerful tool for quantifying these effects by relating the health of resident fishes to stream 

quality.  To date, however, most studies that measure GCs tend to focus on a single, large-bodied 

species, rather than evaluating how GCs may be influenced differently between species in a fish 

community.  In the current study, we used cortisol extracted from fish tissues to quantify effects 

of anthropogenic habitat degradation on the glucocorticoid function of five species of small-

bodied and juvenile stream fish.  Largemouth bass Micropterus salmoides, brown bullhead 

Ameiurus nebulosus, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, 

and logperch Percina caprodes were sampled from a reference and a degraded stream.  Upon 

capture, fish were either euthanized immediately, to quantify baseline stress parameters, or 

following a standardized stressor, to quantify GC responsiveness.  Results revealed that 

largemouth bass, brown bullhead, and logperch had altered GC function as a result of 

anthropogenic stream degradation, while white sucker and pumpkinseed did not.  Together, our 

results show that different species residing in identical habitats can demonstrate a variety of 

responses to environmental stress, highlighting the variation in physiological ability to cope 

under poor environmental conditions, as well as the difficulty of predicting the GC dynamics in 

wild animals.  Understanding the relationships between GC function, habitat quality, and 
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population-level processes will increase the ability of researchers and managers to predict how 

fish communities and aquatic ecosystems will be shaped by anthropogenic environmental 

change.   

 

Introduction 

Natural landscapes have been heavily modified on a global scale, mainly due to human 

expansion and the requisite resource acquisition, agriculture, and urban development (Vitousek 

et al. 1997, Foley et al. 2005).  These activities have led to the degradation of most ecosystems as 

natural habitats are lost or fragmented (Fahrig 1997).  Freshwater systems are especially 

susceptible to human induced habitat destruction (Allan 2004, Olden et al. 2010, Wang et al. 

2011), and, as a result, freshwater fauna are among the most imperiled groups on the earth 

(Ricciardi and Rasmussen 1999).  In their natural state, forests and wetlands contribute to healthy 

aquatic systems by stabilizing flow, decreasing erosion, and reducing sediment and nutrient 

inputs (Richardson 1994, Allan 2004, Miserendino and Masi 2010).  Human activities, such as 

urbanization and agriculture, not only remove the benefits provided by these natural habitats, but 

further alter hydrology, geomorphology, and thermal regimes, while also increasing pollutant, 

sediment, and nutrient loads (Poff et al. 1997, Meybeck 2004, Allan 2004).  Combined, these 

human-induced changes to natural landscapes have resulted in substantial habitat degradation of 

aquatic ecosystems (Allan 2004, Dudgeon et al. 2006). 

Habitat choice has important physiological consequences for individuals (Huey 1991, 

Hendry et al. 2011), and reductions in the quality or quantity of suitable habitat can challenge the 

ability of individuals to persist within a system.  This is an area of concern for conservation 

scientists and environmental managers because human disturbances often change important 
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habitat characteristics. For example, agriculture and urbanization are known to alter thermal 

regimes (Allan 2004), which can be problematic as fish are ectothermic and thermal refugia are 

an important resource for maintaining behavioral, physiological, and metabolic optima 

(Magnuson et al. 1979, Huey 1991).  Land use alterations can also alter forage quality and 

availability (Allan 2004, Theodoropoulos and Iliopoulou-Georgudaki 2010, Miserendino et al. 

2011), which can increase oxidative stress (van de Crommenacker et al. 2011), increasing 

disease and senescence (Beckman and Ames 1998).  The changes to streams resulting from 

human land use activities place animals in stressful conditions that often push them to their 

physiological limits (Adams et al. 2002).  Over time, these processes can result in changes to 

populations, communities, and eventually the biodiversity of the system (Adams 2002).   

To predict how human disturbance will influence populations, it is important to consider 

the capacity for adaptation, as well as individual tolerance limits and the potential for 

acclimatization in novel conditions.  A number of techniques are available to answer these 

questions, including broad-scale examinations, common garden or reciprocal cross experiments, 

artificial selection, and modeling (Hoffmann and Sgrò 2011).  For example, broad-scale 

examinations have found breeding date in birds to be a plastic response to climate change 

(Gienapp et al. 2008), and a common garden experiment found plasticity in physiological 

performance as it relates to habitat quality (Blevins et al. 2013).  While these techniques are 

useful for characterizing the physiological ability of organisms to respond to anthropogenic 

environmental change, one problem is that many of these studies will only examine a single 

species that exists across wide geographic ranges, requiring the ability to tolerate variable 

conditions.  Therefore, these studies tend to focus on generalist species and essentially overlook 

more sensitive species that may be at risk (Falconer 1990, Conover and Schultz 1995, Nagrodski 
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et al. 2012, Blevins et al. 2013).  In reality, anthropogenic environmental change does not 

influence single species, nor do all species show the same response, especially when considering 

specialists are adapted to a more narrow range of environmental conditions (Minns et al. 1994, 

McComb et al. 2008, Mouillot et al. 2013).  This is an important aspect as human land use 

alterations cause drastic changes in a short time-frame, and specialists may lack the physiological 

scope to adequately respond, causing population declines (Chevin et al. 2010).  To improve our 

ability to predict the effects of environmental change on biodiversity, it is important that we 

move beyond a single-species approach and consider the community in studies of organism 

tolerance. 

Using organism-level biological indicators to examine communities, rather than species-

level, can help us gain a broader understanding of how habitat changes influence ecosystems and 

biodiversity.  Biological indicators can be used to assess organism health (e.g., nutrition and 

energetics; Barton et al. 2002; Congleton & Wagner 2006) and physiological function (i.e., the 

stress response; Hontela et al. 1992; Barton et al. 2002), which directly impact growth, survival, 

and reproduction (Adams et al. 1989; Adams 2002; Cooke & Suski 2008).  Examination of 

bioindicators can provide early warning signals of environmental stressors, and identify the 

mechanisms responsible for changes seen at the population and community level (Adams et al. 

1989, 2002). Evaluating the physiological condition of multiple sympatric species can therefore 

identify areas of ecological concern and species most sensitive to, and robust against, 

anthropogenic environmental change.   

