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P E R S P E C T I V E

A physiological perspective on fisheries-induced evolution

Abstract
There is increasing evidence that intense fishing pressure is not only 
depleting fish stocks but also causing evolutionary changes to fish pop-
ulations. In particular, body size and fecundity in wild fish populations 
may be altered in response to the high and often size-selective mor-
tality exerted by fisheries. While these effects can have serious con-
sequences for the viability of fish populations, there are also a range 
of traits not directly related to body size which could also affect sus-
ceptibility to capture by fishing gears—and therefore fisheries-induced 
evolution (FIE)—but which have to date been ignored. For example, 
overlooked within the context of FIE is the likelihood that variation in 
physiological traits could make some individuals within species more 
vulnerable to capture. Specifically, traits related to energy balance 
(e.g., metabolic rate), swimming performance (e.g., aerobic scope), neu-
roendocrinology (e.g., stress responsiveness) and sensory physiology 
(e.g., visual acuity) are especially likely to influence vulnerability to cap-
ture through a variety of mechanisms. Selection on these traits could 
produce major shifts in the physiological traits within populations in 
response to fishing pressure that are yet to be considered but which 
could influence population resource requirements, resilience, species’ 
distributions and responses to environmental change.

1  | INTRODUC TION

Commercial and recreational fishing are changing the phenotypic 
composition of exploited fish stocks, particularly for traits related to 
life histories and reproduction (Enberg, Jørgensen, Dunlop, Heino, 
& Dieckmann, 2009; Enberg et al., 2012; Hard et al., 2008; Heino 
et al., 2013; Jørgensen et al., 2007). Where the high mortality im-
posed by fishing extends to immature life-history stages, fishing 
selects for individuals which reproduce at an earlier age (Ernande, 
Dieckmann, & Heino, 2004; Heino, 1998; Jørgensen, Ernande, & 
Fiksen, 2009; Jørgensen, Ernande, Fiksen, & Dieckmann, 2006; 
Law, 2000; Law & Grey, 1989). Consequently, exploited stocks can 
become comprised of individuals that mature earlier and at smaller 
sizes. These effects can become exacerbated when there is direct 
size-selectivity by fisheries in which larger fish are preferentially 
targeted. If the traits under selection by fisheries have a heritable 
component, then evolutionary change in exploited populations may 
occur, a phenomenon known as fisheries-induced evolution (FIE). 
As evidence of fisheries-induced evolution has accumulated, focus 
has shifted from determining whether or not FIE is occurring, to 

assessing the rate at which these changes occur and the potential 
for reversibility (Enberg et al., 2012; Heino et al., 2013). It is now 
recognised that quantifying and predicting these evolutionary re-
sponses will be important in maintaining the economic and ecolog-
ical viability of fisheries (Laugen et al., 2014). This, in turn, requires 
a thorough understanding of the mechanisms of fish capture, and 
how traits influence susceptibility to capture for individual fish.

Intraspecific variation in traits related to physiology and behaviour 
has recently received increased research attention in the wider field 
of biology (Killen, Calsbeek, & Williams, 2017; Williams, 2008). The 
study of intraspecific variation in behavioural traits has shown that 
differences are stable over time and across contexts (Bell, Hankison, 
& Laskowski, 2009; Wolf & Weissing, 2012), in a diverse array of 
taxa including fishes (Sih, Bell, & Johnson, 2004). Differences in be-
haviour among individuals are often correlated with other, more cryp-
tic aspects of an individual’s biology, from physiological traits, such 
as metabolic phenotype (Metcalfe, Van Leeuwen, & Killen, 2016), to 
whole-animal measures of performance and fitness (Biro & Stamps, 
2008; Careau & Garland, 2012). In the context of fisheries, where 
these traits influence an individual’s susceptibility to capture in a given 
fishery, and are also heritable (Table 1), harvest-associated selection 
can occur and narrow the range of phenotypes within exploited pop-
ulations (Heino & Godø, 2002). While the role of individual variation 
in behaviour has been considered in terms of making some fish more 
vulnerable to capture by fisheries (Biro & Post, 2008; Diaz Pauli & Sih, 
2017; Heino, Díaz Pauli, & Dieckmann, 2015; Uusi-Heikkilä, Wolter, 
Klefoth, & Arlinghaus, 2008), there has been comparatively little ef-
fort to examine how traits other than size at age might make some 
individual fish more vulnerable to capture than others, particularly the 
role of physiological traits (Enberg et al., 2012). There have also been 
few investigations of how increased mortality and altered life histories 
stemming from harvest may have indirect effects on the physiologi-
cal traits present within populations (Duffy, Picha, Borski, & Conover, 
2013; Jørgensen & Fiksen, 2010; Jørgensen & Holt, 2013).

Physiological traits related to bioenergetics and swim perfor-
mance are especially likely to affect the probability that a fish will 
be captured by fishing gear or survive after escape. For example, 
minimum metabolic rate (i.e., standard metabolic rate in ectotherms, 
SMR) is a heritable trait that shows wide, repeatable intraspecific 
variation (Burton, Killen, Armstrong, & Metcalfe, 2011; Rønning, 
Jensen, Moe, & Bech, 2007). SMR influences demand for food and 
oxygen and is related to various aspects of foraging and predator 
avoidance (Killen, Marras, & McKenzie, 2011; Killen, Marras, Ryan, 
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Domenici, & McKenzie, 2012; Millidine, Armstrong, & Metcalfe, 
2006), which could include avoidance of fishing gear. This estimate 
of basal energetic demand is sometimes also referred to as resting 
metabolic rate (RMR). Aerobic scope (AS) is the difference between 
maximum metabolic rate (MMR) and SMR and is the capacity to sup-
ply oxygen for aerobic metabolism above that required for mainte-
nance. It sets the limit for aerobic processes that can be performed 
simultaneously (e.g., activity, growth, digestion) and may affect var-
ious aspects of behavioural ecology and the geographical distribu-
tion of species (Jørgensen et al., 2012; Killen, Calsbeek et al., 2017; 
Killen, Marras, Nadler, & Domenici, 2017; Killen, Marras, Steffensen, 
& McKenzie, 2012; Marras et al., 2015; Pörtner & Farrell, 2008). 
In fishes, AS is also correlated with swimming endurance, maxi-
mum sustainable speed and recovery rate after exhaustive exercise 
(Killen, Marras, Steffenson et al., 2012; Marras, Claireaux, McKenzie, 
& Nelson, 2010), all of which may be relevant to a fish’s ability to 
evade capture by fishing. After controlling for factors such as body 
size and temperature, it is common for metabolic rates to differ by 
twofold to threefold among individuals of the same species (Burton 
et al., 2011; Norin & Malte, 2011, 2012). There is also evidence that 
metabolic rates are at least partially heritable (Table 1) and so could 
be targets for harvest-associated selection (Ward et al., 2016).

