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Abstract Knowledge of the spatial ecology and move-
ment of animals contributes to our understanding of
intra- and inter-specific interactions and ecosystem dy-
namics, and can inform conservation actions. Here we
assessed the space use and activity levels of a marine
predator, the Caribbean reef shark (Carcharhinus
perezi), in coastal regions of Eleuthera, The Bahamas
over a 60-day period using acoustic telemetry. Of the 14
adult sharks (eight males, six females) tagged with
acoustic transmitters (equipped with accelerometer sen-
sor), nine were detected in a 14 km2 gridded receiver
array. Male sharks were significantly less likely to be
detected over time relative to females. Given post-
release survival is typically high in C. perezi, this find-
ing may indicate that males have larger home ranges and
may exhibit lower site fidelity compared to females.

Patterns of space use indicated C. perezi primarily oc-
cupied the outer reef shelf and were rarely detected on
the interior of the reef. Shark activity levels (inferred
from acceleration profiles) were highest in close prox-
imity to the reef shelf. Our findings indicate C. perezi
individuals frequently occupy deeper water habitats, but
make forays into reef shelf habitats where high activity
levels are likely related to foraging.
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Introduction

Patterns of animal space use and activity have im-
portant implications for fundamental ecology by
informing species interactions, population and eco-
system dynamics (Tilman and Kareiva 1997;
Morales et al. 2010), as well as conservation
through management of habitats and human activi-
ties (Sutherland 1998; Buchholz 2007). Elasmo-
branch fishes exhibit diverse patterns in space use
and behaviour, playing important ecological roles in
marine ecosystems (Ferretti et al. 2010; Schlaff et al.
2014). However, they also face numerous threats to
their conservation (Knip et al. 2010; Dulvy et al.
2014). Recent advances in biotelemetry and
biologging devices have enabled much deeper in-
sights into the movement, behaviour, and physiolo-
gy of elasmobranch fishes (Hammerschlag et al.
2011; Hussey et al. 2015). Acceleration sensors are
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particularly useful for characterizing patterns in ac-
tivity, as well as bioenergetics (Whitney et al. 2007,
2010; Gleiss et al. 2009, 2010; Wilson et al. 2015;
Cooke et al. 2016). When paired with positioning
technology, acceleration patterns can inform behav-
ioural ecology and habitat function (Payne et al.
2011; Brownscombe et al. 2017).

The Caribbean reef shark (Carcharhinus perezi) is a
medium-bodied requiem shark, found across the tropi-
cal and sub-tropical western Atlantic (Rosa et al. 2006).
C. perezi forms a considerable proportion of predator
biomass in this region (Brooks et al. 2011, 2013), and is
integral to the health and vitality of coral reef systems
(Rosa et al. 2006; Maljković and Côté 2011). The Ba-
hamas is one nation particularly reliant upon healthy
C. perezi populations, due to the significant economic
return from shark diving ecotourism (Maljković and
Côté 2011; Haas et al. 2017), as well as ecosystem
benefits (i.e. top-down control) critical to maintaining
ecosystem health (Roff et al. 2016). Despite exhibiting
high site fidelity to distinct bioregions (Garla et al. 2006;
Chapman et al. 2007), C. perezi individuals are known
to associate with multiple habitats such as coral
reefs and open-ocean/deepwater (Chapman et al.
2007; Shipley et al. 2017). Although C. perezi is
well known to The Bahamas (Brooks et al. 2011,
2013), key space-use patterns are poorly docu-
mented compared to other locales such as Brazil
(Garla et al. 2006) and Belize (Chapman et al.
2005). Furthermore, there is currently no informa-
tion pertaining to the activity levels of C. perezi in
the scientific literature, nor how activity varies
with diel period.

The waters of South Eleuthera, The Bahamas, are
characterized by large coral heads and a narrow conti-
nental shelf, which runs adjacent to a deep-water
inlet of the Atlantic Ocean, the Exuma Sound. The
walls of the Sound drop rapidly to approximately
400 m shallow before sloping gradually to roughly
1600 m at its centre (Ball et al. 1969). The unique
bathymetry of the Exuma Sound and surrounding
neritic waters allow for the examination of elas-
mobranch behaviour occurring at the interface be-
tween shallow and open-ocean/deep-water habitats.
As such, we quantified short-term movements and
activity patterns of C. perezi in south Eleuthera,
The Bahamas, to provide the first indication of
key space-use areas, and diel patterns in activity
for individuals at this locale.