Evaluating physiological stress is a valuable bioindicator for quantifying the effects of 

environmental perturbations in a community.  The glucocorticoid (GC) stress response is an 

adaptive mechanism that increases energy available for activities necessary for short-term 
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survival by stimulating widespread catabolic activities such as proteolysis and gluconeogenesis 

(Mommsen et al. 1999, Romero 2004).  However, chronic activation of the stress response can 

become maladaptive by using energetic resources necessary for normal organismal functions, 

resulting in reduced growth, reproduction, and immune function (Mommsen et al. 1999, Barton 

2002), and can ultimately increase mortality (Selye 1973, Schreck 2000).  Therefore, altered GC 

function of a population can be detrimental to its persistence (Mommsen et al. 1999, Romero and 

Butler 2007, Dickens and Romero 2013).  As both baseline and post-stress cortisol levels can be 

affected by human disturbances (Hontela et al. 1992, Homan et al. 2003, Martínez-Mota et al. 

2007, Blevins et al. 2013), an examination of GC function of multiple species in stream fish 

communities can improve our ability to predict the consequences of human-induced, rapid 

environmental change. 

The objective of the current study was to quantify the effects of human induced habitat 

degradation on the glucocorticoid function of a stream fish community.  We accomplished this 

goal by quantifying baseline and post-stress cortisol levels for five sympatric fish species 

residing in two watersheds that differed in land use characteristics (Table 3.1).  These species 

varied in their taxonomic and ecological traits, allowing us to quantify fishes differing in trophic 

guild and evolutionary history are affected by habitat degradation (Table 3.2). We chose to 

examine glucocorticoid function using tissue extracts (Sink et al. 2007), as opposed to plasma.  

This provided a greater size range of fishes that could be sampled as blood collection from small 

fishes (< 90 mm) becomes challenging, and many of the fish used in this study were below this 

range (Table 3.3).  Together, results from this study will improve our understanding of how 

communities are shaped by environmental disturbances.  

 

Methods 
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Site selection 

 The field-sampling component of this study was performed in October 2012, in 

tributaries of the St. Lawrence River, near Cornwall, ON, Canada (45° 01’ 16.59” N, 74° 43’ 

49.24” W).  To quantify the impacts of stream quality use on glucocorticoid function, it was first 

necessary to define study sites that varied in environmental characteristics.  For this land use and 

a variety of other stream characteristics were examined.  Land use data (Table 3.1), were 

gathered by the Ontario Ministry of Natural Resources and compiled into the Southern Ontario 

Land Resource Information System (SOLRIS).  Using Quantum GIS Lisboa (1.8.0), the SOLRIS 

database was integrated with a GIS layer developed by the Raisin Region Conservation 

Authority that delineated watershed boundaries within the study area.  Analyses of land use data 

identified two streams, Hoople and Gunn Creek, which were ideally suited for this study as they 

differed greatly in land use characteristics and were in close geographic proximity.  Hoople 

Creek’s (45° 01’ 19.09” N, 74° 59’ 32.37” W) watershed consisted of about 41 % forests and 

wetlands, while Gunn Creek’s (45° 11’ 30.57” N, 74° 22’ 32.38” W) watershed had <10 % of 

forests or wetlands (Table 3.1).  A large portion of Gunn Creek’s watershed consists of 

agriculture.  As a result of land use practices, Gunn Creek had an average total phosphorus (TP) 

concentration exceeding 100 µg/L during the summer months, while Hoople Creek averaged less 

than half of that (39 µg/L) (Ontario Ministry of the Environment 2009).  Gunn creek also showed 

signs of fecal contamination and potentially high levels of disease causing organisms in the 

water, indicated by elevated levels of E. coli bacteria loads, reaching twice the level of Hoople 

Creek (8.3 CFU/mL and 3.9 CFU/mL, respectively) (Raisin Region Conservation Authority).  

Furthermore, the Ontario Ministry of the Environment regularly uses Hoople Creek as a 

reference stream when assessing stream quality because it is considered one of the most pristine 
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streams in this region (Ontario Ministry of the Environment 2009).  For these reasons, Hoople 

Creek was considered to be of high habitat quality and served as a reference stream in this study, 

while Gunn Creek was considered to be low quality and served as the degraded stream. 

 

Field sampling 

Using a backpack electrofisher (Halltech Aquatic Research Inc., HT-2000 Battery 

Backpack Electrofisher), we collected largemouth bass (Micropterus salmoides) (n = 15 from 

Gunn Creek and 13 from Hoople Creek), white sucker (Catostomus commersonii) (n = 14 from 

Gunn Creek and 20 from Hoople Creek), brown bullhead (Ameiurus nebulosus) (n = 5 from 

Gunn Creek and 20 from Hoople Creek), pumpkinseed (Lepomis gibbosus) (n = 21 from Gunn 

Creek and 18 from Hoople Creek) and logperch (Percina caprodes) (n = 12 from Gunn Creek 

and 20 from Hoople Creek) from both study creeks.  These species were chosen because they 

reside in both streams, are taxonomically diverse, and occupy a variety of ecological niches 

(Table 3.2).  To reach sufficient sample sizes, both streams required multiple sampling trips.  We 

waited at least 24 hours between sampling efforts to allow any potential cortisol elevations in 

disturbed but uncaptured fish to return to baseline levels (Mommsen et al. 1999).   

Once fish of the target species were stunned by the electrofishing gear, they were 

immediately netted and assigned to either the baseline or stress treatment.  The first fish captured 

from each species (per stream) was randomly assigned a treatment, and subsequent fish were 

alternately assigned each treatment.  Fish in the baseline treatment were euthanized via cerebral 

percussion within 30 seconds of being stunned by the electrofisher, which should precede any 

cortisol elevation related to electroshocking, handling, or sampling (Mesa and Schreck 1989, 

Maule and Mesa 1994, Romero and Reed 2005).  Fish assigned to the stress treatment were 
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subjected to a standardized challenge previously shown to induce maximal elevations of 

circulating cortisol in fish (O’Connor et al. 2011, Cook et al. 2012).  For this, each individual 

was subjected to 3 minutes of air exposer while being held in a moist, padded, and covered 

container, and then transferred to a 20 L bucket filled with fresh stream water to allow 

circulating cortisol levels to rise.  The time lag between the onset of a stressor and maximal 

plasma cortisol concentrations varies from species to species, and has not been determined for all 

target species in the current study.  Based on previous literature, 25 minutes was chosen as the 

elevation period for largemouth bass (O’Connor et al. 2011), 40 minutes for pumpkinseed (Cook 

et al. 2012), and 30 minutes for logperch, white sucker, and brown bullhead (Limsuwan et al. 