Variation in sensory ability, neuroendocrinology and cognition 
among individual fish may also influence fish vulnerability to capture. 
For example, intraspecific variation in the visual capabilities of fish (e.g., 
opsin expression in the retina, (Fuller, Carleton, Fadool, Spady, & Travis, 
2005; Flamarique, Cheng, Bergstrom, & Reimchen, 2013)) can mani-
fest as differences in how individuals perceive colour, identify shapes 
and distinguish objects. In addition to the role vision plays in determin-
ing whether a gear is perceived by a fish, these traits may also play a af-
fect whether fish adopt specific behaviours upon encountering a gear 
(Kim & Wardle, 2003). Chemosensory ability (e.g., expression of recep-
tor proteins within the olfactory bulb, or the relative size of the telen-
cephalon or bulb itself) and circulating hormone levels (e.g., ghrelin, a 
regulator of appetite) may also influence the ability to detect or en-
counter deployed gears. Broad measures of sensory physiology (e.g., 
brain size and morphology) show intraspecific variation (Kihslinger, 
Lema, & Nevitt, 2006) and have also been found to correlate with the 
likelihood of a fish expressing behaviours potentially related to cap-
ture vulnerability (Burns & Rodd, 2008; Wilson & McLaughlin, 2010), 
as well as cognitive capacity and aspects of decision-making in fish 
(Burns & Rodd, 2008). These latter traits relate to an individual’s ca-
pacity to locate potential escape routes in a trawl, or the entry to a 
trap (Klefoth, Skov, Kuparinen, & Arlinghaus, 2017; Monk & Arlinghaus, 
2017). While circulating levels of hormones and the expression of re-
ceptor proteins within the olfactory bulb also play important roles in 
determining whether certain behaviours are adopted, these are often 
linked to physiological condition (Hoskins, Xu, & Volkoff, 2008; Volkoff, 
Xu, MacDonald, & Hoskins, 2009). In these cases, circulating hormone 
levels may influence energy demand and vulnerability to capture, but 
may not directly alter susceptibility in their own right.

Fishing may well be causing unnoticed changes to the intrinsic 
physiological traits of fish which could in turn be influencing species’ 

life-history traits, geographical distributions and capacity to respond 
to environmental change or recover from overexploitation. The cur-
rent failure to consider these underlying physiological mechanisms 
in the context of FIE also precludes the development of effective 
mitigation strategies that refine harvest techniques or gear imple-
mentation to better understand the effects of harvest-induced se-
lection. In this paper, we discuss this gap in knowledge and suggest 
how studying the role of physiology in FIE from several perspectives 
will help us understand how selection occurs at the interface be-
tween individual fish and fishing gear and how physiological traits 
could determine which fish are captured and which are not.

2  | THE C APTURE PROCESS AND 
SELEC TION ON PHYSIOLOGIC AL TR AITS

There is great diversity in fishing gears used around the globe by the 
commercial and recreational fishing sectors spanning marine and 
freshwater systems. Fishing gears are often divided into passive or 
active gears. In reality, however, many fishing gears lie along a con-
tinuum between these two extremes (Figure 1) and rely on a mixture 
of stimuli that elicit various behavioural and physiological responses 
in fish that facilitate their capture. At one end of this continuum, 
passive gears depend on fish to find the deployed gear, depending 
on fish foraging behaviour and associated physiological traits. This 
would include metabolic demand and hormonal cues underlying for-
aging motivation and also sensory systems related to detecting and 
finding food sources (e.g., sight and olfactory systems). At the other 
end of the continuum, active gears pursue or target fish, with vulner-
ability potentially depending on fish escape ability. This could relate 
to a range of physiological traits associated with locomotor ability as 
well as threat detection and evasion (e.g., auditory and visual cues). 
Differences in capture methods may therefore give rise to differ-
ences in selectivity and how that selectivity may be mitigated.

The capture success for any type of gear is determined by the 
cumulative probability of outcomes along a set sequence of decision 
points (Figure 2; Rudstam, Magnuson, & Tonn, 1984; Sampson, 2014). 
Each of these stages is associated with a specific mechanism of selec-
tivity occurring at different spatial and temporal scales (Millar & Fryer, 
1999) that may act together to determine an individual’s overall vulner-
ability to capture. The outcome at each stage has the potential to be 
influenced by the physiological traits of individual fish. In addition, the 
environment will have a profound effect on fish physiology, possibly 
modulating the outcomes and the degree of selectivity at each stage.

2.1 | Selection via habitat use

The broadest spatial scale of selection occurs with the initial deploy-
ment of the gear: only those individuals within the active space of a 
given gear will be available to the fishery. Within-species differences 
in habitat use have been observed in fishes (Elliott, Turrell, Heath, & 
Bailey, 2017; Kobler, Klefoth, & Arlinghaus, 2008) and can vary based 
on size, sex or reproductive stage (Sólmundsson et al., 2015). The role 
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TABLE  1 Examples heritability estimates for several physiological and behavioural traits potentially related to vulnerability to capture in 
fish. Where possible, preference for inclusion in table was given to studies using fishes. For several metabolic traits, however, there is a 
paucity of information for heritability in fish species, and so estimates from other taxa are shown

Order Species Trait Heritability References

Physiology Stylommatophora Cornu aspersum Standard metabolic rate 0.33 Bruning et al. (2013)

Orthoptera Gryllodes sigillatus Resting metabolic rate 0.14 Ketola and Kotiaho (2009)

Active metabolic rate 0.72 Ketola and Kotiaho (2009)

Squamata Thamnophis sirtalis Feeding physiology 0.26 Burghardt, Layne, and Konigsberg (2000)

Passeriformes Ficedula hypoleuca Resting metabolic rate 0.43 Bushuev, Kerimov, and Ivankina (2010)

Taeniopygia guttata Basal metabolic rate 0.45 Mathot, Martin, Kempenaers, and Forstmeier 
(2013)

Carnivora Cyanistes caeruleus Resting metabolic rate 0.59 Nilsson, Akesson, and Nilsson (2009)

Mustela nivalis Resting metabolic rate 0.54 Szafranska, Zub, and Konarzewski (2007)

