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1.  INTRODUCTION

For ectothermic organisms such as fishes, water
temperature is regarded as the ‘master factor’ (Brett
1971), controlling and limiting (Fry 1971) many as -
pects of biology from intra-cellular metabolic pro-
cesses (e.g. enzyme function) to whole organism
activities (e.g. feeding, locomotion and reproduc-
tion). It is therefore not surprising that in the face of
anthropogenic climate change, there is much con-
cern about how elevated water temperatures (and
other associated environmental effects such as ocean
acidification; see Kelly & Hoffmann 2012) will affect
fish (reviewed in Roessig et al. 2004, Ficke et al. 2007,
Pörtner & Farrell 2008) and aquatic ecosystems (Hof-

mann & Todgham 2010, Meyer-Rochow 2013). Re -
search on the effects of rising water temperatures has
expanded in recent years with many researchers
shaping their entire research programs around the
consequences of a warmer climate on fish biology,
ecology and evolutionary processes. While most cli-
mate change research focuses on climate warming, it
is anticipated that temperature variability will also
increase (Solomon et al. 2007), which gives rise for
the potential of increased ‘cold shock’ events. Cold
shock is the term to describe the stress response that
occurs when a fish has been acclimated to a specific
water temperature range and is subsequently ex -
posed to a rapid decrease in temperature, resulting in
a cascade of physiological and behavioural responses
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(Donaldson et al. 2008). Many factors influence the
consequences of cold shock (briefly reviewed below
and in Donaldson et al. 2008), and the magnitude of
the response is affected by the rate of temperature
decrease and the magnitude of change in relation to
population-specific thermal tolerance limits and the
acclimation history at the individual level.

Here we argue that the ‘cold side’ of climate
change as it relates to fish has been neglected. Our
objective is to stimulate the research community to
think more broadly and consider not only the in -
crease in temperature, but also the consequences of
increased temperature variability and cold shock. 

2.  THE COLD SIDE OF CLIMATE CHANGE

Commonly, climate change is considered in the
context of mean rise in temperatures (Hughes 2000,
Pörtner et al. 2001). However, severe weather ano -
malies are also projected to increase in both the fre-
quency and magnitude of events (Solomon et al.
2007, IPCC 2012). Recent research has shown that
these acute variations can have more severe con -
sequences than climate warming (Clusella-Trullas
et al. 2011, Paaijmans et al. 2013, Vasseur et al.
2014). Additionally, these abrupt and often extreme
weather events can act as a strong selective pressure,
resulting in considerable changes to populations
(Parmesan et al. 2000, Jentsch et al. 2007, Parker et
al. 2008).

Climate change also has the potential to affect the
frequency, extent and severity of natural occurrences
of sudden cold events. Projected changes to the
 climate system include changes in precipitation
regimes, reductions in Arctic sea ice cover, decreases
of spring snow cover in the Northern Hemisphere
and increased temperature variability (IPCC 2014).
These climate-related changes can influence natural
sources of cold events (e.g. seiches), thermoclines
(e.g. depth and stability), solar heat exposure and
seasonal or diel temperatures (Emery 1970, Over-
street 1974, Steiner & Olla 1985, Larimore 2002,
Szekeres et al. 2014, Hlevca et al. 2015). For exam-
ple, several abiotic factors may play a role in weather
anomalies, including El Niño-Southern Oscillation,
Eurasian snow cover, solar activity and the Quasi
Biannual Oscillation (Cohen et al. 2007, Fletcher &
Kushner 2011, Mitchell et al. 2011; reviewed in Kim
et al. 2014). Weakening of the stratospheric polar vor-
tex and subsequent negative phases of the Arctic
Oscillation (AO) has been linked to the loss of  Arctic
sea ice cover (Kim et al. 2014). The negative phase of

AO results in colder surface temperatures through-
out the Northern Hemisphere (Kim et al. 2014), caus-
ing southward advection of Arctic air (Wang et al.
2010). If the AO continues in its negative phase, there
is an increased likelihood of more frequent cold
fronts of higher magnitudes, resulting in more abrupt
cold events (Wang et al. 2010).