1983, Acerete et al. 2004).  At the conclusion of the elevation period, fish were euthanized via 

cerebral percussion.  Once euthanized, all fish were weighed, measured, wrapped in aluminum 

foil, and stored in a dry shipper charged with liquid nitrogen for laboratory processing.  A small 

number of fish (n = 9 of 34 total white sucker, spread with 6 from Gunn and 3 from Hoople and 

n = 1 brown bullhead from Gunn of 25 total) were too large for a whole-body sample to be taken.  

Therefore, these fish were cut in half and the posterior body section was brought back to the lab 

for cortisol processing.  This was not expected to influence cortisol values as cortisol is not 

stored in any tissue or organs after production, and circulates throughout the entire body acting 

on a number of tissues and organs (Mommsen et al. 1999, Romero and Butler 2007). 

 

Laboratory analysis 

Cortisol was extracted from the collected tissues using a modification of the ethyl 

ether/vegetable oil method outlined and validated by Sink et al. (2007).  Briefly, fish tissue was 

homogenized in 3 mL phosphate buffered saline (PBS), plus an extra 1 mL for fish over 10 g.  
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After homogenization, 100 µL of vegetable oil per gram of fish tissue was added to the sample.  

The vegetable oil had been previously analyzed to ensure is did not contain cortisol and was 

added to increase the final extract volume, ensuring each sample could be assayed individually.  

For fish up to 6.5 g, 7 mL of ethyl ether was then added to the homogenate; for every gram over 

6.5 g, samples received 1 mL extra, up to a maximum of 15 mL.  The sample was then 

centrifuged for 10 minutes at 3000 rpm and placed in a -80° C freezer for 2 hours.  The unfrozen 

ethyl ether portion was then decanted into a separate test tube and evaporated under a gentle 

stream of gaseous nitrogen for 2 hours, yielding a lipid extract containing cortisol.  This 

extraction procedure was performed a second time on the thawed homogenate, and the second 

lipid extract was added to the first.  This extract was stored at -20° C until a commercially 

available enzyme linked immunosorbant assay (ELISA) was performed to quantify cortisol 

concentrations (Enzo Life Sciences, Cortisol EIA Kit [901-071], BioAssay Systems) (Sink et al. 

2007, 2008).  This assay has a detection limit of 0.0567 ng mL-1 and while the majority of fish 

had levels well above this limit, extract from several individuals in the baseline group had 

cortisol concentrations below the detection limit.  Extract concentrations from these fish were 

assigned values equal to the detection limit prior to calculations of cortisol per gram of fish 

weight.  

 

Statistical analysis 

 This study employed both laboratory and field techniques to assess the effects of stream 

quality on resident fishes using a paired catchments While the limitations of our study design are 

recognized, we felt that studying additional species (in lieu of additional streams) was essential 

to quantify a community response to habitat degradation. 
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 For analyses, we were interested in three different metrics related to intraspecific stress: 

baseline cortisol concentration, post-stress cortisol concentration, and glucocorticoid 

responsiveness (post-stress – baseline); we considered these three metrics to be discrete 

statistical hypotheses.  To determine if baseline and post-stress cortisol levels differed between 

streams, a Welch’s t-test was performed separately for each species (Ruxton 2006).  

Homogeneity of variances is not an assumption of this test; however, the assumption of 

normality was assessed using a visual inspection of the fitted residuals.  If this assumption was 

not met, data were rank transformed prior to performing a Welsh’s t test (Zimmerman and 

Zumbo 1993).  To approximate GC responsiveness values within a species, we subtracted mean 

baseline cortisol concentrations for a stream from the post-stress levels of individual fish 

sampled from the same stream.  Responsiveness values were then compared using a Welch’s t-

test on ranked or raw data, dependent on normality of the data.  All statistical analyses were 

performed using JMP 10.0 (SAS Institute, Cary, NC, USA).  Rejection of the null hypothesis (α) 

for all tests was P ≤ 0.05, and all values are reported as means ± standard error (SE) where 

appropriate. 

 

Results 

Baseline cortisol levels were unaffected by habitat quality for all species examined except 

largemouth bass (Figure 3.1a), where a higher baseline cortisol concentration was present in the 

degraded stream (Gunn Creek) relative to the reference stream (Hoople Creek) (t(12.5) = -2.24, P 

= 0.022).  There were no differences in baseline cortisol concentrations for brown bullhead (t(1.5) 

= 0.43, P = 0.72), logperch (t(12.04) = 0.79, P = 0.44), pumpkinseed (t(16.89) = -0.52, P = 0.61), or 

white sucker (t(15.1) = -0.30, P = 0.78) across the two streams examined (Figure 3.1 b-e). 
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Following the stressor treatment, both brown bullhead and logperch demonstrated a 

difference in post-stress cortisol between streams (Figure 3.1b, c).  More specifically, post-stress 

cortisol concentrations in brown bullhead were 3-times greater in the reference stream than in the 

degraded stream (t(7.7) = 3.86, P = 0.0026).  In contrast, logperch had higher post-stress cortisol 

concentrations in the degraded stream than in the reference stream, with the mean value from the 

degraded stream being nearly double that of logperch from the reference stream (t(7.2) = -1.97, P 

= 0.044).  There was no difference in post-stress cortisol concentrations for largemouth bass 

(t(10.6) = 1.03, P = 0.33), pumpkinseed (t(11.7) = -0.54, P = 0.6) or white sucker (t(6.6) = 0.058, P = 

0.96) between streams (Figure 3.1a, d, e). 

