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Abstract

The stress axis in teleost fish attempts to maintain internal homeostasis in the face of allostatic loading. Howev-
er, stress axis induction has been associated with a higher predation rate in fish. To date, the physiological and
behavioral factors associated with this outcome are poorly understood. The purpose of the present study was to
investigate the impact of experimental cortisol elevation on anti-predator behavior and physiological responses
to predator presence. We hypothesized that semi-chronic cortisol elevation would increase susceptibility to pre-
dation by increasing stress-induced risk-taking behaviors. To test this hypothesis, schoolmaster snapper were
given cocoa butter implants without cortisol (sham) or with cortisol (50 mg/kg body weight) and tethered to
cover. Fish were exposed to either a lemon shark or control conditions for 15-min. Space use and activity were
recorded throughout and fish were terminally sampled for blood. Cortisol implantation, relative to shams, result-
ed in higher blood glucose and plasma cortisol concentrations with a lower plasma lactate concentration. Shark
exposure, relative to controls, elicited higher blood glucose and lactate concentrations but had no effect on plas-
ma cortisol concentration. No interactions were detected between shark exposure and cortisol treatment for any
physiological trait. Behavioral metrics, including shelter use and activity, were unaffected by either cortisol im-
plantation or shark exposure. Physiological responses to cortisol implantation likely resulted from enhanced
gluconeogenic activity, whereas alterations under predator exposure may have been the product of catechol-
amine mobilization. Further work should address context-specific influences of stress in mediating behavioral
responses to predation.
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INTRODUCTION

With increasing anthropogenic activities and distur-
bances in the marine environment (e.g. coastal develop-
ment, fisheries interactions, noise pollution, water quali-
ty degradation, environmental change; Gray 1997; Crain
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et al. 2009), declines in fish populations and alterations
in community and ecosystem structure and function
have been observed (Hutchings & Baum 2005; Hutch-
ings & Reynolds 2005; Halpern et al. 2007). Anthro-
pogenic disturbances may serve as stressors, perturb-
ing the internal homeostasis of a fish and activating its
stress axis (Walker et al. 2005; Busch & Hayward 2009;
Wright et al. 2011; reviewed in Barton & Iwama 1991,
Wendelaar Bonga 1997, and Schreck & Tort 2016). The
duration and magnitude of these perturbations can have
a significant influence on the ability to respond to a fu-
ture stressor as well as contributing to the animal’s al-
lostatic load: the concept incorporating the physiologi-
cal “costs” of sustained stress axis stimulation (reviewed
in Korte ef al. 2005; Romero et al. 2009).

In teleost fish, one arm of the stress axis, the hypo-
thalamic—pituitary—interrenal (HPI) axis, regulates the
biosynthesis and secretion of cortisol, the primary cor-
ticosteroid (reviewed in Mommesen ef al. 1999; Schreck
& Tort 2016). The re-establishment of internal homeo-
stasis during a stress response is an energetically de-
manding process (Chan & Woo 1978; Barton & Schreck
1987; Sloman et al. 2000; Lankford et al. 2005; O’Con-
nor et al. 2010; Schreck & Tort 2016) and, as such, the
glucocorticoid function of cortisol is important in ini-
tiating an upregulation of energy mobilizing process-
es. Consequently, increases in plasma cortisol levels are
often accompanied by an elevation of circulating glu-
cose concentrations, thus meeting the enhanced energet-
ic requirements under a stressor (reviewed in Barton &
Iwama 1991; Wendelaar Bonga 1997; Mommsen et al.
1999; Schreck & Tort 2016).