Cold shock events can have catastrophic effects on
lo cal fish populations. Weather-induced cold shock
events resulting in large-scale fish mortalities in the
subtropics were first documented in 1940 (Galloway
1941), with another severe event occurring in 1977
(Gilmore et al. 1978, Roberts et al. 1982, Bohnsack
1983). More recently, in January 2010, Florida re -
corded their coldest 12 d period since 1940 (NOAA
2010). This cold shock event resulted in the deaths of
hundreds of thousands of nearshore fishes and
broader impacts on coral and marine mammals
(FWCC 2010, Hallac et al. 2010, Lirman et al. 2011,
Adams et al. 2012, Colella et al. 2012, A. Adams
[Bonefish and Tarpon Trust] pers. comm.). In 2010,
a cold shock was the cause of a massive fish kill in
the Bolivian reaches of the Amazon River which
was considered serious enough to merit coverage
as a news item in the journal ‘Nature’ (see
www.nature. com/news/2010/100827/full/news. 2010.
437. html). The consequences of cold shock events
are likely to vary substantially across aquatic eco -
systems. Fish in tropical and subtropical systems may
be most susceptible to cold shock events, as these
regions have relatively little seasonal variation in
daylight hours and temperatures, or diel temperature
variation; thus fish are not well-adapted to tempera-
ture variations (Knutson et al. 2010, Clusella-Trullas
et al. 2011). It can be speculated that fish inhabiting
shallow or nearshore systems are more likely to
experience cold shock events, as they may be unable
to move into deeper or more stable waters given
small home range sizes, and also need to avoid pred-
ators (Smythe & Sawyko 2000).

3.  A PRIMER ON COLD SHOCK AND FISH

Cold shock results in a physiological stress res -
ponse manifested by primary, secondary, and tertiary
responses (Mazeaud et al. 1977, Donaldson et al.
2008). As water temperature decreases rapidly away
from a fish’s acclimation temperature, a neuroen-
docrine response is initiated at the central nervous
system and hypothalamic-pituitary-interrenal (HPI)
axis, beginning the primary response. A rapid tem-
perature change is associated with a decrease in
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cerebral blood volume (CBV) (Van den Burg et al.
2005), which may be an adaptive means of limiting
the flow of cold blood from the gills to the brain but
has the cost of reducing the flow of oxygen-rich
blood. Rapid cooling reduces the reliability of synap-
tic transmission and of cellular and network respon -
ses which can affect tertiary outcomes such as the
predatory escape response (Preuss & Faber 2003). In
response to cold shock, the HPI axis triggers a re -
lease of corticosteroid and catecholamine hormones
that are correlated with the magnitude of tempera-
ture decrease from acclimation temperatures (Tanck
et al. 2000).

The primary stress responses cascade into second-
ary responses, which include cellular, metabolic, and
osmoregulatory changes. Both standard metabolic
rate and maximum metabolic rate decrease with
cooling temperatures, resulting in reduced scope for
activity (Fry 1947). Similarly, enzyme activity rates,
heart rate, and muscle power output are all reduced
at cold temperatures (Hochachka & Somero 1984,
Johnston & Clarke 1990, Shiels et al. 2006, Van den
Burg et al. 2006) and many metabolic and osmo -
regulatory secondary responses have been well stud-
ied following cold shock (e.g. Datta et al. 2002,
Zarate & Bradley 2003, Lermen et al. 2004). Cellular
and molecular responses may be promising indica-
tors of cold shock stress. For example heat shock pro-
teins (HSPs), a family of stress proteins that act as
molecular chaperones to protect the cell against
denatured proteins during stress are known to play a
role in responses to temperature stress, though there
is considerable variability in HSP response to cold
shock (Zakhartsev et al. 2005). Furthermore, it is well
known that exposure to cold causes an increase in
the amount of unsaturated membrane fatty acids and
subsequent changes in ionic regulation, which can
then affect muscle fibre performance and neuronal
function (Meyer-Rochow 2013). A number of recent
molecular genetics studies have focused on respon -
ses to temperature stress, although many of these
studies have looked at increasing temperatures
rather than decreasing temperatures or cold shock in
particular (Somero 2012). Of the studies that have
focused on gene expression in response to cold
shock, thousands of genes have been found to be
cold-sensitive, suggesting that there is need for
future research in this area (Ju et al. 2002, Gracey et
al. 2004, Gracey 2007).