Rodentia Mus domesticus Basal metabolic rate 0.09 Dohm, Hayes, and Garland (2001)

Basal metabolic rate 0.38 Konarzewski, Książek, and Łapo (2013)

Phyllotis darwini Basal metabolic rate 0.21 Bacigalupe, Nespolo, Bustamante, and 
Bozinovic (2004)

Maximum metabolic 
rate

0.69 Nespolo, Bustamante, Bacigalupe, and 
Bozinovic (2005)

Cyprinodontiformes Heterandria formosa Temperature tolerance 0.2 Doyle, Leberg, and Klerks (2011)

Poecilia reticulata Sensitivity to light 0.36 Endler, Basolo, Glowacki, and Zerr (2001)

Gasterosteiformes Gasterosteus aculeatus Burst swimming 0.41 Garenc, Silversides, and Guderley (1998)

Perciformes Dicentarchus labrax Stress responsiveness 0.08 Volckaert et al. (2012)

0.34 Vandeputte et al. (2016)

Maximum swim speed 0.48 Vandeputte et al. (2016)

Oreochromis niloticus Temperature tolerance 0.09 Charo-Karisa, Rezk, Bovenhuis, and Komen 
(2005)

Stegastes partitus Swimming stamina 0.21 Johnson, Christie, and Moye (2010)

Salmoniformes Salvelinus fontinalis Stress responsiveness 0.6 Crespel, Bernatchez, Garant, and Audet (2011)

Salvelinus namaycush Depth regulation 0.58 Ihssen and Tait (1974)

Salmo salar Stress responsiveness 0.23a Fevolden, Roed, Fjalestad, and Stien (1999)

Behaviour Cyprinodontiformes 
(fi)

Poecilia reticulata Chase behaviour 0.25 Cole and Endler (2015)

0.3 Cole and Endler (2015)

0.03 Cole and Endler (2015)

0.07 Cole and Endler (2015)

Cypriniformes Danio rerio Shoaling 0.4 Wright, Rimmer, Pritchard, Krause, and Butlin 
(2003)

Boldness 0.76 Ariyomo, Carter, and Watt (2013)

0.36 Ariyomo et al. (2013)

Perciformes Archocentrus siquia Boldness 0.37 Mazué, Dechaume-Moncharmont, and Godin 
(2015)

Exploration 0.3 Mazue et al. (2001)

Megalopyge opercularis Escape 0.9 Gervai and Csányi (1985)

Swimming 0.84 Gervai and Csányi (1985)

Creeping 0.85 Gervai and Csányi (1985)

Floating 0.13 Gervai and Csányi (1985)

Air gulping 0.94 Gervai and Csányi (1985)

Salmoniformes Oncorhynchus kisutch Spawning date 0.44 Neira et al. (2006)

Salmo trutta Boldness 0.01 Kortet, Vainikka, Janhunen, Piironen, and 
Hyvärinen (2014)

Freezing 0.14 Kortet et al. (2014)
aMean of four heritability estimates across four age groups.
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of physiological traits in determining habitat use in fishes has received 
little attention so far but are very likely to affect capture vulnerability 
at broad spatial scales because parameters that affect gear deployment 
such as depth distance from shore, and sea bed types are linked to vari-
ation in food abundance, predation risk, temperature, oxygenation and 
water velocity. SMR can influence food and oxygen requirements in 
fish (Killen, Marras, Ryan et al., 2012; Killen et al., 2011), and both SMR 
and AS are strongly dependent on temperature (Biro & Stamps, 2010; 
Claireaux & Lefrancois, 2007; Fry, 1971). These temperature effects on 
metabolic physiology could in turn influence habitat use by individual 
fish and their likelihood of encountering deployed gears. For example, 
thermal variation drives seasonal southward migrations of Pacific blue-
fin tuna (Thunnus orientalis; Whitlock et al., 2015), and diurnal patterns 
of habitat use in small spotted catsharks (Scyliorhinus canicula; Sims 
et al., 2006), as individuals seek to avoid energetically costly hunting 
grounds, and maximise the efficiency of feeding and subsequent diges-
tion. Variation in temperature preference and habitat use may also be 
directly linked to individual SMR (Table 1) and the maximisation of aer-
obic scope and capacity for growth (Killen, 2014). Similarly, fish often 
use specific habitats for certain behaviours, such as foraging (Bernal, 
Brill, Dickson, & Shiels, 2017; Bernal, Sepulveda, Musyl, & Brill, 2009; 
Schaefer, Fuller, & Block, 2007), and so individual differences in the 
frequency or duration of those behaviours may contribute to intraspe-
cific differences in habitat use. Individual boldness, a trait which can 
correlate with SMR (Huntingford et al., 2010; Killen et al., 2011; Killen, 
Marras, Ryan et al., 2012), may also affect microhabitat use, with shier 
individuals associating with shelter. In cases where gears are deployed 
near available shelters, this could cause shy individuals within a popula-
tion to be more likely to be captured (Wilson, Binder, McGrath, Cooke, 
& Godin, 2011) with correlated selection on metabolic traits.

Physiological traits may also determine the extent to which individ-
ual fish exploit vertical habitats. In the open ocean, fish often experience 

F IGURE  1 The continuum of 
fisheries harvest techniques between 
active and passive gears and practices. 
Techniques towards the passive end 
of this continuum are more likely to 
select on traits associated with foraging 
behaviour, including hormonal regulation 
of hunger and exploratory behaviours, 
as well as sensory ability. Techniques 
towards the active end of the continuum 
are more likely to select on traits related 
to locomotor and escape ability. Broadly 
spanning the entire continuum are 
physiological traits related to whole-
animal metabolic traits, which can be 
directly or indirectly linked to foraging, 
body size, and locomotor ability. The 
environment will also have an over-
riding influence along all points of the 
continuum, modulating fish vulnerability 
to capture and the strength of potential 
links with physiological traits