Methods

Animal capture and tagging

This study was conducted between June and August
2009 in the waters surrounding South Eleuthera, The
Bahamas (24.837° N, 76.342° W).

Thirty-two VR2 acoustic receivers (VEMCO, Nova
Scotia, Canada) were deployed in a 14km2 grid in the
waters off southwest Eleuthera, The Bahamas (24.77°
N, 76.21° W). All receivers were placed no further than
500 m apart, in areas were obstruction by large coral
heads would not cause significantly variability in detec-
tion ranges; however, the use of sentinal tags and range
testing were not performed. C. perezi individuals were
captured using stationary mid-water longlines equipped
with 30–50 gangions baited with bonito (Sarda sarda)
(see Brooks et al. 2013 for detailed methodology). An-
imals were secured alongside the research vessel, and a
V9-AP-2 L coded sensor acceleration-pressure sensing
transmitter (45 s average delay (range = 30–60 s);
82 day duration; VEMCO Inc., Canada), was attached
to the dorsal fin prior to release. Each V9AP was se-
cured to an acrylic mount. Two small holes were then
made through the middle of the dorsal fin using a sterile
scalpel, and the mount secured either side of the dorsal
fin using surgical suture. The entire workup procedure
lasted no longer than 15 min per animal. The acceler-
ometer sensor had a 5 Hz sampling frequency and
measured acceleration (g) in three axes (x,y,z). Prior to
transmission, the route mean square (RMS) was calcu-

lated as RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
x þ A2

y þ A2
z

q

. The mean RMS was

calculated for 27 s sampling periods and stored on board
prior to transmission. The pressure sensor was rated to a
depth of 200 m. The transmitters were programmed to
transmit a single pressure sensor reading for every two
acceleration readings.

Statistical analysis

Data were analysed using RStudio version 0.99.896 (R
Core Team 2013). C. perezi post-release detection prob-
ability was modelled with Cox proportional hazards
regression with sex and length as predictors and days
detected post-release as a response variable. Data were
checked for the assumption of proportional hazards
prior to analysis. To identify spatial preference across
the array, the log-transformed numbers of detections and
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mean acceleration values were examined for each indi-
vidual VR2 receiver. A generalized additive mixed ef-
fects model was fit to log-transformed shark accelera-
tion with time of day as a predictor, days post-release as
a smoother, and individual as a random effect. The
model was validated following the protocol outlined in
Zuur et al. (2009). After deploying these tags a parallel
study on Caribbean reef sharks in this region revealed
that they make sporadic excursions into deep-water (>
200 m) (Shipley et al. 2017). Therefore all depth data
collected during this study were removed from analyses
due to the malfunctioning of integrated depth sensors
after all tagged animals exceeded the depth rating of
sensors (max depth = 200 m).

Results

Fourteen (eight male, six female) C. perezi individuals
encompassing immature and mature individuals (139–
217 cm STL) were captured and tagged over the course
of this study. Five were not detected after tagging
(Table 1). The remaining nine sharks generated a total
of 10,862 detections across the array, with days at liberty
ranging from 1 to 61 between individuals respectively
(Table 1). Only three sharks exhibited significant pres-
ence around the array for the entire deployment duration

(1,074,441, 1,074,437 and 1,074,447) despite that all
sharks were captured and releasedwithin the footprint of
the array. The time between release and first detection
was highly variable between animals (7:20 h to
614:28 h, Table 1), however all animals remained unde-
tected for at least 7 h post-release before being detected.

There was no significant effect of body size on the
probability of being detected post release (Cox Propor-
tional Hazards; z = 0.17, p = 0.86). There was a signif-
icant effect of sex (z = 2.2, p = 0.03), whereby males
were significantly less likely to be detected in the array
post-release than females (Fig. 1a). For those sharks that
were detected within the array (n = 9), there was a
significant effect of diel period on mean acceleration
(GAMM; F1,10,860 = 9.2, p < 0.001). C. perezi individ-
uals were more active at night, with activity levels
peaking around 12 am (Fig. 1b).

