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Abstract
An improved understanding of bycatchmortality can be achieved by complementing field stud-

ies with laboratory experiments that use physiological assessments. This study examined the

effects of water temperature and the duration of net entanglement on physiological distur-

bance and recovery in coho salmon (Oncorhynchus kisutch) after release from a simulated

beach seine capture. Heart rate wasmonitored using implanted electrocardiogram biologgers

that allowed fish to swim freely before and after release. A subset of fish was recovered in res-

pirometers to monitor metabolic recovery, and separate groups of fish were sacrificed at differ-

ent times to assess blood and white muscle biochemistry. One hour after release, fish had

elevated lactate in muscle and blood plasma, depleted tissue energy stores, and altered

osmoregulatory status, particularly in warmer (15 vs. 10°C) and longer (15 vs. 2 min) capture

treatments. A significant effect of entanglement duration on blood and muscle metabolites re-

mained after 4 h. Oxygen consumption rate recovered to baseline within 7–10 h. However, re-

covery of heart rate to routine levels was longer and more variable, with most fish taking over

10 h, and 33% of fish failing to recover within 24 h. There were no significant treatment effects

on either oxygen consumption or heart rate recovery. Our results indicate that fishers should

minimize handling time for bycatch andmaximize oxygen supply during crowding, especially

when temperatures are elevated. Physiological data, such as those presented here, can be

used to understand mechanisms that underlie bycatch impairment and mortality, and thus in-

form best practices that ensure the welfare and conservation of affected species.
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Introduction
Recent studies suggest climate warming is affecting the distribution and phenology of fishes
[1,2], yet the relatively inflexible life history of some species means that changes in distribution
may be limited and thermal tolerance must keep pace with the warming environment [3]. In
Pacific salmon (Oncorhynchus spp.), spawning stream fidelity and fixed reproductive schedules
mean that fish have little or no choice about what water temperatures or fisheries they will en-
counter during upstream spawning migrations. High river temperatures (e.g., 18+ °C; [4]) can
presumably act as a selective force because they cause mortality via disrupted physiological ho-
meostasis or acceleration of pathogen development [4,5,6,7,8]. A variable portion of Pacific
salmon intercepted by commercial, aboriginal, and recreational fisheries will be released or es-
cape (e.g., [9,10]). The strategy of releasing certain species or populations for conservation pur-
poses hinges on post-release recovery and high survival rates for fish exposure to what is an
acute exercise stressor (capture and handling). The interaction between water temperature and
fisheries capture stressors is of increasing relevance to management, as salmon-bearing rivers
are projected to continue to warm [3,11,12].

A paradox of fisheries science is that while warmer water correlates positively with post- re-
lease mortality [13,14], it can also accelerate physiological recovery [15,16,17,18]. Fisheries cap-
ture typically elicits exhaustive exercise, hypoxia, injury, and a neuroendocrine stress response
[19,20,21,22], which combine to cause rapid physiological changes from which the animal
must recover. Physiological recovery profiles of exhaustively exercised and recreationally-an-
gled fish have been well documented in the literature [23,24], but few studies have done the
same for commercial fishery scenarios (i.e., bycatch, but see [25]).

Physiological recovery profiles have traditionally focused on plasma and muscle tissue anal-
yses (e.g., [15,25,26], but some attention has been given to cardiorespiratory function
[27,28,29]. A recent study found that heart rate (fH) required an extended period (~16 h) to re-
turn to baseline following fisheries-related capture stressors in free-swimming coho salmon (O.
kisutch) implanted with heart rate data loggers [28]. Though a small number of papers have de-
scribed heart rate responses to recreational angling (i.e., [27,30]), few have used cardiac mea-
sures to monitor recovery from fisheries capture because such measures normally require that
the fish are tethered to recording equipment (e.g., to measure ECG or blood flow in the ventral
aorta). Thus, sublethal fitness effects of fisheries capture are rarely considered [31]. Indeed, for
in adult migrating salmon, extended cardiorespiratory recovery could be a particular concern,
potentially diverting a significant amount of their finite energy stores away from migration,
gonad development, and spawning.

Of the seven Pacific salmon species found in British Columbia, Canada, one of the least
abundant are coho salmon, which includes an endangered interior Fraser River population
(hereafter termed interior Fraser coho) that are required by regulation to be released alive
when caught incidentally [32]. Field-based studies have examined factors influencing coho
salmon post-release survival in the marine environment (gillnets—[33]; troll fisheries—[34])
and in freshwater [32]. Recent research has been aimed at understanding delayed mortality of
interior Fraser coho released from the aboriginal beach seine fishery, which fish encounter dur-
ing their upstream migration [32,35]. In those field studies it was not possible to assess physio-
logical recovery, how handling time (i.e., time entangled in the seine net) affected physiological
impacts or recovery, or the extent to which water temperature can modulate such effects. It is
not possible to study interior Fraser coho in an experimental setting due to conservation con-
cerns, but other populations can act as surrogates.
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Here, we use Chilliwack River coho salmon to examine physiological recovery profiles after
release from a beach seine capture simulation. We conducted the simulation using two temper-
atures (10 and 15°C) and two stressor durations (2 or 15 min seine net entanglement). We fo-
cused on monitoring the relative effects of different capture treatments on heart rate, oxygen
consumption rate, and a suite of white muscle and blood plasma indices of metabolic and
osmoregulatory status. The involvement of the authors in recent research on bycatch in the
beach seine fishery [32] enabled the use of a realistic fishing simulation and an experimental
design that can help answer questions that could not be addressed in the field—specifically, the
interactive effects of temperature and entanglement time on physiological disturbance and re-
covery. By unveiling mechanisms that underlie impairment and mortality, physiological data
from controlled experiments can inform bycatch management and handling practices and as-
sist with interpretation of trends observed in field studies.

