Quo Vadimus

Welfare of aquatic animals: where things are, where they are going, and what it means for research, aquaculture, recreational angling, and commercial fishing

Howard I. Browman1,*, Steven J. Cooke2,‡, Ian G. Cowx3,‡, Stuart W. G. Derbyshire4,‡, Alexander Kasumyan5,‡, Brian Key6,‡, James D. Rose7,‡, Alexander Schwab8,‡, Anne Berit Skiftesvik1,‡, E. Don Stevens9,‡, Craig A. Watson10,‡, and Robert Arlinghaus11,12,‡

1Marine Ecosystem Acoustics Group, Institute of Marine Research, Austevoll Research Station, Saugeneset 16, 5392 Storebø, Norway
2Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
3Hull International Fisheries Institute, University of Hull, Hull HU67RX, UK
4Department of Psychology, National University of Singapore, Singapore 11570, Singapore
5Department of Ichthyology, Faculty of Biology, Moscow State University, Moscow 119991, Russia
6School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
7Department of Zoology and Psychology and Neuroscience Program, University of Wyoming, Department 3166, 1000 East University Avenue, Laramie, WY 82071, USA
8Im Wygärtli 10, 4114 Hofstetten SO, Switzerland
9Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown PEI C1A 4P3, Canada
10Tropical Aquaculture Laboratory, School of Forest Resources and Conservation, University of Florida, Ruskin, FL 33570, USA
11Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Muggelseedamm 310, 12587 Berlin, Germany
12Division of Integrative Fisheries Management, Albrecht-Daniel-Thaer Institute for Agriculture and Horticulture, Faculty of Life Sciences, and Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Invalidenstrasse 42, Berlin 10115, Germany

*Corresponding author: tel: +47 98 86 07 78; e-mail: howard.browman@imr.no.

Received 23 May 2018; revised 23 May 2018; accepted 24 May 2018.

We revisit the evidence attributing sentience-pain-suffering to aquatic animals. The objective is to inform readers of the current state of affairs, to direct attention to where research is needed, and to identify “wicked” questions that are difficult to resolve unequivocally. By separating the ethical from the scientific debate, applying organized skepticism to the latter, and taking a pragmatic approach that does not depend on resolving the “wicked” questions, we hope to focus and strengthen research on aquatic animal welfare. A second but closely-related objective is to briefly summarize the research used to support the regulations governing the welfare of aquatic animals, particularly its limitations. If you interact with aquatic animals, these regulations already affect you. If the regulatory environment continues on its current trajectory (adding more aquatic animal taxa to those already regulated), activity in some sectors could be severely restricted, even banned. There are surely some lively debates and tough choices ahead. In the end, extending legal protection to aquatic animals is a societal choice, but that

© International Council for the Exploration of the Sea 2018. All rights reserved.
For permissions, please email: journals.permissions@oup.com
choice should not be ascribed to strong support from a body of research that does not yet exist, and may never exist, and the consequences of making that decision must be carefully weighed.

Keywords: Sentience, consciousness, pain, suffering, euthanasia, slaughter, animal-based measures, precautionary principle, 3 Rs, humane endpoints, European Directive 2010/63/EU.

Introduction

Diggle's (2018) review of the science available to inform aquatic crustacean welfare appears in this issue of the *ICES Journal of Marine Science*. Beyond the many technical concerns, his review raises numerous issues about the path that research on aquatic animal welfare is on, some of which have been raised before (e.g. Arlinghaus et al., 2007a, 2009, 2012; Rose, 2007; Arlinghaus and Schwab, 2011; Browman and Skiftesvik, 2011; Rose et al., 2014; Key, 2015). Since many of the issues raised by Diggle (2018) can be applied to any aquatic “lower” vertebrate or invertebrate, the publication of his review provides an opportunity to revisit the evidence attributing sentience-pain-suffering to aquatic animals and, as a consequence, the ethical and legal obligations to protect their welfare. The objective is to inform readers of the current state of affairs, to direct attention to where research is needed, and to identify those “wicked” questions that are difficult to resolve unequivocally. Importantly, some of the issues that are under debate are entirely ethical and, as such, fall outside the realms of scientific discourse. By separating the ethical from the scientific debate, applying organized scepticism to the latter, and taking a pragmatic approach that does not depend on resolving the “wicked” questions, we hope to focus and strengthen research on aquatic animal welfare.

