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This study demonstrates that vegetable shortening and cocoa butter are two effective vehicles for
intraperitoneal cortisol implants in juvenile teleosts, specifically brown trout Salmo trutta, residing
in north temperate freshwater environments. Each vehicle showed a different pattern of cortisol ele-
vation. Vegetable shortening was found to be a more suitable vehicle for long-term cortisol eleva-
tion [elevated at 3, 6 and 9 days post treatment (dpt)], while cocoa butter may be better suited for
short-term cortisol elevation (only elevated at 3 dpt). Additionally, plasma cortisol levels were higher
with cortisol–vegetable shortening than with cortisol–cocoa butter implants. Plasma glucose levels
were elevated 6 and 9 dpt for fishes injected with cortisol–vegetable shortening, but did not change
relative to controls and shams in cortisol–cocoa butter fishes. In conclusion, vegetable shortening
and cocoa butter are both viable techniques for cortisol manipulation in fishes in temperate climates,
providing researchers with different options depending on study objectives.

© 2017 The Fisheries Society of the British Isles

Key words: cocoa butter; cortisol implants; Salmo trutta; teleost; vegetable shortening.

INTRODUCTION

Cortisol is the primary glucocorticoid stress hormone in fish (Wendelaar Bonga,
1997; Mommsen et al., 1999; Barton, 2002). Not surprisingly, there are hundreds
of papers that have measured cortisol in fishes to understand the consequences of
different stressors (Mommsen et al., 1999). Beyond using cortisol as a biomarker of
exposure to a stressor, physiologists started manipulating cortisol in fishes in the 1960s
to explore the mechanistic role of cortisol (Slusher, 1966). This allowed researchers
to move past simply observing variation in cortisol levels among individuals to per-
forming cause-and-effect studies. Despite its potential ecological relevance (Sopinka
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et al., 2015; Crossin et al., 2016), however, this technique has been mainly used
in the laboratory (Gamperl et al., 1994). Additionally, the best vehicle in which to
suspend the cortisol for manipulation remains unclear. Past studies have used saline,
oil (e.g. coconut oil), cocoa butter and vegetable shortening to manipulate hormone
levels (Pottinger & Pickering, 1985; Gamperl et al., 1994; Doyon et al., 2006; Eriksen
et al., 2006). Studies have also used mini osmotic pumps going back several decades
(Theeuwes & Yum, 1976). These, however, are less suitable for field studies owing
to expense, as fishes may not be recovered to retrieve the pumps and their higher
invasiveness compared with injections. The main advantage of cocoa butter and
vegetable shortening is that they allow for prolonged, continuous release of cortisol.
They are injected as liquids and solidify once inside the fish. Cocoa butter, however,
requires high temperatures to remain in liquid form (c. 40∘ C), potentially resulting
in the scalding of organs when injected into a fish and becomes very hard at ambient
temperatures in the northern temperate regions, which may lead to damage of the
gonads (M. H. Larsen, pers. obs.; McConnachie et al., 2012). In contrast, vegetable
shortening remains in liquid form at a lower temperature (c. 30∘ C) and remains soft,
even in cold water (5∘ C, K. Birnie-Gauvin and K. S. Peiman, pers. obs.). Gamperl
et al. (1994) originally suggested that vegetable shortening was better than cocoa
butter at lower temperatures as the hardness of cocoa butter may reduce the absorption
of cortisol.

This study is the first comparative study of vegetable shortening and cocoa butter as
vehicles for cortisol manipulation in the wild. Both vehicles are particularly suitable for
field studies (Sopinka et al., 2015) owing to their low cost and ease of administration.
A wild population of juvenile brown trout Salmo trutta L. 1758 was used to com-
pare the temporal patterns of circulating cortisol and glucose concentrations resulting
from implants of cortisol suspended in vehicles of cocoa butter v. vegetable shorten-
ing. Treatment effects were compared with their corresponding sham (vehicle alone)
and control (no implant) groups. Additionally, treatment effects on body mass were
measured. It was predicted that vegetable shortening implants would result in cortisol
being released over a longer period of time and in higher levels, resulting in higher
levels of glucose and more mass loss than cocoa-butter implants. It was also predicted
that sham treatments would not elevate cortisol or glucose concentrations or cause a
change in mass compared with control fishes.