Methods

Study site and animals
The fish used in this study were adult coho salmon from the Chilliwack River Hatchery (see
Fig 1). These fish (mean ± standard deviation fork length = 62.5 ± 4.4 cm, mass = 2.92 ± 0.61
kg) had completed their 125 km upstream migration from the ocean to the hatchery where
they had been reared and released ~1.5 years prior. Between 14/10 and 26/10/2011, fish were
dip-netted from a concrete raceway at the hatchery and transported 22 km in aerated 8–10°C
river water to Cultus Lake Laboratory (CLL; Fig 1) for experimentation. At CLL, fish were held
in the transport tank, within which dissolved oxygen was maintained between 85–120% satura-
tion, and were dip-netted individually for surgery prior to transfer into either of two large, cir-
cular concrete ponds (5.3 m diameter). The concrete ponds, in which fish were held post-
surgery (see below), were sectioned off by wooden frames lined with 5 cm diameter stretch
beach seine mesh so that fish were kept in one half of the pond. Fresh cold water was continu-
ously pumped into both ponds via an intake at 15 m depth in nearby Cultus Lake. Water in
each pond was 60 cm deep, and each pond was serviced by three large air stones that main-
tained air saturation>90%. An additional submersible pump was used to create a circular flow
within each pond (~ 10 cm s-1).

Experimental protocol
The experiment, outlined in Fig 2, was replicated three times for both the warm and cold test
temperatures. Terminal sampling occurred at three time points (1, 4, and 24 h) after the fisher-
ies simulation and involved three separate groups of fish that were separated into net pens
within the pond at the end of the capture simulation. The 24 h group was surgically implanted
with data loggers and tagged with spaghetti tags while the other two groups were only spaghet-
ti-tagged.

a. Fish surgery, transfer to experimental ponds, and temperature increase. Fish were
dip netted from the transport tank and anesthetized with a knockout dose of 100 mg L-1 tri-
caine methanesulfonate (MS-222, Sigma Aldrich, St. Louis, MO) buffered with 200 mg L-1

NaHCO3 in Cultus Lake water (8.5–10°C). Fish remained in the anesthetic bath until they lost
equilibrium and their opercular movement slowed (~5 min), at which point they were weighed
and brought to the surgery bench where their gills were continuously irrigated with a well-aer-
ated maintenance dose of anesthetic (70 mg L-1 MS-222 with 140 mg L-1 NaHCO3). The fish
were kept prone for insertion of a uniquely numbered spaghetti tag (Floy Tag & Mfg. Inc.,
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Seattle, WA, USA) through the dorsal musculature, just anterior to the dorsal fin, tied with a
simple double reef knot. Next, a custom-made data logger (23 g in air, coated in biocompatible
silicon, University of Tasmania, Australia) was surgically implanted into the intraperitoneal
cavity as previously described [36]. Briefly, the logger was inserted through a 3–4 cm incision
and uterine forceps were used to guide the anterior-most electrode sensor as close as possible
to the pericardial cavity, ventral to the liver. The logger (programmed to turn on and record
ECG and temperature for 10 s every 6 min) was loosely sutured with one suture to the perito-
neal wall to prevent it from moving post-surgery. The incision was closed using five or six su-
tures tied into square knots (size 0 monofilament PDS II absorbable sutures, 36 mm ½ circle
reverse cutting needle; Ethicon, Somerville, NJ). After incision closure and post-surgery revival
in a freshwater-filled container, fish were released into an experimental pond.

Fig 1. Map showing where the study was conducted in the Chilliwack River watershed, which is a part of Fraser River watershed of British
Columbia, Canada. Fish were captured at the Chilliwack River Hatchery (A) and transported to Cultus Lake Laboratory (B) for experiments.

doi:10.1371/journal.pone.0124023.g001
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The remaining fish that had been transported from Chilliwack Hatchery were anesthetized
(as above) before being briefly transferred to a water-filled (without maintenance anesthetic)
and padded V-shaped sampling trough for spaghetti tag insertion (as above). Fish were then al-
lowed to complete their revival from anesthesia in the experimental pond. Including data log-
ger-implanted fish, ~35 fish were tagged and placed into each of the two ponds (~10–12 each
for 1 h, 4 h, 24 h sampling groups) and allowed to recover over two nights (40–45 h, see Fig 2)
before the capture simulation.

Once all tagged fish were in the experimental ponds, the temperature in one of the two
ponds was increased by supplementing the deep Cultus Lake water input with water that was
run through a boiler system. Water inputs were adjusted to increase the warm treatment pond
to ~15°C within 24 h after transfer, while the other pond was supplied only with deep Cultus
Lake water (~10°C). Both temperatures are ecologically relevant in the context of coho salmon
upriver migrations and the occurrence of harvest fisheries.

b. Capture simulation. A section of beach seine netting was used to gradually corral all
fish to one corner of the pond. Once fish were corralled, the net was drawn under and around
the fish such that they were pursed and could be pulled up onto a wooden platform that was
dropped into the pond after corralling began. The platform was ~ 55 cm from the bottom of
the pond and 1 × 1.5 m across, resulting in high crowding and a water depth of ~5 cm on the
platform—conditions comparable to those in real beach seine fisheries when the seine is pulled
into the beach (see [32] for photos). Once fish were crowded on the platform for 2 min, ap-
proximately half of the fish were removed (identifiable by unique spaghetti tags) and rapidly
transferred using knotless nylon dip nets to one of three net pens within the pond. The three
net pens were used to hold fish to be euthanized in separate groups at three time points (Fig 2).
After 15 min of entanglement, the remaining fish were transferred into their respective net
pens. Dissolved oxygen in the water on the crowded platform within the fishing net declined
from ~90% air saturation to 50–60% saturation by the final minutes of the 15 min simulation.
In real beach seine fisheries oxygen levels can decrease by 20–60% during sorting [32]. Thus,
the capture stressor involved a stress response and exercise during corralling and netting, fol-
lowed by confinement in shallow water with declining oxygen content.