While cortisol’s actions are generally considered to
be beneficial to the organism in surviving a stressor
(Wendelaar Bonga 1997; Schreck & Tort 2016), stress
axis stimulation can be problematic in other aspects of
a fish’s life history, including its responses to a pred-
ator. Teleosts stressed through air exposure, handling,
or exposure to toxicants suffer higher rates of preda-
tor-induced mortality relative to unstressed counter-
parts, with effects occurring over varying timescales
and stressor types (Brown et al. 1985; Jarvi 1989; Olla
& Davis 1989; Olla et al. 1992, 1995; Mesa et al. 1994,
1998; Danylchuk et al. 2007). The specific physiologi-
cal mechanisms associated with the influence of stress
on predator—prey dynamics is currently unknown, but a
role for cortisol itself warrants investigation. The met-
abolic consequences associated with continued HPI
axis stimulation could be a contributing factor (Guder-
ley & Portner 2010). Specifically, sustained cortisol el-
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evation can result in increases in both routine (Chan
& Woo 1978; Morgan & Iwama 1996; De Boeck et al.
2001) and resting metabolic rates (i.c. the standard met-
abolic rate; Sloman et al. 2000; O’Connor ef al. 2010)
in a teleost fish, potentially leading to energetic trade-
offs that compromise predator avoidance capacity (Fry
1947; Priede 1977; Guderley & Portner 2010; Killen et
al. 2015).

The metabolic consequences of HPI axis activation
also may be problematic on a behavioral level with re-
spect to predation risk. Foraging behavior and gener-
al activity are highly dependent on the energetic status
of the animal. Energetically compromised individuals
are more likely to take on a greater burden of predation
risk (e.g. higher activity and foraging duration) to satis-
fy metabolic demands (reviewed in Lima 1998). For ex-
ample, parasitized three-spine stickleback (Gasteros-
teus aculeatus) exhibited greater activity levels (Gilles
1987; Godin & Sproul 1988) and quicker behavioral re-
covery from a predator encounter (e.g. latency to re-
sume feeding; Giles 1983, 1987; Godin & Sproul 1988),
and foraged within close proximity to a potential preda-
tor (Milinski 1985; Godin & Sproul 1988). Thus, duress
(i.e. parasite load) enhanced predation risk in stickle-
back (Godin & Spoul 1988), with parasitism likely act-
ing to increase both cortisol (Ross et al. 2000; Costello
2002) and metabolic load (Fry 1971). In Atlantic salm-
on (Salmo salar), energetic stress corresponded with
a reduced latency to resume feeding activities follow-
ing a predation event (Gotceitas & Godin 1991), as well
as foraging at greater distance from cover (Dill & Fras-
er 1984), suggesting a greater degree of risk-taking be-
havior in stressed individuals. Furthermore, the dura-
tion of time spent in this refuge is highly dependent on a
number of factors, including the animal’s energetic sta-
tus and body condition, with poor body conditions and
increasing hunger levels corresponding with reduced re-
fuging activity (Sih 1992, 1997; Kraus et al. 1998). Giv-
en the role of the stress axis in mediating energy metab-
olism and budgeting, it is reasonable to hypothesize that
a stressed teleost fish would accept an elevation of pre-
dation risk to optimize energy intake (Sokolova 2013;
Schreck & Tort 2016; Lawrence et al. 2017).

The objective of the present study was to investigate
the impact of HPI axis activity in modulating the behav-
ior and physiology of a teleost fish in response to a pre-
dation threat. Because the most visible outcome of HPI
axis activation is a rise in circulating cortisol titres, cor-
tisol levels were manipulated and the consequences of
elevated cortisol levels on predator—prey interactions
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were investigated.