Responsiveness values, defined as post-stress cortisol concentration minus baseline, were 

then examined.  Both brown bullhead and logperch demonstrated a difference in post-stress 

cortisol between streams (Figure 3.1b, c).  More specifically, responsiveness values in brown 

bullhead were greater in the reference stream than in the degraded stream (t(7.7) = 3.41, P = 

0.0048).  In contrast, logperch had higher responsiveness values in the degraded stream than in 

the reference stream (t(7.2) = -2.33, P = 0.0258).  There was no difference in responsiveness 

values for largemouth bass (t(10.6) = 1.5, P = 0.15), pumpkinseed (t(11.7) = -0.45, P = 0.66) or 

white sucker (t(6.6) = 0.056, P = 0.59) between streams (Figure 3.1a, d, e). 

 

Discussion 

Human-induced habitat alterations significantly influenced the glucocorticoid stress axis 

for three of the five fish species examined.  Relative to the reference stream, largemouth bass 

demonstrated elevated baseline levels in the degraded stream, brown bullhead showed an 

impaired ability to mount a stress response, and logperch exhibited a greater stress response.  

Cortisol is released under stressful conditions including acute stressors such as failed predation 
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events (Romero 2004) and fisheries interactions (i.e., capture and release; Suski et al. 2003) or 

chronic stressors such as habitat fragmentation (Martínez-Mota et al. 2007) and water quality 

degradation (Hontela et al. 1992).  This is an adaptive response that alters a suite of organismal 

processes (e.g., behavior, energy allocation) and increases the likelihood of short-term survival 

(Barton 2002, Romero 2004).  Elevated baseline cortisol levels, observed in largemouth bass, 

likely resulted from chronic activation of the stress axis.  This has been shown to occur when 

animals inhabit sub-optimal habitats, such as those with extreme temperatures, pollution, or 

insufficient food resources (Dallman and Bhatnagar 2001, Romero 2004).  If an animal is unable 

to acclimatize to these sub-optimal conditions, chronic cortisol release can lead to impaired 

immune function and the exhaustion of energy stores, which are necessary for growth and 

reproduction (Mommsen et al. 1999, Romero 2004).  In contrast, brown bullhead residing in the 

degraded stream demonstrated a reduced maximal stress response relative to individuals from the 

reference stream.  A reduction in the stress response can be caused by several factors, including 

attenuation, where elevated GC concentrations interact with receptors to inhibit continued release 

(Barton 2002), or environmental pollutants that inhibit cortisol production or secretion (Hontela 

et al. 1992, Leblond et al. 2001, Davies and Jackson 2006).  Regardless of the mechanism, an 

acute stress response liberates energy and prioritizes homeostasis to increase survival during 

short-term stressors, so the lack of a stress response may lead to decreased survival in these 

populations (Barton 2002, Romero 2004).  Finally, logperch demonstrated an exaggerated (or 

facilitated) response, which is sometimes seen when animals acclimate to a repeated stressor and 

then experience a novel stressor (Barton, Weiner, & Schreck 1985; Schreck 2000).  In these 

animals, negative feedback signals are likely not strong enough to inhibit the combined stimulus 

of chronic and novel stressors (Dallman and Bhatnagar 2001).  As logperch are the most 
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sensitive and specialist species examined in this study, this result is interesting as it suggests that 

these logperch do not have the ability to properly control cortisol release via negative feedback 

mechanisms.  Together, our results show that different species residing in identical habitats can 

demonstrate a variety of responses to environmental stress, highlighting the variation in 

physiological ability to cope under poor environmental conditions, as well as the difficulty of 

predicting the glucocorticoid dynamics in wild animals (Sih et al. 2011, Dickens and Romero 

2013). 

Interestingly, two of the five species examined did not demonstrate altered GC function 

despite residing in different quality habitats.  More specifically, both pumpkinseed and white 

sucker showed no difference in either baseline or post-stress cortisol concentrations when 

compared across reference and degraded streams.  Previous studies have demonstrated variation 

in the physiological properties of resident organisms in response to reductions in habitat quality.  

For example, removal of terrestrial habitat was found to affect baseline and post-stress 

corticosterone concentrations in spotted salamanders Ambystoma maculatum (Homan et al. 

2003).  Similarly, Blevins et al. (2013) found that creek chub Semotilus atromaculatus collected 

from degraded watersheds (those dominated by agricultural land use) maintained physiological 

performance with a reduced stress response relative to creek chub collected from streams within 

forested watersheds (more pristine environments).   

There are two hypotheses that could explain the lack of differences in the stress response 

for pumpkinseed and white sucker despite variation in habitat quality across the two sites 

examined.  First, both species may have broad tolerances and the conditions in these streams do 

not approach the threshold for them to illicit a stress response.  For example, both species appear 

to be habitat generalists (Table 3.2) and previous work has shown that generalist species are less 
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impacted by changes to environmental conditions than are specialists, likely because generalists 

have wider tolerance ranges, even though they may be less adapted to any single environment 

(Minns et al. 1994, Chevin et al. 2010).  Alternatively, pumpkinseed and white sucker may 

possess a large capacity to display phenotypic plasticity, relative to other species in this study, 

which would allow individuals residing in degraded environments to minimize the costly 

activation of the acute stress response.  Not only can the capacity for plastic physiological 

changes vary across species (Hendry et al. 2008, Chevin et al. 2010), but also variable 

environments are more likely to result in plastic changes to organisms relative to more stable 

environments (van Tienderen 1997, Baythavong 2011).  Phenotypic plasticity can also occur 

based on the relative cost of inducing plastic changes to phenotype, competitive interactions, and 

evolutionary history (van Tienderen 1997; Hoffmann & Sgrò 2011; Sih, Ferrari, & Harris 2011; 

Seebacher & Franklin 2012).  It is therefore possible that habitat characteristics from the 

degraded environment (i.e., increased water temperature, more variable flow regime, more 

variable temperatures – see Blevins et al. 2013) resulted in plastic changes in the magnitude of 

the stress response in pumpkinseed and white sucker, thereby negating any inter-site differences 

in the stress response.  Such plastic changes would be beneficial because they could eliminate 

any negative effects of chronic cortisol elevation, while still maintaining the ability to produce an 

acute stress response.  Regardless of the mechanism, results from the current study clearly 

demonstrate that reduced stream quality did not influence the GC stress axis in some of the 

species examined. 