Fig 2. The experimental timeline that was repeated three times for each temperature. Letters correspond to sections inMethods.

doi:10.1371/journal.pone.0124023.g002
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c. Terminal sampling. Physiological sampling was carried out for each of the three pens at
1, 4, and 24 h after the initiation of the capture stressor (i.e., when the experimenters entered the
pond to begin corralling fish; Fig 2). All fish were rapidly dip netted from their net pen and sacri-
ficed by cerebral percussion within 30 s of the start of dip netting. Blood samples (1–2 mL) were
then drawn within 3 min from the caudal vasculature of each fish using 21-gauge needles and
heparinized vacutainers (3 mL with lithium heparin; BD, Franklin Lakes, New Jersey). Simulta-
neously, sections of white muscle were cut from the left side of each fish (within 5 min of being
sacrificed), 1–2 cm above the lateral line anterior to the dorsal fin. Muscle samples were pressed
firmly between a set of metal clamps that had been cooling in liquid nitrogen, and then stored in
liquid nitrogen until later transfer to a -80°C freezer. Tubes containing blood samples were put
immediately into a water-ice slurry and within 20 min they were centrifuged at 7,000 g for 5 min.
The separated blood plasma was stored in liquid nitrogen before eventual transfer to a -80°C
freezer. After physiological sampling was complete, fish were measured (fork length, FL, nearest
cm) and sex was verified by examining gonads. In the case of 24 h fish, data loggers were re-
moved, scrubbed clean in freshwater, and immersed in povidone-iodine for sterilization prior to
re-use.

In addition to sampling fish exposed to the capture simulation, seven fish were dip-netted
and sacrificed directly from the hatchery raceway (~7.5°C) and a further four fish were trans-
ported to CLL and held undisturbed at 15°C for 24 h in black cylindrical fish holding bags.
Data from these 11 fish were pooled to provide resting/routine values for illustrative (not statis-
tical) purposes (light grey areas in Fig 3).

d. Respirometry. A subset of data logger-implanted coho salmon exposed to the capture
simulation (four fish in the 10°C group and five in the 15°C group) were rapidly transferred post-
simulation to 138 L static intermittent flow-through respirometers for 20–26 h of oxygen con-
sumption rate (ṀO2) measurements using the same methods as Clark et al. [37]. Briefly, the res-
pirometers recorded oxygen saturation continuously (1 Hz) using electrodes (Loligo systems,
Tjele, Denmark) placed within a re-circulation line that ensured each respirometer remained well
mixed. The respirometers were flushed with fresh water for 45 min every hour and sealed for the
other 15 min so thatṀO2 could be recorded (based on the slope of oxygen saturation vs. time).
Though the small sample sizes precluded statistical comparisons, respirometry allowed us to
characterize post-exerciseṀO2 and recovery patterns for the two temperatures.

Ethics statement
All fish transport, handling, surgical, and monitoring procedures were approved by the Animal
Care committees of Fisheries and Oceans Canada and the University of British Columbia
(UBC) in accordance with guidelines set by the Canadian Council on Animal Care (UBC Ani-
mal Care protocol #A11–0125). The tanks and concrete ponds in which fish were maintained
were checked several times per day by members of the research team to monitor temperature,
dissolved oxygen, water flow, and whether fish exhibited signs of morbidity (e.g., loss of equi-
librium, erratic movement). Although this was not a survival study (i.e., we focused on physio-
logical endpoints) eight individuals perished at some point after the end of the capture
simulation but prior to set sampling times (i.e., 1, 4, and 24 h, see Results), which likely resulted
from failure to return to homeostasis following the capture stressor, combined with the fact
that natural senescence was underway for all the fish in this study. However, in this study there
were no obvious signs of premature senescence or disease outbreak that can be common in ex-
periments holding wild salmon (e.g., outbreak of Saprolegnia fungal infections; [38]). To mini-
mize the stress that can be associated with laboratory confinement, shade cloth was suspended
above each concrete pond, and sections of high-density foam were allowed to float on the
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Fig 3. Mean ± standard error (S.E.) plasma glucose (A), cortisol (B), plasma ion PC score (C), andmetabolic PC score (D) in coho salmon 1, 4, and
24 h after initiation of a 2- or 15-min seine entanglement (duration), at either 10°C or 15°C. The light grey shaded areas are mean ± standard error
control values from seven fish sampled directly from the hatchery raceway (at ~7.5°C) and four fish allowed to recover from transport and handling
undisturbed at CLL for 24 h (at 15°C). “Metabolic PC score” is a variable that was synthesized using principal components analysis from five original
physiological variables relating to metabolic status, while plasma ion PC score was synthesized in a second PCA using three of the remaining five variables
(see Table 1). For A and B, all fish were grouped because no significant differences occurred within any of the time points, except for plasma glucose at 1 h
which was significantly higher in males across treatment groups (two-way ANOVA with group and sex as main effects using log-transformed data, P = 0.008).
For B and D, significant effects within a time point are shown with * (effect of sex), † (temperature), or ‡ (entanglement duration). Separate and significant
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water’s surface to provide cover under which most fish readily hid. Cerebral percussion was
used to sacrifice all animals and was achieved by a strong, single blow to the head of the animal
using a heavy wooden bat. Analgesics were not used, largely because the pharmokinetics of an-
algesics are poorly understood in fish and would potentially alter behaviour or physiology in
ways that would interfere with the experimental objectives (i.e., assessing physiological recov-
ery from a capture stressor).

Laboratory analyses
To extract metabolites from white muscle samples, they were first ground to a fine powder
using a mortar and pestle kept partly immersed in liquid nitrogen [25]. Approximately 0.5 g of
powdered muscle was then briefly vortexed in a 15 mL falcon tube with exactly 4× the volume
of perchloric acid solution (e.g., 0.5 g muscle = 2 mL solution of 8% PCA with 1 mM EDTA).
The vortexed solution was incubated on ice for 10 min then centrifuged at 3000 rpm for 5 min
at 4°C. The supernatant was removed and balanced to a pH of 7–8 using a neutralizing solution
(2 M KOH, 0.4 M KCl, 0.3 M Imidazole), before being centrifuged at 10,000 g for 3 min at 4°C.

effects of temperature (P = 0.003) and entanglement duration (P = 0.004) for metabolic PC scores at 1 h were based on a two-way ANOVA (re-run after
removal of a non-significant interaction term). The significant effect of entanglement duration (across both temperatures) at 4 h for metabolic PC scores
(P = 0.035) was based on aWilcoxon rank sum test.

doi:10.1371/journal.pone.0124023.g003

Table 1. Output of two separate principal components analyses (PCA; N = 155 individuals) whose re-
sulting factor scores (PC1) were used for statistical analyses (see Fig 3).