MATERIALS AND METHODS

Experimental animals

Juvenile schoolmaster snapper (Lutjanus apodus
Walbaum, 1792; 53.6 + 2.1 g; N =57), selected for their
commercial, recreational and ecological importance
(Allen 1985), were collected using minnow traps from
a mangrove nursery habitat (Page Creek, Eleuthera Is-
land, Bahamas; 24°49'04”"N, 76°18'51"W) in Novem-
ber and December 2014. Fish were transported to The
Cape Eleuthera Institute (Eleuthera Island, Bahamas)
and held in a raceway style tank (519 L) containing sim-
ulated cover. Juvenile lemon sharks (Negaprion brevi-
rostris Poey, 1868; 602 £ 11 mm; N = 6) were collect-
ed by seine net from a nearby mangrove system (Kemp’s
Creek, Eleuthera Island, Bahamas; 24°48'41.45"N,
76°18'16.83"W). Sharks were held in a large, circu-
lar tank (approximately 6420 L) with a sandy substrate.
Fish were collected under a scientific collection per-
mit provided by the Bahamian Department of Marine
Resources. All tanks were supplied with aerated natu-
ral seawater on an overflow system (dissolved oxygen
>85%; temperature 24.5 £ 0.7°C; pH 8.16 £ 0.04; sa-
linity 33.9 + 0.1 ppt). Both species were maintained on
a natural photoperiod (13 D: 11 L) and were fed dai-
ly to satiation on chopped sardines. Snapper were fasted
overnight (approximately 16-h) in advance of cortisol
manipulation and were not fed during the experimental
series (approximately 40-h fasting total).

Fasted snapper were given an intraperitoneal injec-
tion of hydrocortisone 21-hemisuccinate (50 mg/kg
body mass; N = 30; Sigma-Aldrich, Oakville, ON, Can-
ada) suspended in cocoa butter (5 mL/kg body mass)
warmed to be in liquid form; sham-treated animals (N
= 27) received the cocoa butter vehicle alone. The cor-
tisol dose was based on that in Cull et al. (2015) for
use in a tropical teleost as well as being a common dos-
age used in the teleost literature (reviewed in Gamperl
et al. 1994; Mommsen ef al. 1999). Fish were fasted to
standardize hunger status in the animals given that hun-
ger is an important trait regulating risk assessment (Mi-
linski 1993). Because the work occurred at a remote
field site, an a priori validation study could not be con-
ducted so we relied on the doses in the literature. At the
same time, an anchoring point for a tether was made by
creating a small hole on the lower jaw with a fine su-
turing needle (1/2 circle, cutting edge, size 14; Integ-
ra Miltex, Plainsboro, NJ, USA) according to the proce-

dure of Rypel et al. (2007). Anesthesia was not used on
these animals in an attempt to minimize handling stress
as well as to avoid physiological perturbations result-
ing from anesthesia usage (Wagner & Cooke 2005). An-
imals were allowed to recover for 24 h in a small mesh
chamber that was maintained under ambient seawater
conditions (as above). This 24-h period also allowed for
cortisol to reach a homeostatic overload state to mim-
ic a semi-chronic stressor. All procedures were in ac-
cordance within the standards of the Canadian Council
on Animal Care (CCAC) under authorization from Car-
leton University’s Animal Care Council (AUP-100612).

Behavior trials

Behavioral assessment trials were conducted in a
large, outdoor circular tank (approximately 6420 L)
that was shielded from the elements by a roof. A san-
dy substrate was placed on the bottom of the tank, with
a trio of conch shells (10-cm spacing) being located
84-cm from the center of the tank, where a stand pipe
(8.9-cm outer diameter) was located. The tank was di-
vided in half with a fine mesh seine net. Prior to behav-
ior trials, the tank was maintained with water on a flow-
through arrangement using ambient filtered seawater (see
above). Water was allowed to flow through the system
overnight, and water flow was stopped before any ex-
perimental procedures began.

In preparation for behavior trials, a snapper was fitted
with a 1.5-m long tether as described in Lawrence et al.
(2017). Use of the tether was necessary to complement
previous stress-predation work that had been carried
out in this species. The fish was moved to the behavior-
al arena (see above) with the tether being secured to the
outer conch shell. The fish was allowed to acclimate in
the arena for 5-min prior to the experiment. The snapper
was then exposed, for 15-min, to 1 of 2 possible scenar-
i0s: control conditions or the presence of a lemon shark.
A single lemon shark randomly selected from the pool
of animals was added to the behavioral arena on the op-
posite side of the net from the tethered snapper. Sharks
were never in a fasted state during trials to avoid active
hunting by the animals. The behavioral responses of the
snapper were monitored during this time using a Go-Pro
Hero camera (Go-Pro, San Mateo, CA, USA; Struthers
et al. 2015) mounted directly above the tank.