Defining interspecific variation in the ability to respond to environmental challenges is 

critical for predicting ‘winners’ and ‘losers’ in the face of anthropogenic change (Somero 2010, 

Angelier and Wingfield 2013).  Current research suggests that phenotypic plasticity, the capacity 
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to experience changes to phenotypes, is critically important for the persistence of species through 

human induced environmental change (Hendry et al. 2008, 2011, Hoffmann and Sgrò 2011).  

Quantifying the capacity for animals to display plasticity in traits can be done with a number of 

different tests and experiments; however, studies of this nature often only examine a single 

species across an environmental or longitudinal gradient (Hoffmann and Sgrò 2011).  Often, for 

a species to survive across a range of environments, they must inherently be plastic with regards 

to one or more phenotype, or a broad generalist that can tolerate a wide range of conditions.  This 

may then generate results that are not truly indicative of all species residing in an area or 

community.  In the current study, we examined the response of multiple species when exposed to 

differing levels of anthropogenic disturbance and documented a variety of physiological 

responses.  While these changes may have a genetic basis, plasticity has been shown to play a 

major role in an organism’s ability to cope with changing environments, especially with regards 

to rapid anthropogenic disturbance.  As such, this result was likely due to species specific levels 

of plasticity that dictate their ability to cope behaviorally and physiologically with an altered 

environment.  Our results suggest that pumpkinseed and white sucker possess a greater ability to 

cope with human disturbances and may fair better than other species in our study as they 

continue to spread.  These types of studies can determine which species are most able to survive 

in changing environments and greatly increase our ability to predict the outcome of human 

disturbance (Cooke et al. 2013, Angelier and Wingfield 2013). 

The use of tissue cortisol extraction proved to be a valuable tool that increased the range 

of fish sizes available for a study such as this, and enabled us to examine GC function in a 

taxonomically diverse group of species, including three orders, four families, and five genera.  

The application of tissue cortisol extraction allows scientists to address multiple novel research 
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questions regarding habitat characteristics and its effect on small species or early life stages.  For 

example, researchers could compare GC function in both juveniles and adults to determine if 

life-history stages are affected differentially by environmental disturbances.  This could be 

informative for robust, generalist species, as brief elevations in stress hormones in early life 

stages can substantially reduce life expectancy in avian species (Monaghan et al. 2011).  

Therefore, using tissue cortisol extraction to examine stress during this period may enable us to 

determine otherwise unseen causes of reduced survival and fecundity in cases where chronic 

stress is not readily apparent in adults.  Utilizing this technique would greatly increase the 

habitats, life stages, and species able to be studied with physiological tools, thereby increasing 

their contribution to conservation ecology as a whole.  While quantifying cortisol from tissue 

extracts has been used in laboratory studies (Sink et al. 2007), to our knowledge, the current 

study is the first to employ this methodology in the field.   

By examining tissue cortisol in a stream community, our study revealed species-specific 

responses to the effects of stream quality on glucocorticoid function.  We observed nearly the 

entire spectrum of responses, including no response, elevated baseline cortisol, a facilitated stress 

response, and an impaired stress response.  While researchers have documented a variety of 

causes, we still cannot confidently predict the endocrine responses of chronically stressed wild 

animals (Dickens and Romero 2013).  Without understanding the conditions that result in the 

various changes to GC function, it is hard to determine how animals are affected by changes to 

stream quality and to relate the findings of physiological studies to managers (Cooke and 

O’Connor 2010).  From an ecological standpoint, any change in GC function – regardless of the 

direction – is potentially important (Dickens and Romero 2013).  Studies quantifying baseline 

and post-stress levels can, therefore, be used to determine if populations are chronically stressed, 
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and by examining many populations within a community, we can determine species most able to 

cope with changing environments.  Studies of GC function in communities have the ability to 

improve the basic understanding of the endocrine response to chronic stressors and the 

relationship between organism-, population-, and community-level processes.  Understanding the 

synergistic relationships between GC function and habitat quality will increase the ability of 

researchers and managers to predict how ecosystems will be shaped by anthropogenic 

environmental change. 
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CHAPTER 4: GENERAL CONCLUSION 
 

 Terrestrial systems have a profound influence on stream ecosystems (Paul and Meyer 

2001; Allan 2004).  The extent of stream degradation from human activities has prompted 

widespread management and restoration initiatives to protect the natural diversity of aquatic fish 

communities (Bernhardt et al. 2007; Laub and Palmer 2009).  However, we still lack the 

necessary scientific understanding of the relationships between landscape-level processes and 

organismal functions that dictate outcomes under human-induced environmental change (Cooke 

and Suski 2008; Roni et al. 2008).  Physiological research can improve this understanding and 

enable more effective prediction and mitigation of the consequences (Wikelski and Cooke 2006; 

Cooke and O’Connor 2010).  My thesis research uses physiological metrics to examine the 

effects of anthropogenic disturbance at several levels.  My first chapter defines the relationship 

between land use at large spatial scales and the health and condition of stream fish, while my 

second chapter reveals interspecific differences in the physiological response to human-induced 

habitat degradation. 