First PCA—metabolic PC score

Tissue variable PC1 loading Communality (h2)

Eigenvalue 3.86

Variance explained 77%

Plasma lactate 0.91 0.83

Plasma osmolality 0.89 0.79

Muscle lactate 0.94 0.88

Muscle ATP -0.85 0.73

Muscle PCr -0.80 0.63

Second PCA—plasma ion PC score

PC1 loading Communality (h2)

Eigenvalue 2.23

Variance explained 74%

Plasma Cl- 0.91 0.83

Plasma K+ -0.78 0.61

Plasma Na+ 0.89 0.79

The first PCA, whose resulting factor scores are referred to as metabolic PC (principal component) scores,

resulted after an initial PCA with all ten original physiological metrics, from which variables were

successively removed because of having either a) a low Kaiser-Mayer-Olkin (KMO) measure of sampling

adequacy (see Field et al. 2012), or b) not having a loading � |0.6| (shown in bold) for any factor which

also had other � |0.6| loadings (i.ef., not agreeing strongly with other variables within a factor). PC loadings

represent correlation coefficients (r) between the original variable and the new synthetic (e.g., PC1)

variable. The second PCA (bottom) whose resulting factor scores are referred to as plasma ion PC scores,

was initially run using the five remaining variables, and was simplified after the same iterative procedure

used to refine the first PCA.

doi:10.1371/journal.pone.0124023.t001
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The resulting supernatant was removed and stored in a -80°C freezer for later analyses of lac-
tate, phosphocreatine (PCr), and adenosine triphosphate (ATP), which were measured in trip-
licate using enzymatic assays with a plate spectrophotometer (SpectraMax 340PC microplate
reader with SoftMax Pro 4.8 data analysis software, Molecular Devices, Sunnyvale, CA) follow-
ing details provided by Suski et al. [26].

Blood plasma was analyzed for cortisol (Neogen enzyme-linked immunosorbent assay with
Spectramax 240PC plate reader, Molecular Devices, Sunnyvale, CA), chloride (Haake Buchler
digital chloridometer), sodium and potassium (Cole-Palmer, model 410 single-channel flame
photometer), osmolality (Advanced Instruments 3320 freezing-point osmometer), and lactate
and glucose (YSI 2300 Stat Plus analyser) using methods previously detailed by Farrell et al.
[25].

Data analysis and statistics
We used principal components analysis (PCA) to integrate responses of the seven plasma and
three muscle variables we measured. An initial PCA with three factors was conducted using all
10 variables (N = 155 fish) but was successively re-run after stepwise elimination of variables
that either had a) a low Kaiser-Olkin-Meyer (KMO) measure of sampling adequacy (<0.5,
[39]), or b) did not have a factor loading (eigenvector) � |0.6| for a factor with loadings� |0.6|
for any other variables. That process led to a final PCA with five variables (see Results), from
which factor scores were extracted for each fish and subsequently referred to as “metabolic PC
scores”. PCA was again used on the remaining five variables, and the same process was used to
refine that PCA, from which factor scores were extracted (referred to as “plasma ion PC
scores”; see Results). Plasma cortisol and glucose, which were ultimately excluded from both
PCAs (criteria described above), were analyzed separately for further analyses.

To screen for the confounding effect of sex across treatment groups for muscle and plasma
variables we used a two-way analysis of variance (ANOVA) with sex and group (groups shown
in Fig 2) as main effects at each time point (non-significant interaction term removed). Where
sex had a significant effect, further tests for capture variables were conducted using an
ANOVA with three factors (sex, entanglement duration, temperature—non-significant inter-
actions removed). For the other variables, two-way ANOVAs were used. Data were visually ex-
amined to ensure they met parametric assumptions and tested for normality and
heteroscedasticity using the Shapiro-Wilk and Levene’s test, respectively. In one case (4 h meta-
bolic PC scores) data could not be transformed to meet parametric assumptions so Wilcoxon
rank sum tests were used to separately assess overall effects of temperature and entanglement
duration. Fish size (FL) was not significantly different among treatment groups within any of
the three time points (two-way ANOVA with entanglement duration and temperature as fac-
tors, all P> 0.10).

The data logger files were downloaded into LabChart (ADInstruments, Sydney, Australia)
for processing with an ECG analysis tool that was used to calculate heart rate (fH) in beats per
minute. Some of the loggers failed to record data, resulting in a final N of 21–5 each for 10°C/
2 min and 10°C/15 min, 2 for 15°C/2 min, and 9 for the 15°C/15 min treatment. All ECG data
were manually examined to ensure correct beat counting. For each fish, we assessed its baseline
(resting) fH by averaging over a ~15 h period preceding the capture simulation. In some cases,
certain sections were excluded or periods greater than 15 h prior to capture were used to ensure
baseline for each fish was calculated from a minimum of 10 h of low, stable fH data. Time to re-
covery after the fisheries simulation was assessed as the time point when fH returned to within
the 99% confidence interval (CI) of that individual’s baseline fH (mean ± standard deviation
CI = 1.39 ± 0.80 beats min-1). We also calculated fH elevation for each fish by subtracting its
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baseline fH + 99% CI from its raw fH at each time point, such that when fH elevation decreased
to� 0 a fish was considered “recovered”. Heart rate elevation was used to calculate excess
post-stressor heart beats (EPHB) for each fish by integrating the area under the recovery curve
(until recovery was reached or until the fish was sacrificed if it did not recover within 24 h)
using the simple trapezoidal method.