F IGURE  2 Stages during fishing leading to mortality or survival 
for targeted fish. Physiological traits are likely to play a role in 
determining the path taken at each decision point
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cold, hypoxic conditions during oscillatory dives which approach or ex-
tend beyond the depths at which the mixed layer ends and the oxygen 
minimum zone begins (Bernal et al., 2009). Segregation of vertical habitat 
use of open ocean fishes is driven by the physiological ability of species 
to maintain sufficient cardiorespiratory capacity for active behaviours 
under these challenging conditions (Bernal et al., 2009, 2017), a trait 
governed by a suite of physiological factors which are known to show 
interindividual variation (Joyce et al., 2016; Ollivier, Marchant, Le Bayon, 
Servili, & Claireaux, 2015; Ozolina, Shiels, Ollivier, & Claireaux, 2016). 
This variation may ultimately manifest as differences in the maximum 
depth attainable by individual fish, or the amount of time fish spend 
at a given depth, and so give rise to intraspecific differences in vertical 
habitat use (Cosgrove, Arregui, Arrizabalaga, Goni, & Sheridan, 2014; 
Quayle, Righton, Hetherington, & Pickett, 2009; Vaudo et al., 2014), 
with implications for whether individuals are available to gears deployed 
at specific depths (Olsen, Heupel, Simpfendorfer, & Moland, 2012). 
Links between physiological traits and habitat use may also occur indi-
rectly. For example, recent research on pumpkinseed sunfish captured 
from littoral and limnetic habitats revealed divergent sensitivity of the 
hypothalamic–pituitary–interrenal axis to stressors (Belanger, Peiman, 
Vera-Chang, Moon, & Cooke, 2017) emphasizing potential for spatially 
structured fisheries to select for stress responsiveness (Table 1).

2.2 | Selection via gear encounter rate

Although gear encounter rate will necessarily have some overlap with 
traits affecting habitat selection, there is an important distinction to be 
made between selective processes occurring at these two scales. Even 
if gear and fish co-occur in the same broad habitat, fish must actually 
encounter the gear to have any chance at being captured. Individual fish 
vary in spontaneous activity, boldness and exploration (Table 1), and 
those that are more active will have higher encounter rates with fishing 
gears (Biro & Post, 2008; Uusi-Heikkilä et al., 2008). This could be due 
to random encounters during exploration or, particularly when consid-
ering passive gears, due to directed movements towards the deployed 
gear after initial detection. Indeed, bold or more active phenotypes are 
often associated with higher vulnerability to capture by angling or gill 
netting (Biro & Post, 2008; but see Cooke, Wilson, Elvidge, & Cooke, 
2017; Härkönen, Hyvärinen, Paappanen, & Vainikka, 2014; Kekäläinen, 
Podgorniak, Puolakka, Hyvärinen, & Vainikka, 2014; Klefoth, Pieterek, 
& Arlinghaus, 2013; Klefoth et al., 2017; Wilson et al., 2011), but these 
mechanisms are also likely to increase the probability of a fish being in 
the path of an oncoming trawl, or beneath a towed lure.

Importantly, the drivers of these behavioural differences may be 
linked with underlying physiological traits, at least in some contexts 
(Biro & Stamps, 2010; Killen, Marras, Metcalfe, McKenzie, & Domenici, 
2013). Fish that are more active and exploratory, for example, have 
also been shown to have lower hypothalamus–interrenal–pituitary 
and parasympathetic reactivity (Øverli, Sørensen, & Nilsson, 2006; 
Verbeek, Iwamoto, & Murakami, 2008), increased sympathetic reac-
tivity (Verbeek et al., 2008) and increased metabolic rates (Killen et al., 
2011). More active fish may also possess an increased AS to accommo-
date this active lifestyle (Killen, Atkinson, & Glazier, 2010; Killen, Marras, 

Steffensen et al., 2012), suggesting a mechanism by which passive gears 
may preferentially capture individuals with a high aerobic capacity. A 
high AS may also permit prolonged or more active bouts of swimming 
behaviour in fish (Table 1), or be associated with increased maintenance 
requirements and foraging demands (Auer, Salin, Anderson, & Metcalfe, 
2015; Killen, Glazier et al., 2016), thus increasing their likelihood of en-
countering gears (Redpath et al., 2010). Such mechanisms may partly 
explain why largemouth bass (Micropterus salmoides) bred for high vul-
nerability to angling also exhibited higher AS (Redpath et al., 2010). For 
active gears, encounter rate will be largely dependent on the movement 
of the gear by fishers, but sonar location can direct boats towards shoals 
or schools of fish. Gregarious individuals could thus be more likely to 
be targeted by trawls (Nelson, Soulé, Ryman, & Utter, 1987), producing 
selection against any metabolic or endocrine traits that promote social 
behaviour (Killen, Fu, Wu, Wang, & Fu, 2016).

2.3 | Selection via gear avoidance

Fish still have the opportunity to avoid gears after an initial encoun-
ter or detection. For passive gears, traps catch only a proportion of 
fish that come within a close proximity because some fish enter traps 
more readily than others (Diaz Pauli, Wiech, Heino, & Utne-Palm, 
2015; Thomsen, Humborstad, & Furevik, 2010). This could depend on 
a number of physiological factors, including physiological traits that 
underlie decision-making and risk assessment (Andersen, Jørgensen, 
Eliassen, & Giske, 2016; Giske et al., 2013; Höglund et al., 2005; 
Øverli, Pottinger, Carrick, Øverli, & Winberg, 2002; Øverli, Winberg, 
& Pottinger, 2005; Winberg & Thörnqvist, 2016; Table 1). For passive 
gears, it has been suggested that decision-making after the initial gear 
encounter is a greater determinant of individual vulnerability to cap-
ture than encounter rate itself (Klefoth et al., 2017; Monk & Arlinghaus, 
2017). In largemouth bass, individuals with low stress responsiveness 
are more vulnerable to capture by angling, although the exact stage of 
the capture process that is affected by endocrine traits was not identi-
fied (Louison, Adhikari, Stein, & Suski, 2017). Interestingly, however, 
boldness and metabolic traits did not influence capture vulnerability 
in this study, providing evidence that the decision to engage with the 
deployed gear after discovery was at least partially detached from 
foraging requirements, exploration or risk-taking per se. Still, hunger 
increases willingness to approach and enter baited traps after an initial 
encounter, as does environmental temperature (Thomsen et al., 2010). 
While appetite is inherently labile, a higher metabolic rate (Killen et al., 
2011) could increase the probability of a fish being hungry and respon-
sive to baits. However, effects of the environment, such as tempera-
ture, are often observed on the vulnerability of fish via the cumulative 
effects of increased activity and feeding motivation (Stehfest, Lyle, & 
Semmens, 2015; Stoner, 2004). By allowing the expression of extreme 
phenotypes, this plasticity could weaken selection on heritable traits 
underlying fish vulnerability to capture, although the capacity to ex-
hibit plasticity itself could be targeted by selection.