Tertiary responses refer to stress on individuals as
a whole (Mazeaud et al. 1977). Cold shock stress can
result in impaired immune function, increased occur-
rence of disease, and poor health (Engelsma et al.

2003, Tierney et al. 2004, Tilney & Hocutt 1987, Black
et al. 1991). Development rates are reduced during
cold temperatures and in response to cold shock, and
increased mortality can occur (Tang et al. 1987,
Hubert & Gern 1995). Cold shock stress is associated
with impaired reflexes, including reduced response
to manual stimulation of the caudal region (Samson
et al. 2014), impaired ventilation rates, and reduced
swimming ability (Szekeres et al. 2014); factors
that could affect predator evasion and foraging
 behaviours.

4.  HISTORICAL PERSPECTIVE

Previous research on cold shock in fish has become
pertinent again given the potential for cold shock
events to become more common. The physiological
response of fish to cold shock has been studied in a
variety of fish species from a comparative as well as
from an evolutionary perspective (reviewed in Don-
aldson et al. 2008). However, the greatest amount of
work on cold shock has been in the context of 2
applied issues, in order to (1) understand the conse-
quences of industrial thermal effluent dynamics on
wild fish populations, and (2) exploit knowledge of
cold shock to refine fish production in aquaculture.

In the former case, research began in the 1950s and
1960s when various industrial processes began to use
water from adjacent waterbodies for cooling in indus-
trial applications (e.g. coal or nuclear electricity gen-
eration, steel production, food processing), such that
effluents were warmed above ambient conditions.
Fish would be attracted to the warm effluent and,
when cooling was not required, water temperatures
would rapidly drop exposing fish to cold shock. These
industrial scenarios where fish become acclimated to
warmer temperatures and then face sudden cold
shock are analogous to events that could occur in the
context of storms or extreme weather events associ-
ated with climate change. The body of re search re-
lated to industrial processes (reviewed in Coutant &
Brook 1970, 1973) yielded various industry and gov-
ernment technical reports but is rarely reported in the
primary literature. Some important outputs from that
work include identifying species, life-stage and size-
specific rates of body temperature change in fish rela-
tive to different exposures (e.g. Spigarelli et al. 1977,
Weller et al. 1984) and characterizing the absolute
temperature differential that caused sublethal physi-
ological and behavioural alterations across a range of
temperatures (Coutant & Brook 1970). The latter was
particularly relevant for identifying what became
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known as Δ-Ts: the acceptable rate of change (both in
terms of absolute change and the period over which
the change occurred) in cooling that was permitted
by regulators. Failure of water users to adhere to such
regulations would result in legal action. The Δ-Ts
generated for a variety of freshwater, estuarine and
coastal marine fish are highly relevant today for un-
derstanding which cold shock scenarios may have
sublethal or lethal consequences for wild fish. Cold
shock knowledge was also useful for informing the
siting of cooling systems, so that they could be placed
in regions that were less likely to negatively affect
fish populations (Coutant 1977). Unfortunately, cli-
mate change is less discriminating (i.e. not site spe-
cific like an effluent) but the same approach could be
used to characterize the potential risk on a spatial ba-
sis (e.g. risk mapping). Although cooling loops are
still in use today, their use in natural systems acces -
sible to wild fish populations has decreased due to
improvements in efficiency, such that Δ-Ts are lower
and thus cold shock is less common. This is coupled
with the fact that many systems now create artificial
reservoirs for use in cooling. Thus, since the early
1990s there has been relatively little research on cold
shock in the context of cooling loops.