Effects of entanglement duration and temperature on post-capture peak fH, fH elevation, the
factorial increase in fH, recovery time, and EPHB were assessed using two-way ANOVAs using
type III sums of squares with the interaction term removed because of unbalanced sample sizes.
To assess whether capture variables resulted in relative elevations in fH during an extended re-
covery, we used a linear mixed effects model with entanglement duration, temperature, and time
as fixed effects, fH elevation as the outcome variable, and fish ID as a random variable, focusing
on fH at 10, 15, and 20 h post-capture. Those time points were chosen to attempt to understand
causes of extended fH elevation, and because it was apparent that there was little among-group
variation in the initial response and recovery (e.g., up to 5–7 h). Statistics were conducted using
RStudio (v. 0.98.953, RStudio, Inc., Boston, MA, USA; http://www.rstudio.com/). Tests were as-
sessed as significant at α = 0.05 and data are presented as mean ± standard error.

Results

Blood and white muscle physiology
The only fish to die in the experiment came from the most stressful group, 15-min entangle-
ment treatment at 15°C, where 18% of fish died after release but prior to sampling (four in the
1 h group, three in the 4 h group, and one in the 24 h group; samples not included in analyses).

Fish exhibited an elevation in indices of exhaustion and stress 1 h after initiation of the
stressor (Fig 3). Lactate was elevated in plasma and white muscle relative to reference and 24 h
values, as was plasma cortisol, while ATP and PCr were depressed (Fig 3; data for individual
variables available in online appendix). Metabolic indices were well-integrated by PCA
(Table 1); the synthetic “metabolic PC scores” variable positively correlated with plasma and
muscle lactate, and osmolality, and negatively correlated with muscle ATP and PCr. Overall,
metabolic PC scores were elevated at 1 h but decreased to resting/routine (light grey areas in
Fig 3) values by 4 h for most fish (Fig 3D). At 1 h, there were significant and separate positive
effects of entanglement duration (Two-way ANOVA; F1,44 = 9.5, P = 0.004) and water temper-
ature (F1,44 = 10.3, P = 0.003) on metabolic PC scores (Fig 3D). At 4 h, metabolic PC scores
were significantly elevated across temperatures for fish exposed to the longer entanglement du-
ration (Wilcoxon rank sum test, P = 0.034), whereas there was no apparent effect of tempera-
ture itself (P = 0.29). A Kruskal-Wallis ANOVA failed to detect a significant difference among
the four groups shown in Fig 2D (χ2 = 7.8, df = 3, P = 0.051). By 24 h, there were no significant
differences among groups in metabolic PC scores, with all groups apparently recovered (Two-
way ANOVA, P> 0.40 for both entanglement duration and temperature).

A second PCA on the remaining five variables strongly integrated the three plasma ions
(chloride, potassium, and sodium) into a synthetic variable referred to as “plasma ion PC
scores” (Table 1), which similarly showed signs of elevation at 1 h followed by a decrease at 4 h
(Fig 3C). There were no significant effects of treatment variables on recovering plasma ion PC
scores (thus, all fish grouped in Fig 3C). Likewise, plasma glucose was not significantly affected
by capture variables at the three time points (all P> 0.40), but was significantly higher in
males across groups at 1 h after capture (Two-way ANOVA, sex F1,43 = 7.7, P = 0.008). Cortisol
(log10-transformed) was higher in females across time points (P< 0.001). Controlling for sex,
plasma cortisol was not affected by temperature or entanglement duration at 1 or 4 h, but after
24 h there was a significant positive effect of temperature (F1,40 = 8.74, P = 0.004), in addition
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to a separate effect of sex (F1,40 = 13.43, P = 0.002; using a three-way ANOVA, interactions re-
moved due to non-significance; Fig 3B).

Cardiorespiratory recovery
Confinement in a respirometer for 24 h of hourlyṀO2 measurements elicited periodic bouts of
visually observable activity that were reflected in spikes inṀO2 among the small number of fish
placed in respirometers (N = 5 for 15°C, N = 4 for 10°C). Those data points were removed for a
characterization of the respiratory recovery following our capture simulation (Fig 4). In the first
post-release measurements (mean 0.84 h after initiation of the stressor, ~ 0.54 h after release),
ṀO2 reached 4.33 ± 0.45 mg kg-1 min-1 for fish in the 10°C treatment and 6.00 ± 0.45 mg kg-1

min-1 at 15°C; ~50% ofṀO2max for both temperatures in this population of coho salmon (G.D.
Raby, unpublished data; Fig 4).ṀO2 returned to resting values quicker in the 15°C treatment
(~5 h) than at 10°C (~8 h). Small sample sizes within time points precluded statistical analyses
ofṀO2 data.

Heart rate (fH) baseline and post-capture peak values reflected temperature differences but
were not affected by entanglement duration (Fig 5). Baseline fH was 32.3 ± 1.5 beats min-1 at
10°C, which was significantly lower than at 15°C where it averaged 42.2 ± 1.4 beats min-1

(Welch’s t-test, t17.95 = -4.93, P< 0.001). After capture, fH peaked at 67.9 ± 1.3 (10°C) and
85.5 ± 1.7 beats min-1 (15°C) and the difference between temperatures was significant

Fig 4. Mean ± S.E. oxygen consumption rate (ṀO2) for fish recovered in static respirometers after the capture simulation at 10°C (grey circles) and
15°C (white triangles). The total sample size was five individuals at 15°C (two following 2 min of entanglement, three following 15 min) and four at 10°C (all
15 min entanglement time) but the sample size was smaller for some time points where individuals exhibited spontaneous activity, reflected by sudden
increases inṀO2 (and confirmed by visual observation of respirometry chambers). Temperature-specific maximum (ṀO2max) and minimum (ṀO2min) aerobic
metabolic rates for this population of coho salmon were measured in a separate experiment and are shown using dashed lines for illustrative purposes—
maxima were obtained using a Brett-type swim tunnel respirometer (G.D. Raby, unpublished data).