After the behavior trial, snapper were killed by cere-
bral percussion and a blood sample (approximately 200
pL) was withdrawn by caudal venipuncture into a hep-
arinized (Na" heparin, 10 000 USP units/mL; Sandoz
Canada, Boucherville, QC, Canada) 1-mL syringe us-
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ing a 23-G needle taking no more than 3 minutes (Law-
rence et al. 2018). Glucose and lactate concentrations
were measured immediately, and the remaining blood
was centrifuged (2000 g; Mandel Scientific, Guelph,
ON, Canada) for 1-min. Plasma was decanted, frozen
and stored at —20°C for later analysis of plasma cortisol
and ion concentrations.

Behavioral and blood analyses

Concentrations of blood glucose (Accu-Chek Com-
pact Plus, Hoffman-La Roche, Mississauga, ON, Can-
ada) and lactate (Lactate Plus, Nova Biomedical Can-
ada, Mississauga, ON, Canada) were measured using
medical-grade, hand-held analyzers previously validat-
ed for use in teleost fish (Wells & Pankhurst 1999; Ser-
ra-Llinares ef al. 2012; reviewed in Stoot ef al. 2014).
Plasma cortisol concentrations were measured using a
previously validated (Gamperl et al. 1994), commer-
cially available radioimmunoassay kit (ImmunoChem
Cortisol Coated Tube RIA Kit, MP Biomedicals, Solon,
OH, USA). Intra-assay and inter-assay variation was
3.1% and 1.8%, respectively. Plasma Cl™ and Na' con-
centrations were determined using, respectively, a col-
orimetric assay (Zall et al. 1956) and flame spectropho-
tometry (Varian Spectra AA 220FS, Varian, Palo Alto,
CA, USA). The chloride assay was carried out in tripli-
cate at room temperature (approximately 22°C) using a
96-well microplate reader (SpectraMax, Molecular De-
vices, Sunnyvale, CA, USA).

Behavioral metrics were collected for the first 10-min
of exposure to the predator or control conditions, and
included activity, time spent in cover, time in proximi-
ty to the net and time spent in the open. Activity scores
were determined using a line crossing analysis employ-
ing a 2 x 2 body length (BL) grid overlaid on the video
recording. A line crossing was defined as a fish’s body
completely crossing a line in the horizontal axis. The
animal was considered to be in cover when it was with-
in 1 BL of either the outer rim of the conch shell trio or
the standpipe in the center of the tank. Proximity to the
net was defined to occur when the fish was within 1 BL
of the net but not including the 1 BL radius around the
standpipe. Fish not occupying these regions were con-
sidered to be in the open.

Statistical analysis

Unless otherwise noted, statistical analysis was car-
ried out using SigmaPlot v11.0 (Systat Software, San
Jose, CA, USA). The statistical limit of significance
was o = 0.05. Values are reported as the mean + 1 SE
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(N). Blood and plasma parameters as well as activity
scores were assessed using 2-way analysis of variance
(ANOVA) followed by Tukey’s post-hoc tests when P <
0.05. Because of the supraphysiological levels of plas-
ma cortisol in cortisol-treated fish, Student’s ¢-tests were
used to compare cortisol concentrations between corti-
sol-treated and sham-treated fish within an exposure se-
ries as well as to compare sham-treated fish between
predator exposure groups.

Analysis of the percentage of time spent in cover was
performed within the R statistical environment (R Core
Development Team 2016). Given the nature of the data,
we used a negative binomial generalized linear model
(MASS package, Venables & Ripley 2002) where time
spent in cover (number of seconds + 1) was the response
variable. Factors included cortisol treatment (cortisol
vs sham), predator treatment (shark present vs control),
and the interaction between cortisol treatment and pred-
ator treatment. The model was validated after checking
the spread of the residuals against each covariate, and
checking the residuals for overdispersion (i.e. the occur-
rence of more variance in the data than predicted by a
statistical model, Bolker ef al. 2009).