 Results from my first chapter demonstrate that natural lands in a watershed have 

important influences on the physiological condition of stream fish.  Watershed forest cover 

resulted in the best fist model for PCs representing largemouth bass nutrition (i.e., free energy 

and resistance to oxidative stress), and wetland cover resulted in the top land use practice 

predicting glucocorticoid function.  Furthermore, results showed natural landscape features to 

have stronger relationships with physiological condition than human land uses, such as 

agricultural or urban areas. Energy reserves, however, were not related to any type of watershed 

land use, nor did body condition differ between streams.  These findings have important 

management implications, as they demonstrate not only the importance of natural lands at broad 
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spatial scales, but also that physiological processes may be impaired even if fish are in good 

condition.  Although riparian rehabilitation is a main focus of stream managers, my results show 

natural land cover has important benefits even if it is not immediately adjacent to the stream.  I 

would predict fish communities, and stream ecosystems as a whole, to continue declining if 

humans continue to remove natural land but only protect and restore riparian areas.  When 

considered with other results, the absence of changes to energy reserves demonstrates that 

nutrition and health of an animal may be impaired even if the effects are not readily apparent.  I 

would predict the long-term fitness of largemouth bass to be lowered as a result of oxidative 

stress and altered glucocorticoid function, possibly resulting in population declines.  As all fish 

retained sufficient energy stores, the cause of these population declines would remain unknown 

if physiological metrics were not analyzed. Without this mechanistic information, we will 

continue to lack the requisite knowledge for proper management and conservation of our 

fisheries. 

 The second chapter of my thesis demonstrated that the effects of anthropogenic habitat 

degradation on the glucocorticoid function of stream fish vary between species in a community.  

From the five species examined, we witnessed four different glucocorticoid profiles.  Whether 

these differences are due to ecological or physiological traits, they demonstrate the importance of 

exploring species-specific effects of human disturbance.  In this manner, we can determine the 

species (or functional guilds) that are most sensitive to human disturbance and direct 

conservation efforts prior to population declines.  Furthermore, a determination of the underlying 

mechanisms that dictate why and how a species is affected can improve our ability to predict the 

outcomes of environmental change. Together, my thesis studies examine the interacting 

processes that shape stream communities.  My first chapter demonstrates how watershed land use 
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affects the physiological condition of largemouth bass.  While my second chapter demonstrates 

how species-specific traits and tolerances interact to determine glucocorticoid function and likely 

health and fitness.  My research improves our understanding of the relationships between land 

use, stream fauna, and species-specific tolerances. This is important because North American 

freshwater fishes have one of the highest extinction rates in the world (Burkhead 2012).  

Examining the physiological effects of anthropogenic disturbance can improve the restoration 

and management of lotic systems, as well as our ability to predict the changes in populations and 

communities faced with anthropogenic environmental change.  
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TABLES AND FIGURES 
 

Table 2.1: Groupings of the Southern Ontario Land Resource Information System (SOLRIS) 
land use categories used in this study.  The SOLRIS database provides specific information for 
many land use types.  For the purposes of this study, these have been grouped into the more 
broadly defined categories listed below. 

 
Presented land use category  SOLRIS land use types included 
Agriculture and other fields All agricultural land, urban brown fields, 

forest clearings, etc. 

Urban Residential, Industrial, Commercial and 
Civic Areas, Highways, Roads 

Forest Coniferous Forest, Deciduous Forest, 
Forest, Mixed Forest, Hedge Row,  
Plantations-Tree Cultivated 

Resource extraction Pits, Quarries 
Wetland Bogs, Marshes, Swamps 
Recreation Golf courses, playing fields, etc. 
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Table 2.2: Total watershed area and abundance of each land use category (shown as percent of total watershed area) for each 
watershed used in this study.  Watershed land use data were determined using Quantum GIS to integrate land use data from the 
Southern Ontario Land Resource Information System (SOLRIS) and a layer delineating watershed boundaries produced by the Raisin 
Region Conservation Authority. 

 
 
 
Watershed 

 
Total 

Watershed 
Area (ha) 

 
Agriculture 
and Other 
Fields (%) 

 
 
 

Urban (%) 

 
 
 

Forest (%) 

 
 

Resource 
Extraction (%) 

 
 
 

Wetland (%) 

 
 
 

Recreation (%) 
Finney 3182.0 77.9 4.7 13.0 0.0 3.9 0.2 
Fraser 4485.7 47.7 6.7 19.9 0.0 24.5 1.1 
Grays 4450.8 33.0 35.3 8.7 0.0 16.5 6.1 
Hoople 9534.8 53.5 5.0 13.9 0.3 26.3 0.6 
Pattingale 938.8 69.8 5.9 15.2 0.0 4.9 4.0 
Raisin 57847.1 49.8 4.4 18.1 0.3 26.6 0.4 
Sutherland 7913.6 76.2 3.2 11.7 0.4 8.2 0.2 
Wood 3013.6 83.9 2.8 10.8 0.0 2.1 0.3 
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Table 2.3: Blood-based nutrition and stress parameters measured in largemouth bass M. salmoides (n =9 – 12) caught in streams in 
the vicinity of Cornwall, ON, CA, July, 2012, with the standard error of the mean and sample size given in brackets below the mean.  
Maximal cortisol and glucose elevations were determined by subjecting M. salmoides to 3-min air exposure. 

Metric Finny Fraser Gray's Hoople Pattengale Raisin Sutherland Wood 
Grand 
Mean 

Triglycerides (mg dL-1) 3 1.7 1.4 3.3 3.9 2.7 2.7 2.8 2.7 
[0.4, 11] [0.4, 10] [0.3, 10] [0.6, 10] [0.6, 10] [0.5, 10] [0.4, 12] [0.8, 11] [0.2, 84] 

Total protein (g dL-1) 4.4 4.6 4.5 4.4 4.7 5.2 4.7 4.9 4.7 
[0.2, 11] [0.1, 10] [0.1, 10] [0.1, 10] [0.2, 10] [0.1, 9] [0.1, 12] [0.1, 11] [0.1, 83] 

Cholesterol (mg dL-1) 337.8 403.8 367.7 320.1 351.4 323.5 321.1 390.7 351.6 
[23.2, 11] [30.1, 10] [17.3, 10] [30.1, 10] [19.9, 10] [27.7, 10] [32.7, 12] [13.8, 11] [9.2, 84] 

Total antioxidant capacity (mM) 1.5 1.4 1.1 0.8 0.7 1.6 1.1 1.3 1.2 
[0.1, 11] [0.1, 10] [0.1, 10] [0.1, 10] [0.1, 10] [0.1, 10] [0.1, 12] [0, 11] [0.1, 84] 

Lipid peroxide levels (µM MDA) 30.6 14.5 21.9 37 22.6 12.2 26.1 23.2 23.3 
[4.6, 8] [1.7, 9] [1.9, 9] [3.5, 8] [2.4, 9] [1.9, 9] [2.1, 11] [2, 10] [1.2, 73] 