doi:10.1371/journal.pone.0124023.g004
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(Table 2). Net fH elevation (Fig 5B) was also significantly higher at 15°C than at 10°C, but there
was no difference in the factorial increase, with heart rate approximately doubling at both tem-
peratures (Table 2). Post-capture peak fH, peak fH elevation above baseline, and factorial

Fig 5. Mean heart rate (fH) (A), heart rate elevation relative to baseline (B), and body temperature (Tb) (C) for coho salmon implanted with data
loggers and subject to fisheries simulations at 10°C (grey circles) and 15°C (white triangles). Hourly means are based on data within ~30 min of each
hour mark and error bars represent standard error (x-axis error bars present but too small to be visible in most cases; likewise for y-axis error for Tb in the
10°C group). Background data points in light grey are group means for each time point (i.e., every 6 min; triangles for 15°C, circles for 10°C). Heart rate
relative to baseline (fH elevation; B) was calculated for each individual by subtracting that individual’s baseline from its actual heart rate at a given time point.
Also shown in the top panels are sample electrocardiogram (ECG) traces (recorded at 200 Hz) used to assess heart rate from a logger-implanted salmon
held at 15°C (i = baseline, ii = post-capture).

doi:10.1371/journal.pone.0124023.g005
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elevation were not significantly affected by entanglement duration (Fig 5 and Table 2). Like-
wise, after controlling for capture variables, sex had no effect on any of the above heart rate
metrics (all P> 0.08).

Heart rate recovered to baseline levels notably slower thanṀO2 and other metrics measured
in this study (Fig 5B). Overall, 7 of 21 fish did not return to their pre-capture baseline fH within
the 24 h after release. Among the 14 fish that did recover before being sacrificed, recovery time
ranged from 3.1 to 22.5 h. Effects of entanglement duration and temperature on EPHB, likeli-
hood of recovery within 24 h, and recovery time were not significant (Table 2). A linear mixed-
effects model examining heart rate elevation (Fig 4B) across three time points (10, 15, and 20 h)
with fish ID as a random variable revealed a significant negative effect of time (i.e., heart rate de-
clined across the time points examined—evident in Fig 5B; β = -0.48 ± 0.14, t39 = -3.44,
P = 0.001), but no significant effects of temperature (t17 = 0.52, P = 0.61) or entanglement dura-
tion (t17 = 0.98, P = 0.34).

Discussion

Physiological responses
Both warmer water and longer net entanglement result in greater physiological disturbance in
coho salmon and, for some variables, an extended recovery after simulated fisheries capture
based on the data presented here. White muscle and plasma variables provided the strongest
evidence of treatment effects (Fig 3). Overall, we found that most physiological variables had
recovered or approached routine levels within 4 h (i.e., 4 h, Figs 3 and 4) but that many individ-
uals took much longer to return to pre-stressor fH (Fig 5 and Table 2).

In a closely related population of coho salmon held at ~8°C, Donaldson et al. [28] found
that fH took up to 16 h to recover from an exhaustive exercise stressor, while Anderson et al.
[30] similarly found Atlantic salmon required 15 h to recover fH after angling (at 8 and
16.5°C). In contrast are centrarchids (Centrarchidae), which return to routine fH within 2–4 h

Table 2. Comparative summary of heart rate (fH) responses and recovery among the four capture treatments.

Temperature,
entanglement
duration

N Post-capture
peak fH (beats
min-1)

Peak fH elevation
(relative to
baseline)

Factorial post-
capture fH
increase

Recovered to
baseline fH within
24 h

Recovery time (h)
for fish that
recovered

Excess post-
capture heart
beats

10°C

2 min 5 67.9 ± 1.8 35.6 ± 2.3 2.2 ± 0.1 40% (2 of 5) 13.7 ± 0.3 18628 ± 2189

15 min 5 67.9 ± 2.1 33.1 ± 0.8 2.1 ± 0.1 100% (5 of 5) 8.5 ± 1.3 7421 ± 1348

15°C

2 min 2 86.6 ± 3.3 39.1 ± 4.5 2.0 ± 0.2 100% (2 of 2) 5.9 ± 2.0 3785 ± 1418

15 min 9 85.3 ± 1.9 41.9 ± 2.3 2.1 ± 0.1 56% (5 of 9) 17.6 ± 2.2 23439 ± 4222

Statistics1

Temperature F1,18 = 62.75,
P < 0.001

F1,18 = 6.92,
P = 0.02

F1,18 = 0.50,
P = 0.49

Z = –1.19, P = 0.23 F1,11 = 0.70,
P = 0.42

F1,18 = 1.50,
P = 0.24

Duration F1,18 = 0.05,
P = 0.84

F1,18 = 0.02,
P = 0.89

F1,18 = 0.03,
P = 0.86

Z = –1.20, P = 0.23 F1,11 = 1.01,
P = 0.34

F1,18 = 0.03,
P = 0.86

Values represent mean ± standard error. Notes: fH elevation relative to baseline, factorial increase, and fH recovery were assessed for each individual

relative to that individual’s unique baseline fH. Factorial increase in fH was calculated by dividing an individual’s peak post-capture heart rate by its pre-

capture baseline average. Total excess post-capture heart beats (EPHB) was estimated by integrating the total area under the recovery curve for each

fish (to recovery or 24 h in the case of fish that did not return to baseline before being sacrificed at 24 h).
1Two-factor ANOVAs (no interaction term) used except for numbers of fish recovering to baseline within 24 h, for which a multiple logistic regression

was used.

doi:10.1371/journal.pone.0124023.t002
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of exercise and angling stressors [17,40,41]. Our data support previous findings that the relative
increase in fH from fisheries-related stressors is not affected by the nature of the stressor or
water temperature, with an approximate doubling of fH in all cases [28,40]. However, whereas
the duration of air exposure has a strong effect on fH recovery time in rock bass (Ambloplites
rupestris; [40]), we found the duration of net entanglement had no such effect in salmon,
though our ability to detect such effects was somewhat limited by low statistical power. More
notable in our study was that several fish did not return to resting fH within 24 h, and that re-
covery time varied widely even within treatments. As such, our data confirm that capture-relat-
ed stressors can cause very prolonged fH elevation in free-swimming salmon. Accordingly, we
suggest that fH may provide the best indication of whole-organism recovery from a stressor but
not of the severity of the stressor. Future research could explore why salmon exposed to seem-
ingly identical acute stressors can vary so widely in their recovery profiles—knowledge that
could help explain why delayed mortality occurs. Such differences could potentially be ex-
plained by inter-individual variation in spontaneous activity levels, stress responsiveness (e.g.,
[42,43]), physiological or behavioural syndromes [44], prior experiences (e.g., “training”, [45],
or “carry-over effects”, [46]), or pre-existing pathogen loads [8].