RESULTS

Blood analyses

Cortisol-treated fish exhibited significantly higher
plasma cortisol levels than sham fish (Student’s #-tests,
P <0.001 and P < 0.001; Fig. 1a). Plasma cortisol con-
centrations were not affected by shark exposure in sh-
am-treated snapper (Student’s z-test, P = 0.143; Fig.
la). Shark-exposed snapper had higher blood glucose
concentrations than fish exposed to control conditions
(2-way ANOVA, P = 0.041; Fig. 1b). Similarly, corti-
sol-treated fish exhibited significantly higher blood glu-
cose concentrations than sham-treated fish (P = 0.032;
Fig. 1b); there was no interaction between shark expo-
sure and cortisol implantation (P = 0.636). Blood lactate
levels increased in response to shark exposure (2-way
ANOVA, P = 0.041; Fig. 1c) and were higher in sh-
am-treated fish relative to cortisol-treated fish (P = 0.004;
Fig. 1c). There was no interaction between shark expo-
sure and cortisol implantation on blood lactate levels (P
=0.350). Hematocrit and plasma Na" and CI  concentra-
tions were generally unaffected by either shark exposure
or cortisol treatment (Table 1), although cortisol-treated
snapper exhibited significantly higher plasma Cl con-
centrations relative to shams (Table 1).
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Figure 1 Concentrations of plasma cortisol (a), blood glucose
(b) and blood lactate (c) in schoolmaster snapper, 24-h after
receiving a cocoa butter implant (sham; 5 mL/kg body mass;
white bars; N < 13) or a cocoa butter implant containing corti-
sol (50 mg/kg body mass; black bars; N < 12) and in response
to exposure to a lemon shark (N = 13) or control conditions
(N < 11). Samples, cortisol notwithstanding (see Methods),
were analyzed using a 2-way ANOVA and a Tukey post-hoc
test where a significant interaction was detected. Unique let-
ters represent statistically significant (P < 0.05) differences be-
tween shark and control exposure groups, whereas asterisks (*;
P < 0.05) denote statistically significant differences between
implant groups. Values are reported as the mean + SE (V).

Activity patterns

Schoolmaster snapper activity was similar between
cortisol-treated and sham animals (2-way ANOVA, P
= 0.784) and between control and shark exposure (P =
0.571), with mean activity ranging between 27.5 and
43.5 line crossings during the 10-min observation period
(Fig. 2). No significant interaction was detected between
cortisol treatment and predator exposure (P = 0.450)

Cover use

While variable, snapper were generally found to asso-
ciate with cover in most instances. There were no statis-
tically significant effects of either shark exposure or cor-
tisol treatment on the percentage of time snapper spent
in cover (P > 0.05 in all cases). However, sham-treat-
ed snapper exposed to control conditions exhibited the
lowest median percent use of cover. By contrast, use of
cover in cortisol-treated animals exposed to control con-
ditions was comparable to that of predator-exposed ani-
mals (Fig. 3).
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60 4
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Activity score ( # of lines crossed)

Control Shark
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Figure 2 Activity score of schoolmaster snapper during a 10-
min exposure to either a lemon shark (N = 13) or control con-
ditions (i.e. no predator; N < 11), 24-h after receiving a cocoa
butter implant (sham; 5 ml/kg body mass; white bars; N < 13)
or a cocoa butter implant containing cortisol (50 mg/kg body
mass; black bars; N < 13). Samples were analyzed using a 2-way
ANOVA. No significant effects of either shark exposure (P =
0.571) or implant treatment (P = 0.784) were found. Values are
reported as the mean + SE ().
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Table 1 Blood and plasma parameters for schoolmaster snapper implanted with either cortisol (50 mg/kg BW) or vehicle alone (sham)
and exposed to either a lemon shark or control conditions

