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Ecophysiology investigates the mechanisms underpinning the
interactions between an organism and its environment
(Block and Vannier, 1994). The audience of, and contributors
to, ‘Conservation Physiology’ are well aware as to how intri-
guingly complex these interactions can be; yet, we tend to
take this one step further. We do not aim just to understand
these complexities in some abstract sense. We want our
research to be ‘useful and relevant’ to society. A critical
aspect of ecophysiology has always been that it can be
researched in anthropogenic or managed environments
(Feder and Block, 1991; Block and Vannier, 1994), and there
is a long heritage that enmeshes physiological measurements
with conservation interests (Wikelski and Cooke, 2006; Cooke
et al., 2013). Indeed, it has been recognized for well over two
decades that the full potential of conservation science depends
on the integration of diverse expertise (Cooke et al., 2013), and
between research and practice (Cooke and O’Connor, 2010).
Yet is conservation physiology really a useful science, and have
we truly begun to establish the levels of cross-disciplinary col-
laboration required to make it so? Furthermore, do these broad
collaborations involving complex research themes fit within the
practical urgency of a conservation crisis?

By the time something draws the attention of conserva-
tion practitioners it’s already in a state of crisis management,
usually requiring immediate action (du Toit, 2010). Very

rarely can we observe conservation challenges emerging at a
slow enough pace such that we can track the threats over
time and effectively develop evidence-based conservation
responses. In some ways, this has always been touted as the
prime strength of conservation physiology (Block and
Vannier, 1994; Cooke and O’Connor, 2010; Cooke et al.,
2013), because the discipline focuses on cause-and-effect
relationships and the mechanisms that underpin ecological
patterns. In practice, conservation physiology can rapidly
draw empirical evidence to support conservation activities
through targeted research programs that produce quantita-
tive expectations of biological responses to environmental
change. Generalizing these hypotheses is challenging, how-
ever, because it often involves taking measurements that are
made in artificial, controlled environments and interpreting
as if they were occurring in the complicated and often unpre-
dictable real world (Tomlinson et al., 2014) or taking useful
and insightful measurements of very complex processes in
the field (Tomlinson et al., 2014). Complex questions require
complex investigations and a broad and complex skill set
(Dick ez al., 2016). Typically, this is accomplished by con-
ducting cross-disciplinary research in collaborative teams.
Here, we discuss three ways in which conservation physi-
ology is meeting the challenge of integrating diverse expertise
to maximize its practical value: by crossing taxonomic
boundaries, incorporating statistical approaches from other
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fields, and ultimately developing cutting-edge technologies to
make suitable measurements of organisms in the field.

Many of the physiological processes that inform conserva-
tion physiology, such as respiration, energetics, thermal tol-
erance and homoeostatic water balance, to name a few, are
basal to all life. Yet increasingly, as biologists and physiolo-
gists, we have become specialized along taxonomic lines (sen-
su Block and Vannier, 1994; O’Brien, 2012). This has led to
idiosyncrasies where the use of some techniques or equip-
ment overlooks a broader applicability due to the narrowed
expectations of a given field of study. Respirometry, for
example, is a broadly applicable tool that measures gas
exchange between an organism and the environment (either
the atmosphere or surrounding water, if the organism is
aquatic). Nevertheless, its use is often constrained to one or
the other due to ‘blind spots’ within disciplines, even though
it is equally applicable to the measurement of plant photo-
synthesis (Adhikari and White, 2014; Alvarez-Yépiz et al.,
2014) and calculation of animal metabolic rates (Winwood-
Smith et al., 2015; Rummer et al., 2016). For example, in
applying a standard flow-through respirometry approach
that is widespread in animal physiology, Dalziell and
Tomlinson (2017) showed that metabolic rates of plant seeds
can be accurately measured, which broadly indicated seed
viability, potentially providing a non-destructive tool to
assess storage success. Metabolic rates were also highly inter-
specifically variable, however, suggesting huge research
potential in this field and potential insights into demographic
bottlenecks in conservation programs that depend on seed
storage and recruitment from those stored seeds.