The biological importance of an extended elevation in fH (e.g., 15+ h) following capture re-
mains unclear, particularly in light of the fact thatṀO2 appeared to return to baseline relatively
quickly (Fig 4), meaning the direct energetic cost of recovery was modest. Based on the mean
recovery profiles inṀO2 in Fig 4, excess post-exercise oxygen consumption was 783 ± 284 and
501 ± 98 mg O2 kg

-1 at 10 and 15°C, respectively. Those values translate to 2358 ± 920 and
1623 ± 317 calories of excess energy used during recovery from capture; energy that could oth-
erwise be used to achieve 1.4 ± 0.2 km (15°C) to 2.2 ± 0.8 km (10°C) of upstream migration, or
1.1 ± 0.2 h (15°C) to 1.8 ± 0.6 h (10°C) of spawning activity (based on migration energetics
data in [47]). Perhaps a more important energetic consideration was the mismatch between ox-
ygen demand and availability during entanglement. Both in the actual fishery and our simula-
tion, dissolved oxygen declined from 9–10 mg L-1 (~90–100%) to ~ 5–7 mg L-1 (50–70%) in
the crowded seine within 10–15 min, while oxygen demand (Fig 4) ranged from ~ 8–24 mg
min-1 per fish (depending on body size and water temperature), likely necessitating a signifi-
cant shift towards anaerobic metabolism.

Reliance on anaerobic metabolism can explain why the fisheries capture simulation caused
changes in blood and muscle metrics that were modulated by temperature and the duration of
net entanglement. The initial corralling and entanglement elicited ~ 1 min of exercise, which
was followed by 2–15 min of crowding in very shallow water with declining oxygen content
(e.g., 60% air saturation within 10 min). The protocol was more typical of a true fisheries net
capture than those applied by exhaustive exercise studies (e.g., 5 min of manual chasing; [16]).
Nevertheless, the rich physiological literature that exists on the latter [23] is relevant to under-
standing our results. Anaerobic exercise relies initially on using white muscle stores of PCr and
ATP (whose concentrations remain unchanged during aerobic swimming; [48,49]), and there-
after shifts to greater consumption of glycogen (glycogenolysis), resulting in production of lac-
tate and a drop in pH [48]. Some lactate leaks out of muscle cells to blood plasma [49], while
decreased muscle pH creates an osmotic pull of water from plasma to muscle cells, effectively
concentrating plasma ions (i.e., heightened osmolality and plasma ion PC scores at 1 h; S1
Table and Fig 3). ATP and PCr in muscle typically recover to resting levels within 1–2 h of ex-
haustion [26,49], while muscle lactate conversion back to glycogen (glycogenesis; [49]), the pri-
mary fate of muscle lactate, typically occurs more slowly (e.g., 6–8 h), as does the restoration of
osmotic balance [50]. These processes were effectively integrated into a synthetic variable (met-
abolic PC score) for our experiment, which can be thought of as a robust measure of departure
from metabolic homeostasis, where higher scores represent more exhausted fish and low scores
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represent a rested state (Table 1 and Fig 3). Although we did not measure muscle glycogen, we
expect that it would have inversely tracked lactate [49]. It was notable that although fish likely
did not exercise maximally, evidenced by only reaching 50% of maximum attainableṀO2, lac-
tate reached maximal levels comparable to Atlantic salmon and rainbow trout in exhaustive ex-
ercise experiments (i.e., ~ 40 and ~20 mmol L-1 in muscle and blood plasma, respectively;
[15,16]), but only in the 15 min duration entanglement (Fig 3; S1 Table). Entanglement time
had a significant effect on metabolic disturbance, which helps explain why it was negatively
correlated with reflex impairment in the field [32], and is supported by the catch-and-release
literature where longer angling or air exposure have both been shown to cause greater lactate
accumulation and longer recovery of cardiac variables [17,40,51,52].

Temperature had a significant effect on metabolic PC scores at 1 h, likely resulting from a
combination of higher metabolic rate at 15°C (Fig 4) and to a lesser extent the lower dissolved
oxygen content of warmer water. Although past studies on the effects of temperature on physi-
ological responses to exhaustive exercise have found minimal differences in resulting lactate
loads [15,16], the present study exposed fish to hypoxia which only followed brief burst swim-
ming during netting. Therefore, exhaustion was likely to be a function of both entanglement
time and temperature, given the role of the latter in determining metabolic rate (Fig 4). In fact,
it appears fish were not fully exhausted in the 2-min duration treatments based on their lower
muscle lactate loads (and metabolic PC scores) at 1 h (Fig 3). After exhaustive exercise, large-
mouth bass (Micropterus salmoides) accumulate more lactate and have more depressed white
muscle energy stores if recovered in hypoxic or warmer water [26]. Similar trends have been
observed in bonefish (Albula vulpes, [53]). Importantly, resting levels of ATP, PCr, and glyco-
gen are relatively independent of acclimation temperature in fish ([16]), such that exposure to
hypoxia should deplete energy stores more quickly at a higher temperature (Fig 4, [26]). In ad-
dition, the crowded fish would have depleted the oxygen content of the water more quickly,
which is consistent with mortality occurring only in the 15°C/15 min treatment. The fish that
survived the 15°C/15 min treatment exhibited the highest mean metabolic PC scores at 1 and 4
h, the longest heart rate recovery, and the highest number of excess post-stressor heartbeats
(Table 2), although statistically significant differences did not occur in the latter two cases. Col-
lectively, our data show that physiological disturbance in coho salmon is increased by longer
entanglement time, particularly in warmer water.