Parameter Exposure

Control Shark

Sham Cortisol-treated Sham Cortisol-treated
Hematocrit (%) 27.6+2.1(8) 23.9+ 1.8 (10) 26.0+1.5(12) 26.3+0.6 (10)
Plasma [Na'] (mM) 166.2 £ 11.5 (8) 164.8+7.8 (9) 1524+ 6.4 (7) 177.6 £ 4.6 (10)

Plasma [C1 ] (mM) 166.0 + 11.0 (8) 174.1 £ 8.4% (9) 155.6 + 5.6 (7) 183.8 £ 5.7 (10)

Values are presented as mean + 1 SE (), with numbers (V) presented in parentheses. Two-way ANOVA was used to determine sta-
tistical differences among treatment groups. No statistically significant effects were detected for hematocrit or plasma [Na']. For
plasma [Cl ], implant group P = 0.031, predator P = 0.970, implant x predator P = 0.220 and asterisks (*) represent the statistically

significant main effect of the implant group.
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Figure 3 Cover use (% of observation period) for cortisol-treat-
ed and sham-treated schoolmaster snapper when exposed to a
shark predator or to control conditions. Dark horizontal lines
are the median values. Boxes denote the interquartile range (1st
to 3rd quartile) with sample sizes. Whiskers are 1.5x the upper
or lower interquartile range to the highest or lowest value with-
in the interquartile range. Outliers are shown as black points
extending beyond the whiskers.

DISCUSSION

Overview

It was hypothesized that, as a result of an expect-
ed increase in metabolic energy expenditure with
semi-chronic elevation of cortisol concentrations, cor-
tisol-treated fish would demonstrate greater risk-taking
behavior. In contrast to this hypothesis, cortisol treat-
ment did not influence snapper behavior patterns, with
all animals tending to associate with cover and exhib-
iting consistent activity throughout the experiment. A
number of factors may have contributed to this result,

including a high predation risk coefficient (i.e. lack of
food for which to forage), the relatively short duration
of cortisol elevation, the assessment of behavior during
daylight hours, and a possible disconnect between phys-
iological function and behavior. Animals appeared to re-
spond to the threat of predation through a rise in blood
glucose levels, likely mediated through the actions of
catecholamines as part of the fight-or-flight response
(Cannon 1929; Godin 1997). Future work should assess
how risk-taking behaviors are influenced by cortisol ma-
nipulation in a more ecologically-relevant setting that
includes access to food.

Physiological validation of implants

Snapper given cortisol implants had higher concen-
trations of blood glucose and plasma cortisol than sham
fish. The relationship between blood glucose and plas-
ma cortisol concentrations is consistent with cortisol’s
regulation of gluconeogenic pathways (Vijayan et al.
2003; Aluru & Vijayan 2007; Choi et al. 2007; Wise-
man et al. 2007; reviewed in Mommsen et al. 1999, Al-
uru & Vijayan 2009; Schreck & Tort 2016). Howev-
er, plasma cortisol concentrations were far in excess of
what has been observed in this species in response to a
stressor (30-min post-exhaustive exercise), where val-
ues reached approximately 270 ng/mL (Lawrence et al.
2017). Despite using a standardized implantation pro-
cedure (Gamperl et al. 1994), cortisol concentrations in
the plasma of implanted fish were supraphysiological
relative to other species at comparable dosages and time
points, which may be a product of the fish’s environ-
ment and/or metabolic tendencies (reviewed in Mom-
msen et al. 1999). It should be noted that sham-treated
fish also had higher plasma [cortisol]; a baseline cortisol
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titer for this species has been reported at approximately
67 ng/mL (Lawrence et al. 2017). This elevation likely
reflects handling, tethering and the implantation of the
animals (Wendelaar Bonga 1997; Schreck & Tort 2016).
This cortisol elevation may also explain why there were
no detectable effects between shark-exposed and con-
trol-exposed sham fish.