MATERIALS AND METHODS

The Villestrup Stream is located in north-central Jutland, Denmark. The stream runs for
several km across agricultural land, where a number of tributaries join in before reaching
the Mariager Fjord (56∘ 40′ N; 10∘ 00′ W). The stream is home to a large population of
semi-anadromous S. trutta (del Villar-Guerra et al., 2014). Three different sites (1–2 km apart)
within the same stream were used. It is unlikely that there are genetic differences among
populations so close (Hansen et al., 2002), but even if there are, they are unlikely to have
any biological significance especially when comparing responses with treatments within a
site. Fishes were captured via backpack electrofishing (ELT 60 II GI, 300 v; www.scubla.it)
on three separate days in 2016: 125 fishes at site 1 on 3 March (25 fishes per group), 125
fishes at site 2 on 4 March (25 fishes per group) and 150 fishes at Site 3 on 5 March (30
fishes per group). During this period, the temperature of the water in Villestrup was between
6 and 7∘ C.
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Captured fishes were held in a 60 l bin filled with oxygenated fresh stream water. Fishes
were anaesthetised in a solution of benzocaine (0·03 g l−1 ethyl-p-aminobenzoate; Sigma, www
.sigmaaldrich.com) in stream water, then weighed (± 0·1 g), measured for total length (LT, ±
0·1 cm) and tagged using a 23 mm PIT tag (Texas Instruments RI-TRP-RRHP, 134 Hz, 0·6 g
mass in air; www.ti.com). Tags were inserted through a 5 mm incision in the left side of the
body, posterior to the pelvic fin. Only S. trutta that were LT 12–21 cm (i.e. large enough for the
PIT tag, but probably still juveniles; Larsen et al., 2013) were used in this study. Fishes were
randomly assigned to one of the following five treatment groups: control, sham-vegetable short-
ening (sham-veg), cortisol–vegetable shortening (cort-veg), sham-cocoa butter (sham-cocoa),
cortisol–cocoa butter (cort-cocoa). Cortisol-treated fishes received an intra-coelomic injection
(3·8 cm 18-gauge needle) of a suspension of vegetable shortening (100% vegetable shorten-
ing; Crisco; www.crisco.com) or cocoa butter (100% pure cocoa butter; NOW Foods; www
.nowfoods.com) mixed with hydrocortisone 21-hemisuccinate (Sigma-Aldrich), using a dosage
of 0·01 ml vehicle (with a concentration of 0·01 g cortisol ml−1) g−1 fish (equivalent to a cor-
tisol dosage of 100 mg kg−1). Sham fishes were injected with only 0·01 ml g−1 fish vegetable
shortening or cocoa butter. The vegetable shortening and cocoa butter were heated using hot
water to a temperature of 37∘ C and 40∘ C, respectively. All fishes were recovered (i.e. until full
equilibrium was reached) in a 60 l tank of benzocaine-free fresh stream water following tagging.
Cortisol-treated fishes were recovered separately from sham and control fishes to prevent any
cross-treatment contamination of cortisol and all fishes were then released at the site of capture.
The tagging, weighing, measuring and injecting process took less than 1 min fish−1. Overall,
fishes were held in tanks for approximately 60 min.

Fishes were recaptured via backpack electrofishing after 3, 6 and 9 days post-treatment (dpt),
at site 3, site 2 and site 1, respectively. Immediately after shocking, a blood sample (<0·3 ml)
was collected from the caudal vasculature using a heparinized 3·8 cm 25-gauge needle and a
1 ml syringe. All samples were collected within 3 min of capture. Fishes were then weighed.
Following recovery, fishes were returned to the river and not recaptured. Blood samples were
held in water-ice slurry until centrifuged at 2000g for 2 min to separate plasma from red blood
cells. Plasma samples were kept at −80∘ C until analysed. Environmental conditions should not
be a confounding factor here, as the 3 day sampling was within the 6 day sampling and both were
within the 9 day sampling period. Hence, all fishes were exposed to the same conditions, with
day 9 fish potentially experiencing greater variation. This, however, does not affect treatment
effects within a single time point, which is the focus of this study.