In the context of fish culture, cold shock has been
used for decades to induce polyploidy (i.e. individu-
als that contain >2 paired sets of chromosomes —
most commonly triploid in the case of fish). In the
1970s and 1980s there was extensive work on a range
of species to identify the conditions (thermal and oth-
erwise) under which polyploidy would be induced. A
clear theme that emerged was extensive interspecific
variation and the importance of timing (reviewed in
Pandian & Koteeswaran 1998). To that end, in the
context of climate change, it is reasonable to con-
clude that not all species will have the same likeli-
hood of polyploidy when exposed to a given level
and duration of cold shock. Moreover, the timing of
the cold shock relative to development seems partic-
ularly important (Piferrer et al. 2003), such that one
could develop stage-specific risk criteria. It is unclear
the extent to which polyploidy is or could occur in the
wild as a result of cold shock, given that most of the
research on the topic has been done with a decidedly
culture-based focus. The other aspect of fish culture
research on cold shock relevant to climate change is
simply work done with the intention of identifying
thresholds for temperature management in culture
facilities (e.g. Barton & Peter 1998). Although direct
inferences cannot be drawn about wild populations
from studies of farmed fish, the general patterns and
principles likely apply.

5.  PUTTING COLD SHOCK RESEARCH BACK ON
THE AGENDA

Given that cold shock events are likely to become
more common in an era of anthropogenic climate
change, there is need for more research on this
topic. Indeed, there is a major bias in the literature
and contemporary research, with a focus on warm-
ing waters in response to the narrative that climate
change is manifested as global warming. Our pur-
pose in writing this article is to remind the scien -
tific community that climate change is not solely
about warming, but also about increases in thermal
variability. To that end, we call on the research
community to expand thermal biology studies fo -
cused on climate change to include aspects of cold
shock.

We have identified a number of critical knowledge
gaps in cold shock research and we suggest some
essential research needs to aid in filling these gaps
(Table 1). Research efforts would be best focused on
fish populations that reside in locations where cold
shock events are most likely to occur. To that end,
models need to be developed to estimate the fre-
quency, severity and extent of cold anomalies on a
site-specific basis. Because the impact of cold shock
events depends on the rate of decrease in tempera-
ture and the magnitude of change relative to popu-
lation-specific thermal tolerance, having the ability
to predict, project and/or quantify these events
would be most useful for ensuring that research
efforts are most relevant. Cold shock research on its
own would be useful; however, it would be particu-
larly relevant to address aspects of both warming
and thermal variability (i.e. leading to cold shock
risk) within the same studies. It is our hope that in
the coming years many of the research needs identi-
fied here (Table 1) will be addressed, so that the
‘cold side’ of climate change is given the promi-
nence it needs in order to understand the full suite
of possible consequences of climate change. In
addition to individual behavioural and physiological
consequences to cold shock, we encourage future
research to consider community interactions. We
submit that exploring the relationships between
predators, competitors, and prey is fundamental to
gain a more holistic understanding of ecosystem-
wide consequences of cold shock events. There is
also a need for research on parasitism and immune
function in the face of cold shock (see Le Morvan et
al. 1998 for review on immune function and temper-
ature in fish). While earlier industrial effluent and
aquaculture research forms a basis for understand-
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ing the effects of cold shock on fish, there are differ-
ences between these sources of cold shock from
those in the context of climate change. For example,
the ability of fish to sense and avoid incoming
storms (Heupel et al. 2003), a major cause of cold
shock in the wild, will ultimately determine their
degree of vulnerability. Nevertheless, this past re -
search forms a logical starting point to develop
 specific research projects and study designs that are
relevant to understanding and predicting the effects
of climate change on wild fish.
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