Behavioral responses to a predation threat

In contrast to the hypothesis, risk-taking behaviors
were not influenced by cortisol treatment but some ev-
idence of assessment of predation risk was present.
Shark-exposed, sham-treated fish exhibited increased
refuge use relative to their control-exposed counter-
parts, although the difference was not statistically sig-
nificant. The apparent lack of cortisol treatment effect
on snapper behavior may have been a consequence of
the duration of the implant. The relatively short dura-
tion of elevated cortisol (24 h) may not have had sub-
stantial consequences for the energetic status of the an-
imal. Indication of depleted energy stores with cortisol
implantation has been reported over more chronic dura-
tions (e.g. hepatosomatic index; Davis et al. 1985; Bar-
ton et al. 1987; Davis et al. 2003). As such, the snap-
per here likely had sufficient reserves to draw upon and
may not be expected to assume additional predation risk
(reviewed in Lima 1998). However, fasting over a 24-h
period has been shown to elicit significant changes in
teleost risk-taking behaviors when exposed to a preda-
tion threat (Godin & Sproul 1988; Gotceitas & Godin
1991), demonstrating that predator—prey interactions,
in the context of energetic budgeting, is a complex sys-
tem involving the interaction of a number of physiologi-
cal processes (Lima & Dill 1990). Furthermore, glucose
was mobilized in fish when exposed to experimental
cortisol elevation, which suggests either increased syn-
thesis (i.e. gluconeogenesis) or elevated turnover of gly-
cogen stores (glycogenolysis), which are both metabol-
ic consequences of elevated cortisol exposure (reviewed
in Mommsen et al. 1999). As risk represents an interac-
tion of a number of endogenous (i.e. physiological state)
and exogenous (e.g. predation threat, food availability
and cover) factors (Lima & Dill 1990), outcomes in risk
taking and the associated behaviors become difficult to
predict. As such, snapper could be behaving in a manner
that minimizes risk while maximizing fitness under its
current set of conditions.

The activity patterns of snapper may also have played

a significant role in determining its behavioral responses
in the present study. The prop roots of mangrove trees

are the primary habitat of juvenile schoolmaster snap-
per during daylight hours, offering shelter from pred-
ators (Nagelkerken ef al. 2000a,b; Nagelkerken & van
der Velde 2004; MacDonald et al. 2009). Prop root shel-
tering constitutes 60—70% of their daily spatial use pat-
terns, with the animals also spending a significant pro-
portion of their time in areas where overhead cover is
lacking (MacDonald et al. 2009). In addition, foraging
during daylight hours constitutes only 2% of their to-
tal activity budget; this species is predominately a noc-
turnal feeder (Nagelkerken et al. 2000a; MacDonald et
al. 2009). Thus, the conditions of the present study may
not have been optimal for detecting differences in pred-
ator-avoidance behavior in the context of foraging-risk
management.

Memory may play an important role in mediating
predator—prey interactions. Stress and cortisol can have
a significant influence over cognitive functions in tele-
ost fishes, including memory and associated processes
(Ellis ef al. 2012; Sorensen et al. 2013; Noakes & Jones
2016). Indeed, memory, from both a predator’s hunt-
ing performance and from a prey’s predator-avoidance
capacity, is deeply rooted in experience from previous
encounters and can modulate the interaction between
the two organisms (Mitchell & Lima 2002; Wcisel et
al. 2015). Although not investigated here, cortisol may
have modulated the cognitive function of the snapper,
affecting memory-related anti-predator responses and
resulting in altered behavioral dynamics. This possibili-
ty remains speculative at this time but presents an inter-
esting avenue for future research.