Although individuals with enhanced sensory capacity would pre-
sumably be better able to avoid certain gears or find baited hooks 
(Lennox et al., 2017), we are unaware of empirical work directly 
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examining this possibility. For active gears, fish often flee oncom-
ing active gears upon first visual or auditory detection (Handegard 
& Tjøstheim, 2005). However, there is variation in reaction distance, 
speed (Table 1) and directionality of this response among individuals 
that may be related to various aspects of sensory physiology (Winger, 
Walsh, He, & Brown, 2004). Many gear types encourage high densi-
ties of fish within their immediate vicinity, potentially exaggerating 
the importance of social interactions and associated physiological 
traits in determining responses to gear (Winger, Eayrs, & Glass, 2010). 
Should high densities of fish be present around a gear already, asocial 
fish may be dissuaded from approaching, reducing their capture vul-
nerability and indirectly selecting on underlying physiological traits 
related to sociability (Killen, Fu et al., 2016).

Avoidance of active gears also shows interesting parallels with 
optimal escape theory for avoidance of natural pursuit predators—
fleeing too early can result in lost foraging opportunities while fleeing 
too late can result in mortality (Winger et al., 2010; Ydenberg & Dill, 
1986). The costs of lost foraging opportunities may be greater for in-
dividuals with higher SMR, causing them to have shorter reaction dis-
tance and increased risk of fishing mortality (Finstad, Forseth, Ugedal, 
& Naesje, 2007; Killen et al., 2011). Individuals with a higher foraging 
demand may be more likely to perceive the benefit of investigating a 
food source as outweighing the risk posed by foreign objects such as 
hooks or traps. Metabolic traits of fish have been shown to correlate 
with boldness (Huntingford et al., 2010; Killen et al., 2011; Killen, 
Marras, Ryan et al., 2012), which in turn has been shown to correlate 
with susceptibility to capture in passive gears (Biro & Post, 2008; Diaz 
Pauli et al., 2015; Klefoth et al., 2017). It has also been demonstrated 
that cardiac output and RMR are directly correlated with vulnerability 
to capture in largemouth bass (Cooke, Suski, Ostrand, Wahl, & Philipp, 
2007; Redpath et al., 2010). Such links among traits may partly explain 
the presence of “timidity syndromes” (Arlinghaus et al., 2017), where 
bolder individuals are apparently harvested from populations more 
frequently owing to their increased vulnerability to capture. This is 
corroborated by observations that fish populations subjected to rec-
reational fishing pressure also exhibit lower RMR than populations 
with no fishing pressure (Hessenauer et al., 2015).

2.4 | Selection via escape from gear

Even when capture seems inevitable, fish often escape gears by em-
ploying behaviours that are likely linked to aerobic and anaerobic ca-
pacity. This is particularly true for active gears such as trawls, which 
herd fish as they attempt to swim and hold station in front of the trawl 
mouth. They eventually fatigue, fall back further into the net and finally 
into the codend, where they are retained (Winger et al., 2010). There 
may also be a behavioural decision-making component to this form of 
capture whereby a fish “voluntarily” ceases swimming before complete 
exhaustion or follow shoal mates into the trawl. During the final mo-
ments of the trawl, free-swimming fish within the body of the net may 
also be retained as the gear is hauled to the surface, and accelerates 
as it lifts from the sea floor. Fish “scooped up” in this fashion do not 
have to have succumbed to fatigue to be caught. Fish can escape by 

swimming faster than the trawl (Table 1), or moving around the outside 
of the trawl mouth, making it highly likely that faster swimming fish, 
or those with a greater capacity for short-bursts of anaerobic swim-
ming, escape capture. This effect has been illustrated in laboratory-
based trawling simulations with a direct positive correlation between 
the capacity for burst-type anaerobic swimming and the ability to avoid 
being captured (Killen, Nati, & Suski, 2015). Fish can also escape cap-
ture once inside the trawl net by passing through the mesh. Escape 
through mesh is size-selective, but there may well be a large influence 
of swimming endurance and anaerobic capacity on escape ability at this 
stage (Winger et al., 2010), because fish will require bursts of anaerobic 
swimming while changing their vector relative to the path of the trawl.

It is unknown whether the metabolic costs of prior feeding and 
digestion affect vulnerability to capture via reductions in swimming 
performance. In fish, there is a temporary postfeeding increase in 
metabolic rate associated with digestion and nutrient assimilation (Fu, 
Cao, Peng, & Wang, 2008; Jobling, 1995; Secor, 2009), referred to as 
specific dynamic action, that can reduce swim performance (Alsop & 
Wood, 1997) and possibly decrease the ability to outswim a trawl. Fish 
with a larger AS (Table 1), however, might maintain an excess capacity 
for swimming even while processing a meal, providing another means 
by which individuals with a higher AS may be less catchable by trawl.

The relevance of this swim performance-based mode of selectivity 
is dependent on fish engaging in an optomotor response (a reflexive 
behaviour thought to reorient a swimming fish after displacement from 
its desired horizontal course; Kim & Wardle, 2003) in which fish swim 
to maintain station with the trawl, often oriented adjacent to the trawl 
doors, until they drop back within the net. While this is often observed 
(Kim & Wardle, 2003; Rose, 1995), individual variation in the response 
to gears is also frequent (Underwood, Winger, Fernö, & Engås, 2015; 
Yanase, Eayrs, & Arimoto, 2009) and often predicts the chances of cap-
ture for individual fish. Whether these behavioural responses correlate 
with heritable physiological traits remains unclear, although individual’s 
orientation prior interaction with the trawl gear, and density of conspe-
cifics, can influence fish responses to trawls (Rose, 1995; Underwood 
et al., 2015). This would suggest that responses to trawls are influenced 
by external environment, which could dampen selection on traits cor-
related with swim performance. Kim and Wardle (2003) noted that er-
ratic responses, characterised by burst swimming and haphazard, rapid 
changes in orientation, acceleration and swim velocity, lead to oppor-
tunistic use of potential escape routes around trawls. Fish with greater 
anaerobic capacity may be expected to engage in such behaviours 
more readily, or for longer periods, and so be less catchable.