Plasma cortisol concentration was determined using a commercial radioimmunoassay kit
(ImmunoChem Cortisol 125I RIA kit; MP Biomedicals; www.mpbio.com). This assay was
previously validated for use with teleost plasma samples (Gamperl et al., 1994). All plasma
samples were measured in a single assay. Intra-assay variability (% C.V.) was 7·9%. Plasma
glucose levels were determined using an AccuCheck Compact Plus meter system (Roche; www
.roche.com), a point-of-care device previously validated for use in teleosts (Stoot et al., 2014).

Statistical analyses were conducted using JMP 12.0.1 (SAS Institute Inc.; www.sas.com).
Cortisol and glucose values were log transformed to achieve normality of residuals. Two-way
ANOVAs were used to evaluate differences in cortisol, glucose and change in mass among
treatment groups over the three sampling times. A Tukey–Kramer post-hoc test was used to
determine which groups differed, which is conservative with unequal sample sizes as is the case
here. Spearman correlations (to reduce the effect of outliers) were used to determine whether
cortisol levels were related to glucose levels among individuals within each category of treatment
and day.

RESULTS

Between 9 and 17 fishes were recaptured per treatment group. Fish treated with cor-
tisol suspended in vegetable shortening showed significantly higher plasma cortisol
concentrations after 3, 6 and 9 dpt than both sham and the control treatments, with val-
ues at day 3 significantly higher than at day 9 [Fig. 1(a); treatment × time, F8,172 = 3·07,
P< 0·01]. Cort-cocoa fish at 3 dpt had significantly higher cortisol levels than both
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Fig. 1. Mean+ S.E. (n= 9–17) for (a) plasma-cortisol concentration, (b) plasma-glucose concentration and (c)
change in mass (ΔM) 3 days post treatment (dpt; ), 6 dpt ( ) and 9 dpt ( ) of PIT-tagged Salmo trutta
subjected to one of five treatments: no implant (control); a vegetable shortening implant (sham-veg); a
cocoa butter implant (sham-cocoa); 100 mg kg−1 of cortisol suspended in a vegetable shortening implant
(cort-veg); 100 mg kg−1 of cortisol suspended in a cocoa butter implant (cort-cocoa). Groups that share a
letter are not significantly different (P> 0·05) from one another.

sham and the control treatments, but values for fish sampled at 6 and 9 dpt did not
differ from those for sham or control fishes. At 3 dpt, cort-veg fish exhibited signif-
icantly higher plasma cortisol levels than cort-cocoa fish. Cortisol concentrations for
fishes in the sham treatment were similar to fishes in the control group across all time
points. Glucose concentrations in cort-veg fish were significantly higher than those for
sham and control treatments at 6 and 9 dpt [Fig. 1(b); treatment × time, F8,170 = 2·30,
P< 0·05), whereas plasma glucose concentrations in cort-cocoa fishes did not differ
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from the sham or control groups on any day. At 6 and 9 dpt, cort-veg fishes had signif-
icantly higher glucose concentrations than cort-cocoa fish.

Initially, mass for cortisol-treated fish did not differ from their sham or the control
group (all P> 0. 05). Sham-veg fish sampled 9 dpt gained mass while all other groups
lost mass [Fig. 1(c); treatment × time, F8,170 = 2·94, P< 0·01).

Plasma cortisol and glucose concentrations were positively related in day 9 cort-veg
treatment (R2 = 0·60, n= 15, P< 0·05) No other correlation was significant (all
P> 0·05).