Physiology and behavior: A complex relationship

The lack of behavioral responses to cortisol admin-
istration in the present study adds to a growing body of
literature that has failed to detect direct effects of corti-
sol on a range of behaviors (Crossin ef al. 2015; Sopin-
ka et al. 2015). For example, cortisol treatment failed to
alter the locomotory activity of largemouth bass (Micro-
pterus salmoides; O’Connor et al. 2010) and creek chub
(Semotilus atromaculatus; Nagrodiski et al. 2012). Sim-
ilarly, anti-predator behaviors in checkered pufferfish
(Sphoeroides testudineus) were not influenced by cor-
tisol treatment, despite significant physiological effects
(Cull et al. 2015; Pleizier et al. 2015). These observa-
tions suggest that the interaction between physiology
and behavior is inherently complex and likely requires
a number of physiological inputs other than just plas-
ma cortisol concentrations to induce a change (Crossin
et al. 2015; Sopinka et al. 2015). It is also possible that
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cortisol may not play a direct role in mediating preda-
tor—prey interactions in wild fish, although the current
body of literature does suggest a role for the stress axis
at large in mediating these responses (reviewed in Mesa
et al. 1994).

Physiological responses to a predation threat

Acute predation stress in teleosts has been associat-
ed with increases in circulating glucocorticoids (Rehn-
berg et al. 1987; Woodley & Peterson 2003; Remage-
Healey et al. 2006; Barcellos et al. 2007; Schreck &
Tort 2016), blood [glucose] (Rehnberg and Schreck
1987; Jarvi 1990) and tissue-specific heat shock pro-
teins (Kagawa ef al. 1999), in addition to an elevation
in cardiorespiratory variables (e.g. heart rate, ventila-
tion, cardiac output; Holopainen et al. 1997; Cooke et
al. 2003; Sundstrom et al. 2005; Sunardi et al. 2007).
These physiological responses support the animal’s en-
ergetic and locomotory needs as it flees from a predator
(Wendelaar Bonga 1997; Wingfield 2003; Hawlena &
Schmitz 2010; Schreck & Tort 2016). In schoolmaster
snapper, blood [glucose] was significantly increased in
response to shark exposure. Because sham-treated fish
had no change in plasma cortisol in response to shark
exposure, the glucose response likely was mediated by
the actions of catecholamine hormones rather than cor-
tisol. In most vertebrates, catecholamines act as the pri-
mary hormone in mediating acute anti-predator respons-
es (Cannon 1929; Hawlena & Schmitz 2010; Perry &
Capaldo 2011).

Blood lactate levels increased in response to a pred-
ator. However, the change in blood lactate was quite
small and may have been associated with transient hy-
poxia generated through a freeze response: a behavioral
adaptation that induces bradycardia and reduced venti-
lation to lessen the prey’s conspicuousness to a predator
(Cooke et al. 2003; Shingles et al. 2005).

CONCLUSIONS

Cortisol implantation in schoolmaster snapper was
sufficient to elevate plasma [cortisol] to supraphysiolog-
ical levels. This effect corresponded with higher blood
[glucose] relative to sham fish, likely as a result of cor-
tisol’s actions on energy metabolism. Shark exposure
caused an increase in blood [glucose], which was like-
ly mediated by catecholamines because plasma [cortisol]
did not change with shark exposure. Behavioral indices
were not significantly affected by cortisol treatment or
shark exposure. The lack of effect may be explained by

Cortisol and behavioral responses to a predator

a high-risk situation deterring movement outside the ref-
uge (i.e. no food present coupled with the animal having
sufficient energy reserves) in addition to the fact that,
during daylight hours, this species usually remains un-
der cover. Despite the absence of significant effects in
the present study, stress is believed to be an important
and highly relevant factor in mediating behavioral, pop-
ulation and ecological level effects in wild fish (Hawlena
& Schmitz 2010; Boonstra 2013). Indeed, the ecology of
stress is becoming ever more relevant in today’s world
where anthropogenic activities may enhance both the
frequency and magnitude of stressful events in aquatic
systems (Boonstra 2013; Crespi et al. 2013; Wingfield
2013). Given the potential importance of stress in medi-
ating predator—prey interactions, further work on the re-
lationship between stress and predator—prey interactions
is warranted (Schreck et al. 1997; Guderley & Portner
2010; Hawlena & Schmitz 2010; Lawrence et al. 2017).
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