The physiological traits potentially underlying escape from fish-
ing gears can be highly plastic in response to environmental factors. 
For example, reduced temperature can decrease swimming ability, 
aerobic metabolic capacity, reaction distances and fish respon-
siveness (Claireaux, Couturier, & Groison, 2006; Killen, Nati et al., 
2015; Killen, Reid, Marras, & Domenici, 2015; Winger et al., 2004, 
2010). Therefore, depending on the temperature, or the season, 
individual fish may be more or less likely to be captured by gears in 
a manner directly related to their sensitivity to thermal shifts and 
corresponding effect on performance. Gears may therefore have 



     |  567HOLLINS et al.

a reduced selective impact at cold temperatures, when a higher 
proportion of the population cannot escape. A similar mechanism 
could occur at the higher end of the thermal range within species, 
where some individuals will begin to exhibit decreased perfor-
mance due to warming. Harvest-associated selection is therefore 
likely to be highly dependent on how the environment modulates 
links between physiological traits and the escape ability of individ-
ual fish. Finally, there is wide intraspecific variation in stress re-
sponsiveness within fish species (Höglund et al., 2005; Pankhurst, 
2011), and so individuals may vary widely in the extent to which 
they can recover from fishing-stress and physical trauma even after 
they escape from a fishing gear (Table 1). Outswimming a trawl may 
result in a severe physiological disturbance due to intense exercise, 
as may fighting on a fishing rod or longline. Even relatively benign 
gears like traps can induce a stress response from confinement 
(Colotelo et al., 2013). During recovery from these stressors, fish 
may be more vulnerable to predation or less likely to forage or par-
ticipate in reproductive activities (Winberg & Thörnqvist, 2016). 
There is some evidence that increased AS may facilitate faster re-
covery from acute stress (Killen et al., 2014), but much more infor-
mation is needed in this area. Overall, mortality occurring in fish 
postescape from fishing gears could constitute another potential 
avenue for selection on physiological traits to occur.

3  | CONSEQUENCES OF SELEC TION ON 
PHYSIOLOGIC AL TR AITS BY FISHERIES

3.1 | Understanding the mechanisms and extent of 
FIE

As long as we are without a greater understanding of the role of 
individual physiological traits in selective processes, we will lack 
a mechanistic understanding of how FIE actually works. Is body 
size the primary determinant of which fish get captured and which 
do not, or are there more cryptic underlying physiological factors 
that are related to these effects? Does the majority of selection 
and evolutionary change occur in response to capture mechanisms, 
or are there more nuanced effects stemming from increased mor-
tality with effects on behaviour and physiological traits? (Duffy 
et al., 2013; Jørgensen & Fiksen, 2010; Jørgensen & Holt, 2013). 
Even in cases where body size or behaviour are the direct targets 
of harvest selection, correlated selection on physiological traits 
would have a range of complex feedbacks and implications for life 
histories. Traits directly selected upon are often correlated (shar-
ing genetic or phenotypic covariance) with a suite of interrelated 
physiological, behavioural, morphological and life-history charac-
ters (Salinas et al., 2012). For example, energy allocation within 
fish is inherently linked to an individual’s metabolic traits, as SMR 
will determine the amount of acquired resources available for in-
vestment in physiological functions beyond basic maintenance. 
Differences among individuals in surplus energy may manifest as 
differences in morphology, body size and performance, which are 
thought to targets of harvest-associated selection (Enberg et al., 

2012). For example, increase in liver or reproductive organ size as 
a result of increased energy storage, or reproductive investment 
(Blanchard, Druart, & Kestemont, 2005; Craig, MacKenzie, Jones, 
& Gatlin, 2000; Dahle, Taranger, Karlsen, Kjesbu, & Norberg, 2003; 
Galloway & Munkittrick, 2006; Hurst, Spencer, Sogard, & Stoner, 
2005) can increase fish width relative to its length, increasing its 
likelihood of retention in the mesh of trawls and gillnets (Enberg 
et al., 2012). These changes in fish morphology can also be accom-
panied with reductions in swim performance (Ghalambor, Reznick, 
& Walker, 2004), with further implications for capture in active 
gears (Enberg et al., 2012). By considering multiple covarying traits, 
a more accurate picture of the potential response of the population 
to selection can be drawn, in instances where body morphology is 
a direct target of harvest-associated selection, but correlated se-
lection on metabolic rate and growth capacity (Álvarez & Nicieza, 
2005; Burton et al., 2011) could also occur. This could contribute to 
altered life-history traits at the population level, with the genetic 
architecture of related traits (e.g., pleiotropy) possibly influencing 
the rate and direction of the evolutionary changes.

In addition, increased physiological knowledge of the specific traits 
targeted by harvest-associated selection will shed light on the relative 
roles of plasticity and genetic change in the phenotypic shifts associ-
ated with FIE, particularly if the physiological traits that influence vul-
nerability have a heritable component (Table 1). Evidence of “timidity 
syndromes” (Arlinghaus et al., 2017) arising in response to fishing pres-
sure has been recorded in recreational fisheries (Januchowski-Hartley, 
Graham, Cinner, & Russ, 2015; Twardek et al., 2017). It has so far not 
been possible to determine whether such phenotypic shifts are due to 
learned responses, behavioural plasticity, density-dependent effects 
or whether they represent evolutionary change. Twardek et al. (2017) 
revealed that nesting largemouth bass in a long-term (70 + year) recre-
ational fishing sanctuary provided more attentive and vigorous paren-
tal care than fish outside the sanctuary. While this result could reflect 
at least some component of evolutionary change, additional common-
garden experiments are required to disentangle the confounding envi-
ronmental effects and phenotypic plasticity.

A greater understanding of whether physiological traits are tar-
geted and selected by the capture process over generations will also 
aid in identifying the heritable component of the traits that have 
been observed to shift. If the traits under selection are not heritable, 
the phenotypic shifts observed are more likely to be the result of 
plasticity (van Wijk et al., 2013) which can favour a faster recovery in 
case of the removal of the harvesting pressure. So far, there is no in-
formation regarding the genetic basis and architecture of vulnerabil-
ity to capture and the susceptible genotypes that could be selected 
against by fishing. Investigating the heritability of the vulnerability 
to capture itself as well as how this can be genetically correlated 
with other physiological traits (using quantitative genetics) and gen-
otypes (using genomics) could give critical information in this regard. 
While phenotypic shifts might be related to plastic responses, it is 
important to note that plasticity itself often possesses heritable ge-
netic variation that could allow different evolutionary trajectories 
through genotype-by-environment interactions (Nussey, Wilson, 
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& Brommer, 2007; Parsons et al., 2016). Investigating vulnerability 
to capture, its genetic basis and correlation with other physiologi-
cal traits across different environmental conditions would then be 
important to fully understand the mechanisms driving FIE. Changes 
to population density due to fishing could also be an environmen-
tal variable that could generate a new adaptive landscape in which 
evolutionary changes to behaviour and physiology could occur indi-
rectly. Determining the influence of plasticity in FIE is challenging 
but studying the role of physiology in selective processes will be key 
in gaining a full appreciation of these effects.