A second, but closely related objective, is to briefly summarize the research used to support the regulations governing the welfare of aquatic animals, particularly its limitations. If you are a researcher, fisher, resource/fisheries manager or regulator, aquaculturist/fish farmer, angler, zookeeper or aquarist, these regulations already affect you. If the regulatory environment continues on its current trajectory (adding more aquatic animal taxa to those already regulated), activity in some sectors could be severely restricted, even banned.

Where things are

We will use Europe as a case study, although the situation is similar in many of the Organisation for Economic Cooperation and Development’s 34 member states.

The European Directive 2010/63/EU (European Parliament, 2010) on the protection of animals used for scientific purposes includes marine vertebrates and cephalopods (>700 extant species of cuttlefish, squid, octopus, and nautiloids) (Smith et al., 2013). The Directive covers cephalopods from hatching; eggs are not protected. Independently feeding larval vertebrates (including fish), and foetal mammals from the last third of development, are also protected. Some countries had already extended protection to decapods and honeybees before the 2010 Directive was adopted, through national legislation regulating the use of animals in research (Table 1).

The Directive only protects vertebrates and cephalopods used in scientific procedures. It does not apply to commercial or subsistence capture or recreational fishing, aquaculture or public or private aquaria (ornamental fish keeping) unless research is being carried out in association with those activities. However, the reasoning that underlies the EU Directive is similar to that of some national welfare legislation, which has, in the past, also been applied to commercial and recreational fishing and to aquaculture (Arlinghaus et al., 2009, 2012). Thus, the basis for, and details of, the EU Directive on animal experimentation provides an important context for the material that follows. Specifically, it is important to be aware of the following:

- The European regulations on animal use in research and in farming/aquaculture are related, and the underlying principles of both are analogous. Basically, when animals (sentient or not) are “in our care” we have an ethical obligation towards them; that is, to treat them “humanely”. The current EU regulations, and many national regulations, do not yet apply to free-living animals in the wild, as they are not “in our care”.
- The current regulations only apply to animals that are classified as sentient. However, sentient is not clearly defined in the EU regulations. How it is decided whether any given taxon is sentient is even fuzzier, although it typically involves measures of complexity in neuroanatomy, memory, and behaviour. Nonetheless, there are calls to accept the premise that all animals are sentient (Le Neindre et al., 2017).
- The capacity of an animal to experience pain and suffering forms the basis of the current legal regulations governing how its welfare is handled and how it is euthanized or slaughtered. Taxa classified as sentient are considered able to experience pain and suffering. Thus, research on aquatic animal welfare that is intended to inform the regulatory process about what particular animal group or species to include in the regulations (or not) must provide evidence for or against the existence of sentience-pain-suffering.
- Sentient animals that are “in our care” must be provided with comfortable conditions that optimize their health and welfare,
and be euthanized or slaughtered as quickly and painlessly as possible. In practice, this means that the animal must be rendered unconscious and insensible, eliminating the possibility for pain, distress, or suffering until the moment that it is killed [European Council Regulation (EC) No 1099/2009 on the protection of animals at the time of killing]. Under the current regulations (that stipulate that all vertebrate animals are sentient), the method and duration of the euthanasia or slaughter process is less critical for animals that are not sentient and cannot (by definition) experience pain or suffering. On the other hand, to maintain the health of animals in captivity, the need for/benefit of providing comfortable conditions and an appropriate method of euthanasia are the same, regardless of whether or not the animal is sentient. This has been referred to as the pragmatic approach to aquatic animal welfare (Arlinghaus et al., 2009), and contrasts with the pain-centred approach that is based on the assumption that the animal is sentient and experiences pain and suffering (e.g. Huntingford et al., 2006, 2007).