Examining spatial distributions, C. perezi individuals
primarily occupied the edge of the Exuma Sound
throughout the entire deployment duration and did not
move onto the shallower regions of the shelf closer to
South Eleuthera (Fig. 2). The majority of detections
occurred northwest of Cape Eleuthera in the northeast
region of the Exuma Sound, and in the southern region
of the array. C. perezi activity levels were generally
higher in close proximity to the reef shelf, with high
activity in diverse regions along the shelf at night (Fig.

Table 1 Summary information forC. perezi individuals tagged with V9 acoustic transmitters. Days at liberty is defined as the total duration
each individual was detected on the array

Shark No. Tagging date Sex STL Time to first
detection (hours)

Total no. of detections Days at liberty No. of days
detected

1,074,441 9/6/2009 F 183 20:20:00 876 61 58

1,074,442 10/6/2009 M 180 – – – –

1,074,438 11/6/2009 M 161 7:02:00 1 2 1

1,074,439 11/6/2009 M 172 189:22:00 45 6 4

1,074,437 12/6/2009 F 161 19:19:00 8738 61 58

1,074,447 12/6/2009 F 150 19:11:00 1053 61 56

1,074,449 12/6/2009 M 172 – – – –

1,074,443 13/6/2009 M 172 71:41:00 6 11 1

1,074,450 13/6/2009 M 139 – – –

1,074,451 13/6/2009 F 217 614:28:00 27 10 7

1,077,440 13/6/2009 F 149 – – –

1,074,446 17/6/2009 M 178 22:09:00 68 27 9

1,074,445 18/6/2009 F 144 20:06:00 48 50 13

1,074,452 27/6/2009 M 168 – – – –
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2). Sharks were also active in particular regions along
the shelf during the day, with especially high levels of
activity in the southern portion of the array where the
shelf is close to shore (Fig. 2).

Discussion

Acoustic telemetry with accelerometer transmitters pro-
vided novel information regarding space-use and activ-
ity of C. perezi in south Eleuthera, The Bahamas. Time
to first detection was highly variable between individ-
uals, who all remained absent from the array for at least

seven hours post-release. This behaviour could indicate
stress-induced behavioural modification (Hoolihan et al.
2011), whereby animals may flee a considerable dis-
tance from the sampling area to recover from physical
and physiological stress induced during the initial cap-
ture and tagging event. Females had a greater detection
probability over the deployment duration than males
(Fig. 2). C. perezi is known to be resilient to experimen-
tal longline capture (Brooks et al. 2012), and previous
work has demonstrated low levels of post-release mor-
tality regardless of sex (Shipley et al. 2017). It is there-
fore most likely that the majority of undetected fish
exited the study region. Based on this assumption, male

Fig. 1 a Proportion of male (dashed line) and female (solid line) C. perezi individuals detected by number of days post release, b C. perezi
acceleration (g) by time of day fit with a gam smoother
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C. perezi could have larger home ranges than females,
however rigorously testing this hypothesis this would
require quantifying movements across a larger number
of individuals and life history stages, and significantly
increasing array coverage, which extended beyond the
scope of this study. Further, extending sampling across
an increased temporal window may elucidate seasonal
changes in habitat use, as some individuals may move
further offshore, and away from south Eleuthera during
summer and fall (Shipley et al. 2017). Despite these
caveats, sexual segregation in space-use is known for
many elasmobranchs; for example spottail sharks
(Carcharhinus sorrah; Knip et al. 2012), blue sharks

(Prionace glauca), and shortfin mako sharks (Isurus
oxyrinchus; Mucientes et al. 2009). These observa-
tions therefore imply that when designing and des-
ignating MPAs, the potentially variable home range
sizes between male and female C. perezi should be
considered. Although alternate tracking methodolo-
gies, such as satellite telemetry may offer insight
into broad-scale movements and the interaction of
animals with national boundaries, finer scale obser-
vations are of particular importance when informing
current national conservation strategies in the Ca-
ribbean. The Caribbean challenge initiative, for ex-
ample, focuses on the protection of distinct habitat-

Fig. 2 Top panels: Fixed kernel-density estimates of log-trans-
formed number of detections for C. perezi individuals at each
acoustic receiver; red dots indicate no detections, bottom panels:

Mean acceleration values forC. perezi individuals at each acoustic
receiver; red dots indicate no detections
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types, in which participating nations including The
Bahamas, are aiming to protect 20% of coastal
resources by 2020 (Moultrie 2012). In such cases,
an understanding of organismal fine-scale habitat
use is paramount to developing the most efficient,
and informed placement of future MPAs.