3.2 | Understanding environmental modulation of 
FIE and responses to environmental change

The interplay between fish physiology and FIE will also have com-
plex interactions with environmental factors. Factors such as 
temperature and oxygen availability have strong effects on fish 
physiology (Claireaux & Lefrancois, 2007; Fry, 1971). As a result, 
certain physiological traits could become more or less important for 
capture vulnerability depending on environmental conditions (Killen 
et al., 2013). In addition, individuals vary in sensitivity to factors 
such as temperature, oxygen availability and food deprivation (Biro, 
Beckmann, & Stamps, 2010; Killen, Marras, Rayan et al., 2012; Killen 
et al., 2013), and this variation appears directly related to meta-
bolic traits and locomotor ability (Killen et al., 2011; Killen, Marras, 
Steffensen et al., 2012; Killen, Marras, Ryan et al., 2012; Killen et al., 
2013). In the context of fisheries, these effects may cause individual 
vulnerability to fluctuate across environments if the across-context 
repeatability of vulnerability to capture is low (Killen, Adriaenssens, 
Marras, Claireaux, & Cooke, 2016). In other words, particular indi-
viduals that are vulnerable to capture under one set of conditions 
may be completely different to those most vulnerable under an-
other environment due to individual variation in the physiological 
reaction norms to changing environmental conditions.

Phenotypic plasticity in response to environmental factors may 
also alter the degree of variation in vulnerability among individual 
fish within a population and potentially links between susceptibil-
ity to capture and physiological traits (see Figure 1 in Killen et al., 
2013). If an environmental condition reduces the variability of phe-
notypic traits, for example by homogenising the response within a 
population, the degree of selection of the fishing gears will then be 
reduced. In addition, if correlations between vulnerability and phys-
iological traits change across environments, due to changes in the 
variability of either vulnerability or the physiological trait of interest, 
then the degree of correlated selection on physiological traits due to 
harvest will change across environments. For example, exposure to 
hypoxia can cause links between activity and individual metabolic 
demand that are not observable under normoxia (Killen, Marras, 
Ryan et al., 2012), stemming from changes in trait variability across 
environments. Thus, passive fishing gears deployed in hypoxic zones 
may be more likely to cause correlated selection on metabolic traits.

Such genotype-by-environment interactions could have import-
ant repercussions on the rate and direction of FIE. Depending on the 

environment, the degree of selection on the physiological traits related 
to vulnerability to capture may change. In addition, the heritable com-
ponent of any physiological traits under selection could also change 
across environmental conditions. For example, it has been revealed 
that the heritability of body mass in brook charr (S. Fontinalis) can 
change drastically depending on the environment (Crespel, Bernatchez, 
Audet, & Garant, 2013). Similar increases in the heritability of physio-
logical traits could accelerate the effect of selection even if the selec-
tion per se decreases. The heritability of physiological traits could also 
vary temporally. For salmonids, the heritability of traits related to body 
size can decrease with time, due to stronger environmental effects 
with age (Crespel et al., 2013; Garant, Dodson, & Bernatchez, 2003; 
Serbezov, Bernatchez, Olsen, & Vøllestad, 2010). If a similar change 
in heritability through time happens for physiological traits, this could 
reduce the speed of response to FIE in fisheries that target adult in-
dividuals. Some genotypes may also be more or less plastic according 
to the environment, increasing or reducing their vulnerability to cap-
ture. Therefore, the nature and degree of genotype-by-environment 
interactions initially present in a population are likely to accelerate or 
dampen any evolutionary response to fishing. Increased knowledge of 
the plastic, physiological responses to environmental variation would 
greatly contribute to our understanding or these effects.

Perhaps most importantly, by reducing the phenotypic and poten-
tially genetic diversity across generations within targeted populations, 
directional selection by fishing practices could be leading wild popula-
tions into an “evolutionary trap” by making them physiologically mal-
adapted to future environmental conditions in the absence of fishing 
pressure or otherwise reducing their capacity to physiologically adapt 
to such changes through erosion of genetic diversity. The physiologi-
cal phenotypes present within a population will have a direct bearing 
on how they are able to respond to environmental change (Brown, 
Hobday, Ziegler, & Welsford, 2008; Enberg et al., 2009; Kuparinen & 
Hutchings, 2012; Pörtner & Farrell, 2008). Climate change, in com-
bination with hypoxia in coastal environments due to anthropogenic 
pollution, is predicted to alter the geographical distribution of marine 
fish species, possibly due to sublethal effects on physiology (Marras 
et al., 2015). Selection on physiological traits by fishing could therefore 
lead to synergistic effects between climate change and overfishing 
on the abundance or distribution of species. It is also unclear whether 
FIE is degrading populations’ ability to rebound after fishing pressure 
is alleviated (Kuparinen & Hutchings, 2012), particularly in the face of 
environmental change. The critical lack of knowledge regarding how 
fish physiology and population adaptive potential are being affected 
by FIE may underlie this uncertainty. Reduced rates of population 
increase are at least partially caused by demographic shifts, reduced 
fecundity among individuals or altered food-web structure, but these 
alone do not explain the observed lack of resilience among overex-
ploited and collapsed fish stocks (Kuparinen & Hutchings, 2012; Marty, 
Dieckmann, & Ernande, 2015). It is possible that altered physiological 
traits could play a role, through increased natural mortality in the 
absence of fishing (Jørgensen & Holt, 2013; Kuparinen & Hutchings, 
2012) or by contributing to the altered life-history traits reported in 
exploited populations (Enberg et al., 2012).



     |  569HOLLINS et al.

3.3 | Mitigation of selective effects

Attempts to alter fishing techniques to minimise harvest-associated 
selection are extremely difficult to design and implement but can only 
be aided by a mechanistic, physiological understanding of how fish 
physically interact with deployed gears. There are two broad strat-
egies for reducing harvest-associated selection on traits within spe-
cies. The first may be to restrict fishing effort to times and techniques 
that minimise selection. A theoretical strategy for example, may be to 
fish during seasons or times of day where intraspecific variation in the 
traits of interest, is minimised. A reduction in the within-population 
variation in traits related to swim performance may be present dur-
ing colder seasons or during the night when fish are inactive (Glass & 
Wardle, 1989). Similarly, factors such as trawl times or speeds and de-
ployment times for traps could be altered in ways to reduce selectivity. 
The second general strategy is to broaden fishing effort to include a 
range of gears and habitat types such that selection on specific traits 
is diluted or countered. This could include more balanced harvesting 
approaches in which active and passive gears are used for the same 
species. Whatever the approach for minimising selection, knowing 
more about the physical interactions between fish and gears and the 
underlying physiological mechanisms will be informative for deciding 
which strategies to employ either alone or in combination.