DISCUSSION

Cortisol implants (100 mg kg−1) generated a significant elevation in plasma cortisol
concentration using either vegetable shortening or cocoa butter as a vehicle. The use
of vegetable shortening as a vehicle, however, caused a greater elevation of cortisol
concentration than cocoa butter after 3 days and this elevation lasted longer. More-
over, plasma cortisol concentration probably remained high for more than 9 days in
fish that received cortisol–vegetable shortening implants, as found by Pickering &
Duston (1983). In contrast, cocoa butter implants had short-lasting effects on plasma
cortisol levels, with circulating concentrations returning to control levels by 6 days
post-treatment. The soft texture of vegetable shortening (Fig. 2), even at low temper-
atures (solidifies at 20∘ C, but remains soft at lower temperatures, e.g. it was 6–7∘ C
during this study) probably allows for more effective (i.e. faster) release of the cortisol.
Cocoa butter, however, becomes very hard even at fairly high temperatures (solidifies
at 20∘ C), which may prevent long-lasting release of cortisol in northern temperate fish
species, as indicated by the peak cortisol levels 3 dpt. The outer cortisol probably gets
released quickly, but the hardness of the cocoa butter prevents the release of the inner
cortisol. Alternatively, it is possible that cocoa butter releases cortisol more readily than
vegetable shortening, leading to the implant being depleted of cortisol more rapidly and
the cortisol values in cocoa butter treated fish peaking earlier than the first sampling
time (3 dpt). Unfortunately, there is no way to distinguish between the two possibilities
with the data here. The conclusion however, remains the same: vegetable shortening
appears to be a more appropriate vehicle for studies seeking long-term cortisol eleva-
tion, while cocoa butter may be better suited for short-term cortisol elevation, at least
in northern temperate regions.

Cortisol increases the rate of gluconeogenesis (Mommsen et al., 1999). An increase
in plasma glucose following treatment with cortisol implants therefore would be con-
sistent with the known physiological effects of cortisol. Plasma glucose concentrations
were found to be higher than those of sham and control treatments at both 6 and 9 dpt
in cort-veg fish. In contrast, plasma glucose was never elevated above sham or control
treatment fish in cort-cocoa fish, in agreement with the shorter-lasting physiological
effect of cocoa butter than vegetable shortening on cortisol levels. Additionally, corti-
sol caused an increase in glucose levels earlier in the cort-cocoa treatment (3 dpt) than
in the cort-veg treatment (9 dpt), further supporting the hypothesis that the cocoa butter
vehicle generates a shorter and faster response than vegetable shortening.

Increased conversion of stored energy reserves to glucose during gluconeogenesis
may also lead to a loss in mass. Additionally, cortisol tends to suppress appetite lead-
ing to a reduction in food intake and this would also be expected to result in mass loss
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(a)

(c)
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Fig. 2. Representative images of the dissection of Salmo trutta post-treatment to illustrate the different implant

vehicles ( ): (a) control, (b) vegetable shortening implant and (c) cocoa-butter implant.

(Madison et al., 2015). The 9 days of the cortisol treatment examined in the present
study did not have a significant effect on change in mass relative to that observed in
control or sham-treated fish, suggesting that the physiological effects of elevated corti-
sol take more time to manifest as changes in mass. Previous studies in similar systems
have reported decreased growth rates of cortisol-treated fish over 2 weeks and longer
(Madison et al., 2015; Midwood et al., 2015, 2016; Birnie-Gauvin et al., 2017; Peiman
et al., 2017). Sham-veg fish at 9 dpt showed a significant increase in mass, which may
have resulted from the vegetable shortening itself starting to be absorbed internally,
while in the cort-veg fish this effect may have been offset by glucose metabolized by
cortisol. Indeed, it was only in this latter group that cortisol and glucose were posi-
tively related. The mechanism by which this occurred is unknown and its biological
significance remains evasive.

The present study showed that vegetable shortening and cocoa butter are two effective
vehicles for cortisol implants in northen temperate regions and that sham treatments
with the vehicle alone do not result in growth impairment compared with controls
over the short-term, as previously observed in reproductive female S. trutta follow-
ing cocoa-butter sham implants (Hoogenboom et al., 2011). It was noticed, however,
that cocoa butter implants had sharp edges, which could result in internal organ dam-
age, a potentially deleterious effect that has not previously been noted. Cortisol levels
peaked 3 dpt for both vegetable shortening and cocoa butter implants and cortisol levels
remained elevated for 9 days with the vegetable shortening implant. Maximum corti-
sol levels achieved in this experiment are beyond the physiological range for salmonids
(Donaldson, 1981; Gamperl et al., 1994). If the goal of the study requires cortisol levels
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within the normal physiological range, a lower dosage of cortisol may be appropriate.
Glucose levels were affected by cortisol in fish that received vegetable shortening but
not cocoa butter implants. Thus, in northern temperate regions, vegetable shortening
is a more appropriate vehicle for studies seeking longer-term cortisol elevation, while
cocoa butter may be better suited for studies looking for short-term cortisol elevation,
providing researchers with different options depending on study objectives.
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