Another area where there is clear overlap and need for
greater taxonomic integration is with nutritional physiology.
The Anthropocene is recognized not just for its changes to
global climate, but to land use and biotic interactions (Ellis
et al., 2010). These interactions form the basis of ecological
energetic cascades through ecosystems (Tomlinson et al.,
2014) and it is increasingly recognized that nutrition is
highly relevant to conservation (Birnie-Gauvin et al., 2017).
Unsurprisingly, with plants as the foundation of most food
webs, aspects of food quality have dramatic influence on
higher-level consumers, and changing climate has different
effects on plants in aquatic versus terrestrial environments
(Cotrufo et al., 1998; O’Reilly et al., 2003; Beardall et al.,
2009). Researchers cannot study energetics or food con-
sumption in a grazer without thinking carefully about what,
where, and when the animal of interest is grazing and how
the changes in quantity and quality of forage reduces the
quality of plant foods available to wildlife (Zvereva and
Kozlov, 2006). Different grazing species also have different
levels of resilience to such changes (Munn et al, 2009;
Munn et al., 2012; Munn et al., 2013), and introduced spe-
cies can exacerbate ecological energetic effects of nutritional
physiology (Birnie-Gauvin et al., 2017). However, these
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cascades can be much more cryptic, imposing energetic bar-
riers on passage through fragmented landscapes, which,
when understood, provide empirical guidelines to their man-
agement and restoration (Tomlinson ez al., 2017a, 2017b).
Critical to such studies is a balance between supply (i.e. the
energy available to animals by plants) and demand (i.e. the
requirements the animals have to persist and move through
an environment), both of which change in response to chan-
ging environments (Tomlinson et al., 2014; Birnie-Gauvin
et al., 2017) and require investigating both plant and animal
ecophysiology.

When we are investigating cause-and-effect relationships
between environmental change and biological processes,
understanding, quantifying and parameterizing the physio-
logical response of an organism is often critical (Carey,
2005; Cooke and O’Connor, 2010; Cooke et al., 2013).
Physiological responses tend to be non-linear, often asymmet-
rical, and generally unimodal (Angilletta, 2006; Flowers and
Colmer, 2008), but ecophysiological studies have traditionally
applied statistical transformations to create and visualize linear
relationships for quantitative interrogation. In applying non-
linear regression techniques and a series of functions that are
well-established in ecotoxicology, Lewandrowski et al. (2016)
have begun to quantify hydrothermal limits at critical life his-
tory stages of plant populations targeted for ecological restor-
ation. These analyses provide a more subtle understanding of
post-germination constraints to ecological restoration than are
available from simple, linear response functions, offering more
realistic empirical guidelines to conservation activity, including
the potential for phenotypic flexibility in the face of chronic
environmental changes.

One of the greatest challenges that we face as conserva-
tion physiologists is quantifying the effects of global climate
change (Thomas ez al., 2004; Portner and Farrell, 2008).
Efforts to understand how species will respond to climate
change have often been pursued by ecologists using correla-
tive approaches that are relatively independent from the
mechanism that is potentially under selective pressure (Evans
et al., 2015). Moreover, it is already abundantly clear that
there is an ‘art’ to modelling the ultimate distribution of
range-shifting species in this way (Elith er al, 2010).
Congruent with Soberén and Nakamura’s (2009) conceptu-
alization that responses to the abiotic environment are only
one component that defines the realized niche, recent ana-
lyses have shown the powerful effects of changing biodiver-
sity patterns and biotic interactions caused by climate change
and the shortfalls that result in overlooking these (Pecl ef al.,
2017). There are, however, emerging techniques that incorporate
physiological processes into the complex statistical environment
of biogeography and biophysics (Sutherst and Maywald, 1999;
Kearney and Porter, 2016). Currently the two leading niche enve-
lope models tend to be separated into animal-oriented (Kearney
and Porter, 2016) and plant-oriented (Sutherst and Maywald,
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1999) camps. However, the practical value of niche models for
developing management policies is often data limited, restricted
to a comparatively small number of well-studied organisms
(Evans et al., 2015), and substantial work is still required
to evaluate model skill (Kish et al., 2016). Furthermore,
Kish et al. (2016) looked far afield and borrowed model
testing approaches common in meteorology to understand
the errors in their biophysical ecology models, and it has
been suggested that similar liberalism may be required to
parameterize mechanistic models for a broad array of taxa
(Evans et al., 2015).

Insofar as physiology influences ecology, so too does ecol-
ogy influence physiology. While this may seem as intransi-
gent as the question about the chicken and the egg, there is
an emerging recognition that physiological constraints and
influences can be and should be incorporated into a number
of ecological modelling processes to better understand how
physiological traits influence ecological patterns and conser-
vation challenges (Bourbonnais et al., 2014; Jachowski and
Singh, 2015; Tarszisz et al., 2018). Understanding home
ranges and habitat use are critical to developing flexible and
adaptable management programs at effective spatial scales
for threatened species. Yet, the physiological components
underpinning movement ecology and space use, ranging
from the anthropogenic antagonism of stress (Bourbonnais
et al., 2014) to the ecological service of seed dispersal based
upon digestive physiology (Tarszisz et al., 2018), are only
just now being explored. Interestingly, these concepts were
raised decades ago by Huey (1991) in a paper titled ‘the
physiological consequences of habitat selection’ but only
today are we conducting the ecophysiology-grounded empir-
ical research to understand relationships between physiology
and ecological processes.