A particular challenge with mitigation of within-species selection 
also relates to current efforts to reduce bycatch of nontarget species. 
There may be a fundamental conflict in which attempts to reduce 
bycatch by increasing the selectivity of gears for a particular species 
may also increase selectivity within a species. This could additionally 
increase the potential for FIE to act on specific traits. For example, 
changes in trawl speed or position within the water column may reduce 
bycatch but may also cause differentiation in vulnerability within the 
targeted species with regard to any traits that influence vulnerability. 
However, increased knowledge of where the phenotypic ranges of 
among-  and within-species diversity of specific traits related to vul-
nerability, and particularly physiological traits, will be key in devising 
solutions to this apparent conflict.

4  | FUTURE APPROACHES AND 
OUTSTANDING QUESTIONS

We currently know very little regarding the interplay between physi-
ological traits and FIE. A major obstacle is that many of these ques-
tions are extremely difficult to address in an actual fisheries scenario 
or in the wild using free-ranging fish. A comprehensive approach with 
observational and experimental work at various spatial scales, with 
collaboration among physiologists, behavioural ecologists, evolution-
ary biologists, geneticists and fishers will yield the most informative 
research in this field going forward.

At the smallest spatial and temporal scales, laboratory-  and 
mesocosm-based simulations of fishing procedures and selection line 
experiments will prove invaluable. Selection experiments have been 
useful for elucidating how size-selective fisheries practices can produce 

an array of effects on correlated behavioural and morphological traits 
(Conover & Baumann, 2009; Conover & Munch, 2002; Uusi-Heikkilä 
et al., 2015; Walsh, Munch, Chiba, & Conover, 2006; van Wijk et al., 
2013). Selected lines also facilitate examinations of trait resiliency once 
selection is relaxed. To date, the majority of selection experiments 
have solely focused on the effects of size-selectivity without directly 
considering vulnerability. In the only selection study to examine direct 
vulnerability to capture, Philipp and colleagues (Philipp et al., 2009) 
demonstrated heritability of angling vulnerability in largemouth bass 
and reported a range of behavioural and physiological effects associ-
ated with selection on the tendency to be captured via this method.

Further experimental approaches, such as small-scale simulations of 
fishing techniques (e.g., trapping and trawling) using surrogate species, 
will facilitate direct exploration of links between physiology and suscep-
tibility to capture in a manner that is not possible with full-scale fisheries 
in the wild (Diaz Pauli et al., 2015; Killen, Nati et al., 2015). For example, 
the complete control such approaches grant us over the environment 
allows us to test relationships between physiological traits and vulner-
ability across different environmental conditions (Killen, Marras, Ryan 
et al., 2012; Killen, Marras, Steffensen et al., 2012; Killen et al., 2013), 
providing greater insight into how such mechanisms may manifest in 
the wild. Small-scale fishery simulations also allow for the quantifica-
tion of repeatability of vulnerability to certain gear types. A shortcom-
ing of these experiments is that the observed trends may not extend to 
broader scales with other species and in more stochastic environments. 
However, this is always the case when examining biological phenomena 
in laboratory experiments. A major benefit of laboratory studies in the 
context of FIE is that they provide plausible and testable hypotheses 
that may be examined at larger scales, and inform the design of such 
experiments that are often expensive and logistically challenging.

At larger scales, urgently needed is information on how physiolog-
ical traits may affect capture vulnerability in a natural setting (Lennox 
et al., 2017). Recent technological innovations in telemetry for the 
tracking of wild fish and remote sensing of behavioural and physio-
logical variables (Hussey et al., 2015) are set to enable unprecedented 
work examining behaviour of fish around deployed gears and their 
accompanying physiological responses. To date, there have been few 
attempts to examine how laboratory-based estimates of physiological 
or behavioural traits match with rates of activity in the wild (Baktoft 
et al., 2016), but these advances yield exciting opportunities to obtain 
a completely novel perspective on FIE and to understand how animals 
with specific physiological traits respond to fishing gears in the wild. 
The role of physiology in FIE presents opportunity for many new av-
enues of research in both laboratory and field settings, with relevant 
approaches encompassing telemetry, respirometry, enzyme analysis, 
fisheries simulations and genetics, among many others. Holistic ap-
proaches applying several of these techniques to encompass aspects 
of physiology, and whole organism behaviour, would be particularly 
powerful tools in addressing the following questions:

•	 Do physiological traits make some individuals more vulnerable to 
capture and how does this vary relative to gear type and phase of 
gear selectivity?
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•	 To what degree is vulnerability to capture repeatable among indi-
vidual fish?

•	 Does the environment modulate the intensity or direction of se-
lection by fishing gears via effects on plasticity of physiological 
traits?

•	 Do specific physiological traits make some individuals more likely 
to experience mortality after escape from gear or discard?

•	 Does the direction or intensity of selection vary between active 
and passive gears?

•	 Does selection have long-term effects on physiological traits and 
tolerance to the environment that persists even after fishing is 
removed?

•	 Do changes in mortality and life histories caused by fishing have 
indirect consequences for the physiological traits present within 
populations?

•	 Even if physiological traits affect vulnerability at each stage of 
the capture sequence, how do processes at other stages interact, 
counter or amplify these effects to determine overall selection on 
traits?

•	 What strategies are most effective for mitigating the physiologi-
cal aspects of FIE?

5  | CONCLUDING REMARKS

There are several avenues by which individual physiological traits may 
affect which fish are captured by recreational or commercial fisheries 
and those that are not. The influence of these traits may operate at 
various temporal or spatial scales, depending on the particular stage 
of the capture process. Selective processes may result in direct change 
in physiological traits associated with metabolic demand, locomotor 
performance, neuroendocrine function and/or sensory physiology 
or produce correlated responses in behavioural or life-history traits. 
Conversely, in situations where selection on behavioural or morpho-
logical traits supersedes direct selection on aspects of physiology, cor-
related selection could still alter traits, particularly those associated 
with energy demand. The consequences of these effects are likely to 
be important for understanding synergistic effects of multiple stress-
ors in concert with the effects of overharvest and FIE in ways that are 
yet to be appreciated. We hope that the possibilities raised here will 
encourage future work in this area.
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