Baseline cortisol (ng mL-1) 4.3 6 5.8 9.6 3.6 8.3 7.5 4.4 6.1 
[0.5, 11] [1.5, 10] [0.9, 10] [2.6, 8] [0.4, 9] [1.2, 9] [1.6, 12] [0.7, 9] [0.5, 78] 

Maximal cortisol (ng mL-1) 85.6 81.2 130.9 90.2 94.4 73.8 76.4 71.6 88 
[12.2, 11] [13.6, 10] [17.7, 10] [20.2, 8] [13.5, 9] [14.8, 9] [15.9, 12] [15.8, 9] [5.6, 78] 

Baseline glucose (mg dL-1) 3.3 2.4 2.2 3.4 4.3 2.9 3.5 3.1 3.1 
[0.4, 11] [0.2, 9] [0.3, 9] [0.4, 7] [0.8, 8] [0.5, 8] [0.4, 12] [0.5, 9] [0.2, 73] 

Maximal glucose (mg dL-1) 9.4 9.7 7.1 7.1 7.7 9.8 8.7 7.5 8.4 
[0.7, 11] [1.2, 10] [0.7, 10] [1.1, 8] [0.7, 8] [1.3, 8] [1.1, 12] [0.7, 9] [0.4, 77] 

Cortisol responsiveness (ng mL-1) 81.4 75.2 125.1 80.6 90.8 65.5 68.9 67.2 81.8 
[12.3, 11] [14.3, 10] [17.2, 10] [20.4, 8] [13.5, 9] [15.1, 9] [14.9, 12] [15.5, 9] [5.6, 78] 

Glucose responsiveness (mg dL-1) 6.1 7 5 3.8 3.6 6.9 5.2 4.4 5.3 
[0.9, 11] [1.4, 9] [0.8, 9] [1.7, 7] [0.5, 8] [1.3, 8] [1, 12] [0.7, 9] [0.4, 73] 

Relative weight (Wr) 102.0 102.1 102.7 104.7 101.8 101.9 102.2 102.7 102.5 
[1.4, 3] [0.9, 8] [1.0, 6] [1.1, 5] [1.0, 6] [0.9, 7] [0.7, 11] [0.9, 8] [0.3, 54] 
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Table 2.4: Factor loadings for varimax rotated principle components summarizing stress and 
nutritional characteristics for largemouth bass Micropterus salmoides (n = 9 – 12) sampled from 
eight watersheds in the vicinity of Cornwall, ON, CA, July 2012.  Variables were loaded into 
four principal components and factor loadings of >│0.4│ were considered maximal contributors 
to each PC. 

Variable PC 1 PC 2 PC 3 PC 4 
Baseline cortisol (ng mL-1) -0.11 0.31 -0.03 -0.08 
Total protein (g dL-1) 0.36 0.85 0.34 -0.15 
Triglycerides (mg dL-1) 0.99 -0.12 -0.01 -0.12 
Total antioxidant capacity (mM) 0.00 0.07 0.74 0.16 
Lipid peroxide levels (µM MDA) 0.37 -0.06 -0.51 -0.10 
Cholesterol (mg dL-1) -0.13 0.64 -0.04 0.35 
Baseline Glucose (mg dL-1) 0.56 0.01 -0.24 -0.58 
Cortisol responsiveness (ng mL-1) -0.17 0.13 -0.38 0.40 
Glucose responsiveness (mg dL-1) -0.03 -0.06 0.12 0.49 
Variance Explained 18 14.1 12.7 10.5 
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Table 2.5: Model selection results for examination of factors affecting principal component 
scores of largemouth bass Micropterus salmoides in streams near Cornwall, ON, CA, July 2012.  
Models were ranked with Akaike’s Information Criterion adjusted for small sample sizes (AICc).  

PC Modela Kb 
-2 Log-

likelihood AICc Δi AICc Model Likelihood 
PC1 %Forest² 4 173.2 181.9 0 0.53 

 
%Agriculture and other fields 3 178.7 185.1 3.2 0.11 

 
%Agriculture and other fields² 4 176.5 185.2 3.3 0.10 

 
%Urban 3 178.9 185.3 3.4 0.10 

 
%Wetland² 4 177.3 186 4.1 0.07 

 
%Urban² 4 178.6 187.3 5.4 0.04 

 
%Wetland 3 181.5 187.9 6 0.03 

 
%Recreation 3 182.8 189.2 7.3 0.01 

 
%Recreation² 4 181.2 189.9 8 0.01 

 
%Forest 3 183.9 190.3 8.4 0.01 

 
%Resource Extraction 4 181.7 190.4 8.5 0.01 

  %Resource Extraction² 4 182.9 191.5 9.6 0.00 
       

PC2 %Resource Extraction 3 179.3 185.7 0 0.12 

 
%Recreation 3 179.3 185.7 0 0.12 

 
%Agriculture and other fields 3 179.3 185.7 0 0.12 

 
%Wetland 3 179.4 185.8 0.1 0.11 

 
%Urban 3 179.4 185.8 0.1 0.11 

 
%Forest 3 179.5 185.9 0.2 0.11 

 
%Forest² 4 178.1 186.8 1.1 0.07 

 
%Urban² 4 178.1 186.8 1.1 0.07 

 
%Agriculture and other fields² 4 178.8 187.5 1.8 0.05 

 
%Resource Extraction² 4 179.1 187.8 2.1 0.04 

 
%Recreation² 4 179.3 188 2.3 0.04 

  %Wetland² 4 179.4 188.1 2.4 0.04 
       

PC3 %Forest² 4 152 160.7 0 0.26 

 
%Forest 3 155 161.4 0.7 0.18 

 
%Recreation 3 155.5 161.9 1.2 0.14 

 
%Wetland² 4 153.4 162.1 1.4 0.13 

 
%Wetland 3 156.3 162.7 2 0.09 

 
%Recreation² 4 154.5 163.2 2.5 0.07 

 
%Resource Extraction 3 158.3 164.7 4 0.03 

 
%Urban 3 158.4 164.8 4.1 0.03 

 
%Agriculture and other fields 3 158.8 165.2 4.5 0.03 

 
%Urban² 4 157.8 166.5 5.8 0.01 

 
%Resource Extraction² 4 158.1 166.8 6.1 0.01 

 
%Agriculture and other fields² 4 158.8 167.5 6.8 0.01 
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PC Modela Kb 
-2 Log-