C. perezi individuals were exclusively detected along
continental drop-off for the entire deployment duration,
and were not detected on receivers located further in-
shore. This likely represents ontogenetic segregation in
habitat-use between differing size-class individuals;
whereby smaller individuals reside further inshore,
compared to larger sharks, which foray along escarp-
ments and drop-offs (Pikitch et al. 2005; Brooks et al.
2013; Shipley et al. 2017). Specific depth estimates
could not be retrieved from the integrated pressure sen-
sors, as individuals moved to depths (max = 200 m),
which exceeded the maximum capacity of the sensor.
This suggests animals were active well below 200 m;
behaviour documented in some C. perezi individuals
(Chapman et al. 2007; Shipley et al. 2017). Sharks were
commonly detected in two distinct areas along the drop-
off of the northeast Exuma Sound. Firstly, a large num-
ber of detections were observed in the northern region of
the array, as well as a peak in detections on a single
receiver in the southern region, near Deals Point. Fur-
ther, animals did not differentiate space use in relation to
time of day, as high space use along the drop-off was
homogenous during day and night time periods. These
observations are in support of previous findings, as
C. perezi individuals tagged at other locales have been
observed to associate with highly specific areas of
reef crest, and exhibit limited horizontal displace-
ment (Chapman et al. 2005; Brooks et al. 2013).
This suggests that patterns of detections observed
in this study are largely driven by site fidelity
exhibited by a single individual.

Importantly, spatial and temporal variability in detec-
tion frequency with acoustic telemetry systems can bias
ecological interpretation of data (Kessel et al. 2014).
This study did not employ range testing or sentinel tags
to track detection range or efficiency, which must be
considered when interpreting findings. Detection effi-
ciency is generally lower and more temporally variable
(due primarily to tides, wind, reef noise) in shallow
water habitats (Gjelland and Hedger 2013; Kessel
et al. 2014). We received zero detections of Caribbean
reef sharks on the shallow reef region, which regardless
of detection efficiency, suggests limited use of this area.

These movement patterns are also consistent with data
from other locales, such as Belize (e.g. Chapman et al.
2005). Detection efficiency also often decreases in reef
habitats at night (Kessel et al. 2014), which may have
resulted in reduced detections at night in our study,
especially at receivers in close proximity to the reef.

Diel-variability in the activity of C. perezi was ob-
served, as individuals exhibited greater activity during
the night compared to the day, with a peak activity
occuring around 12 am. Although species- and habitat-
specific, some elasmobranch species are known to in-
crease activity during the night in association with in-
creased feeding (Gleiss et al. 2013; Papastamatiou et al.
2015; Barnett et al. 2016). Activity levels were also
generally highest in close proximity to the reef shelf,
which likely represents important foraging habitat for
this species (Chapman et al. 2007). The proximity of the
study location to open-ocean, and mesophotic reef hab-
itat adjacent to the drop-off, may provide C. perezi
access to a diverse number of prey-rich resource pools,
as reef sharks are known to exploit both pelagic and
mesophotic habitats to sustain energetic requirements
(McCauley et al. 2012; Papastamatiou et al. 2015). C.
perezi individuals are also known to perform deep ver-
tical excursions (> 200 m), with a high frequency during
the night (Chapman et al. 2007; Shipley et al. 2017),
which is supportive of increased nighttime activity of
individuals observed in this study. We therefore con-
clude such observations are likely driven by increased
foraging behaviour during this period. Although beyond
the scope of this study, 12 am could represent the time of
highest lunar intensity, which may dictate periods of
high activity, as seen in other reef-associated fishes
(Koenig et al. 2017).

Novel insights from accelerometers highlight the dis-
tinct movement and activity patterns of C. perezi off
South Eleuthera, The Bahamas. Based on our findings,
male C. perezi may exhibit larger home ranges than
females, but this hypothesis requires further testing.
Regardless, such behavior illustrates the inherent com-
plexity of shark behaviour, and may complicate the
designation of future MPAs. Fringing coral reefs and
continental drop-offs were identified as key habitat-use
areas by immature and mature sharks, which may rep-
resent key foraging habitats, and may be exploited at
higher frequency during the night. These findings pro-
vide insight into the spatial and behavioural ecology of
C. perezi, which may have important implications for
design and placement MPAs, as well as characterizing
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species interactions and community ecology in coastal
marine systems.
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