The greatest constraint to measuring physiological processes,
especially in situ, has always been limitations for measuring
stress tolerance, energy fluxes and productivity at rapid tem-
poral scales (Homyack, 2010). The measurements that we
make are often complex, intricate and require fairly specific
technologies to measure explicit indicators of physiological
processes. Rarely do these approaches result in readily trans-
portable technology that can easily provide measurements of
organisms in their natural environment. Novel technological
applications can, however, provide great insights. Approaches
using radioisotopes have long been suggested a convenient
means for estimating metabolic rates in very small animals.
Indeed, a recent study used 5°Rb turnover to determine that
insect pollination in highly disturbed landscapes can be dis-
rupted where the high cost of movement may not be offset by
suitable food resources (Tomlinson et al., 2017a). Measuring
ecological energetics has a long history of informing manage-
ment of species, but the same techniques are less reliable or
ineffectual in relatively rare, secretive or wide-ranging marine
predators. In response, Gallagher et al. (2017) applied a
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unique endocrinological approach to infer the energetic status
of free ranging sharks, finding seasonal patterns in metabolic
rates and nutritional balance that varied depending on the
ecology of the species, but may imply management insights
constructed around the seasonal patterns of stress and ener-
getic challenge in marine apex predators. The tools that
Gallagher et al. (2017) and Tomlinson et al. (2017a) developed
have provided insight into possible ecological, biological and
environmental factors contributing to the energetic bases of
animal movement and possibly population densities, but have
also raised many more research questions that will be required
to refine these tools.

As well as energetic measurements, conservation biolo-
gists have used a broader range of physiological indices to
understand habitat quality and threatening processes, but
many such techniques no longer receive widespread applica-
tion (Homyack, 2010). Biotelemetry has the advantage
beyond simple measures of ecological energetics in that it
links movement ecology with conservation physiology, pro-
viding a mechanistic element to the spatial evidence support-
ing conservation policy (Cooke et al., 2004; Cooke, 2008).
Most commonly, biotelemeters have been used to link field
metabolic rates with movement patterns, and sometimes
with feeding behaviours (Cooke et al., 2004; Homyack,
2010). However, contributors to ‘Conservation Physiology’
have begun, in an array of taxa, much more subtle applica-
tions that are capable of assessing the impact of capture on
physiological stress and survivorship of individuals and their
movement patterns (French ez al., 2015; Gutowsky et al.,
2017). Critically, this approach takes existing technology
and applies it so that physiological traits can be measured—
sometimes for the first time—and results can be used to
advise management of threatened species.

As a caveat, while novel technologies can be informative
to physiological processes and provide mechanistic insights
into conservation, there are also a number of emerging tech-
nologies that claim to offer amazing insights, but the value
of which remain elusive. For example, CRISPR genome edit-
ing (Ran et al., 2013), phenomics (Houle et al., 2010) and
metabarcoding (Thomsen and Willerslev, 2015) have all
been suggested as ways in which we can identify or even
modify critical physiological processes in complex ecosys-
tems or in response to complex ecological challenges.
Critically, if these advanced techniques prove to be reliable,
they provide a vital link between the physiological traits that
we understand to be adaptive now, and a capacity to ‘direct’
evolution in the face of conservation threats. It is precisely
this link, however, that raises concerns: the adaptive nature
of the physiology that we measure now, much in the way of
the Spandrels and San Marco (Gould and Lewontin, 1979),
does not necessarily represent the use for which it first
evolved. If, as conservation physiologists, we want our
research to result in successful conservation outcomes, we
also need to be somewhat Hippocratic in our approach:
before we apply the outcomes of our research, we must be
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certain that the technology that we employ works as we
intended rather than creating new conservation problems
(Nufiez et al., 2017).

There is a consistent theme to most of the empirical studies that
we have cited here; they take existing ideas, concepts, hypoth-
eses, techniques, and technologies and apply them outside their
usual scope. In doing so, the physiology crosses disciplinary
boundaries between physiology and ecology, between botany
and zoology, and between biology and the human dimension
in ways that provide the evidence base around which adaptive
management frameworks can be constructed (Cooke et al.,
2017; Nguyen et al., 2017). The growing number of success
stories in Conservation Physiology (Madliger et al., 2017)
have a number of common features, one of which is working
across complex boundaries (disciplinary, taxonomic, scale,
jurisdictions). This is the critical value to Conservation
Physiology and the work published here; the insights gained
have broad, practical value that crosses boundaries.
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