A prediction from the literature is that physiological recovery from exhaustion in fish is
more rapid in warmer water [15]. The data from our experiment generally did not support that
prediction, with the exception of our smallṀO2 dataset. However, the focus of our sampling
design on a small number of time points, in the case of blood and muscle variables, likely pre-
cluded our ability to detect such effects. Interestingly, there was an effect of temperature on
plasma cortisol recovery, with cortisol remaining particularly high in females in the 15°C treat-
ment 24 h after release (~ 300 ng mL-1; Fig 3). Though we have little pre-capture control data
(plasma cortisol was 15.9 and 131.2 ng mL-1 in two 15°C female controls [among four 15°C
controls]; S1 Table), the data suggest either a) female salmon may have impaired recovery of
cortisol after capture in warm water, or b) cortisol is maintained at higher routine levels in
warmer water, though this is not the case in sockeye or pink salmon [38]. It has recently been
established that mortality is exceptionally high in upriver migrating female sockeye salmon ex-
posed to warm water and capture stressors [6,38,54,55], and our cortisol data here may help ex-
plain why those trends occur. Integrating knowledge about sex-specific consequences of
fisheries capture is particularly relevant to salmon populations in light of warming river tem-
peratures because females are usually the limiting sex to spawning ground productivity [56].
Further experiments are required to establish whether impaired cortisol recovery is a mecha-
nism for delayed sex-specific mortality of salmon caught and released in warm water.
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Relevance to conservation and management
Our data are directly relevant to understanding bycatch of endangered coho salmon in Fraser
River beach seine fisheries. Beach seine fisheries that encounter coho salmon typically occur in
mid-September (targeting pink and sockeye salmon) when water temperatures are 14–16°C
[32], but the fishery also sometimes re-opens in late October when water temperatures are
8–10°C (to target chum salmon). It has been proposed that upriver migrating salmon are
adapted to the modal water temperatures they historically experience at the time of river entry
[57] and in our case we used a population of salmon for which 15°C would represent the upper
limit of their lifetime experience, with 10°C being closer to their modal upriver migration tem-
perature (water was 8–10°C in the Chilliwack River at the time of the experiment). In the fish-
ery, where entanglement times ranged from 5 s to 56 min (median = 3.3 min; [32]) plasma
lactate averaged 12.3mmol L-1, ~8–10 min after release from the net [35]. This is only slightly
lower than our 1 h samples, which were taken closer to when plasma lactate peaks during re-
covery [25,58]. Thus, although in an experimental setting and using a surrogate population,
our data are relevant to informing best handling practices for the beach seine fishery, and help
highlight the importance of releasing bycatch from nets as rapidly as possible [32], particularly
at elevated temperatures.

In a human dimensions survey of fishery participants, rapid release of coho salmon was the
most commonly suggested method for reducing bycatch mortality. Many fishers (35%), how-
ever, presented no ideas for reducing mortality, suggesting there is potential to increase aware-
ness of the importance of rapid release [32]. Our experiment illustrates that the mismatch
between oxygen demand and supply during crowding results in additional and substantial
physiological disturbances (Fig 3); clear evidence of why, if rapid release is not possible, fishers
should be urged to maximize oxygen availability by leaving the net in deeper water for sorting.
Most fishers that participated in the survey [32] indicated a willingness to leave their nets in
knee-deep water, although the depth required to ensure crowding does not deplete dissolved
oxygen would likely depend on a variety of factors, such as catch size and local water flow.

In addition to informing bycatch management for an endangered population of salmon, the
trends relating to handling time and temperature in our experiment are likely applicable to
other fisheries. For example, similar physiological data and recommendations exist in rainbow
trout recreational fisheries [21] and fyke net fisheries that bycatch northern pike [59]. Our
maximal and recovered muscle lactate data are comparable to those that occur in coho salmon
captured in marine gillnet and troll fisheries [25,34], further emphasizing that our data are like-
ly replicable and relevant in real fisheries.

Estimates of global marine fisheries bycatch range from 6.8 to 38.5 million tonnes [60,61]—
a conservation problem that has caused population declines (e.g., [62,63]) and drawn consider-
able research effort in the last 20 years [64]. In Canada’s Pacific fisheries, a policy to move to-
wards “selective fishing” has been in place for more than ten years, which states that non-target
fish should be released “unharmed” if bycatch cannot be avoided [9]. Our experiment is rele-
vant in this context, given that physiological data are objective measures of fish welfare [65].
To date, there is sparse use of terms relating to stress, welfare, or the sublethal effects of bycatch
in IUCN documents on imperiled species that are captured in commercial fisheries [31]. Nev-
ertheless, well-controlled experiments with physiological assessments can help provide mecha-
nisms needed to facilitate evidence-based implementation of best practices [66], especially
when complemented by field and human dimensions data (e.g., [67]). We hope the present
study provides a helpful addition to a growing physiological literature (for reviews see
[24,31,68]) that can be used by conservation practitioners to understand trends in fish

Physiological Recovery of Coho Salmon from Fisheries Capture

PLOS ONE | DOI:10.1371/journal.pone.0124023 April 22, 2015 16 / 20



impairment and mortality while moving towards methods of live release that benefit the wel-
fare and survival of bycatch.

Supporting Information
S1 Table. Mean ± standard error (range) blood plasma and white muscle measures for each
treatment group (water temperature, capture stressor duration) at different durations after
initiation of the capture stressor. Results obtained from mortalities are for illustrative pur-
poses only—those fish perished at an unknown time between the capture stressor at that sam-
pling time (i.e., 1 h or 4 h), and some of the measured constituents may have rapidly broken
down following death. 24 h controls are fish that were transported to CLL and placed in black
flow-through fish bags for 24 h before being rapidly sacrificed and sampled for tissue. 24 h con-
trol values were combined with those from the hatchery raceway to provide the control levels
in Fig 3 (grey shaded areas).
(DOCX)
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