likelihood AICc Δi AICc Model Likelihood 
PC4 %Wetland 3 133.7 140.1 0 0.28 

 
%Agriculture and other fields 3 134.2 140.6 0.5 0.22 

 
%Wetland² 4 133.6 142.3 2.2 0.09 

 
%Forest² 4 133.9 142.6 2.5 0.08 

 
%Agriculture and other fields² 4 134.2 142.9 2.8 0.07 

 
%Forest 3 137 143.4 3.3 0.05 

 
%Urban 3 137 143.4 3.3 0.05 

 
%Resource Extraction 3 137.6 144 3.9 0.04 

 
%Recreation 3 137.8 144.2 4.1 0.04 

 
%Resource Extraction² 4 135.7 144.4 4.3 0.03 

 
%Urban² 4 136.1 144.8 4.7 0.03 

 
%Recreation² 4 137.6 146.3 6.2 0.01 

 

a Models indicated with a square term ( 2 ) analyzed effects of both linear and quadratic variation 
b Parameter count includes intercept and variance.  

Table 2.5 (cont.) 
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Table 3.1: Watershed land use characteristics (shown as percent of total watershed area) for the 
two streams used in this study.  Watershed land use data were determined using Quantum GIS to 
integrate land use data from the Southern Ontario Land Resource Information System and a layer 
delineating watershed boundaries produced by the Raisin Region Conservation Authority. 
 

 Stream 

Land use category 
Gunn Creek 
(Degraded) 

Hoople Creek 
(Reference) 

Forest 5.0 % 13.9 % 
Wetland 2.9 % 26.3 % 

Agriculture and other fields 87.3 % 53.5 % 
Urban 4.5 % 5.0 % 

Recreation 0.0 % 0.6 % 
Resource extraction 0.0 % 0.3 % 

Total Watershed Area (ha) 1038 9535 
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Table 3.2: A brief description of the species used in this study and their basic characteristics. 
Habitat and life history characteristics were obtained from www.fishtraits.info (Frimpong and 
Angermeier 2009) and feeding preferences were obtained from www.fishbase.org (Froese 1990).  
 

Species 
Preferred in-stream 

habitat Preferred food 
Lifespan 
(years) 

Age at 
maturity 
(years) 

Largemouth bass Vegetation, muck, silt, 
clay, sand, gravel, or 

cobble substrates 

Fish, frogs, crayfish 16 2.5 

Pumpkinseed Can be found in 
almost all habitats, 
except large rocky 

substrates 

Fish and other 
vertebrates, fish eggs 

8 2 

White sucker Can be found in 
almost all habitats, 
except large woody 

debris 

Insects, diatoms, 
crustaceans, 

protozoa, algae 

8 3 

Logperch Riffle; prefer gravel 
and cobble substrate 

Larval and adult 
insects, fish eggs 

4 1.5 

Brown bullhead Vegetation, silt, clay, 
sand, or gravel 

substrates 

Algae, plants, 
mollusks, crayfish, 
worms, plankton, 
insects, fish, fish 

eggs 

11 2.5 
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Table 3.3: Size ranges for the individuals used in this study.  All samples were collected from a 
degraded stream and a reference stream in the vicinity of Cornwall, ON, CA in October of 2012.  
Length is presented as the mean, ± standard error. 

Species Length (mm) Length Range (mm) 
Largemouth bass 80 ± 3 57 – 127 

Pumpkinseed 65 ± 2 44 - 111 

White sucker 113 ± 8 66 – 240 

Logperch 83 ± 3 51 – 111 

Brown bullhead 97 ± 8 63 – 207 
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Figure 1.1 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Map of the Cornwall Area of Concern (AOC) showing the watershed boundaries of 
streams to be used in this research.  This map was created using a GIS layer that delineated 
watershed boundaries developed by the Raisin Region Conservation Authority. 
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Figure 2.1 

 

Figure 2.1: Relationship between the proportion of forested area in a watershed and PC1 scores 
(free energy) for largemouth bass Micropterus salmoides.  Micropterus salmoides (n = 9 – 12) 
were collected from a total of 8 watersheds in the vicinity of Cornwall, ON, Canada, and 
sampled for blood in the field immidiately after electroshocking. Information on PC1 is given in 
Table 4. 
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Figure 2.2: Relationship between the proportion of a) forested area, b) recreational area, and c) 
wetland area in a watershed and PC3 scores (resistance to oxidative stress) for largemouth bass 
Micropterus salmoides.  Micropterus salmoides (n = 9 – 12) were collected from a total of eight 
watersheds in the vicinity of Cornwall, ON, Canada, and sampled for blood in the field 
immidiately after electroshocking. Information on PC3 is given in Table 4. 
  

Figure 2.2 

55 
 



 

Figure 2.3 

 

Figure 2.3: Relationship between the proportion of a) wetland area and b) agricultural and other 
fields area in a watershed and PC4 scores (glucocorticoid function) for largemouth bass 
Micropterus salmoides.  Micropterus salmoides (n = 9 – 12) were collected from a total of eight 
watersheds in the vicinity of Cornwall, ON, Canada, and sampled for blood in the field 
immidiately after electroshocking and again after being subjected to a standardized stressor.  
Information on PC4 is given in Table 4. 
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Figure 3.1 

Figure 3.1: Baseline, post-stress, and responsiveness (baseline subtracted from post-stress) 
tissue cortisol values for the 5 species examined in our study.  All samples were collected from a 
degraded stream and a reference stream in the vicinity of Cornwall, ON, CA in October of 2012.  
Sample sizes are indicated at the base of the bars.  Significant differences (α < 0.05) between 
streams, within a category, are indicated by an asterisk (*) above the bars. 
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