- Animals must not be used at all without justification because a fundamental ethical respect for life dictates that careless or indiscriminate use of any animal is not acceptable.
- The numbers of animals used in research should be kept to a minimum, following the principles of replacement, reduction, and refinement (the three Rs) (Tannenbaum and Bennett, 2015; Holly et al., 2016).

All of the above contextualizes the driver for, and importance of, the debate—scientific, ethical, and legal—surrounding whether fish and other aquatic animals are sentient and have the capacity to experience pain and suffering. It is also a strong motivator for research on these questions and, very importantly, for the manner in which that research is interpreted and applied, particularly the terminology used (e.g. pain vs. nociception). We will limit our coverage to the scientific discourse over the relevance and veracity of the research available to inform the question. Such a conflation of the scientific with the ethical is common, including in the scientific literature on aquatic animal welfare (reviewed by Rose, 2007; Arlinghaus et al., 2009; Browman and Skiftevik, 2011). In our view, this is counter-productive and must be scrupulously avoided (Derbyshire and Bagshaw, 2008). Failure to be disciplined about this risks being perceived as advocacy for or against a particular policy direction. We acknowledge that there will always be at least some element of personal values or preferences involved, but scientists would be well-advised to separate the natural science questions surrounding sentience and pain from its ethical implications, and to avoid mixing these in scientific articles or in the mass media.

The question of whether fish are sentient, and are able to experience pain and suffering, can be traced back to the late nineteenth century (Strange, 1870; Collier, 1889). More recently, the question of whether fish can experience pain was reviewed by Rose (2002), who concluded that it is unlikely in teleosts and does not exist in elasmobranchs (given their lack of nociceptors), and Sneddon et al. (2003) who concluded the opposite based on experiments with rainbow trout (Onchorhynchus mykiss). This was followed by several studies presenting what is typically interpreted (by the authors) as evidence that is "consistent with" the conclusion that fish experience pain (reviewed by Huntingford et al., 2006; EFSA, 2009; Braithwaite, 2010; Brown, 2015; Sneddon et al., 2014; Sneddon, 2018; Sneddon et al., 2018). However, numerous shortcomings in the definition of pain, as well as in the experimental design and data analysis of these studies have been identified, and the interpretations are often based on arguments—constructed to support the conclusion that the results are “consistent with” pain—presented with little or no mention of the many possible, and equally plausible, alternative interpretations (see Rose 2003, 2007; Rose et al., 2014; Key, 2015, 2016a; Sullivan and Derbyshire, 2015; Derbyshire, 2016; Stevens et al., 2016; Diggles et al., 2017; Key et al., 2017; Diggles, 2018 for detailed critiques; Box 1; and Gould, 1978, and Boutron and Ravaud, 2018, for general treatments of the issue of over-interpretation of results).

With the disclaimer that this is a simplification, the scientific debate distils down to whether any given animal group or species has the anatomical and neurophysiological underpinnings (nociceptors (=trauma receptors) and a central nervous system, including a brain, with structural organization and operational capacity to accomplish the sophisticated processing) to support sentence-pain-suffering as an emotional experience, and exhibit behaviours consistent with that (Box 1). Marshalling clear and unequivocal evidence about either of these is what can be considered a "wicked" problem because consciousness is not well understood, even in humans, and it is a prerequisite for the ability of an organism to experience pain and suffering (Box 1). Gutfriend (2017) concludes, "...the question of animal consciousness is, in theory, tractable, but that a full understanding of the neural basis

<table>
<thead>
<tr>
<th>Country</th>
<th>Invertebrate group</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Cephalopods</td>
<td>National Health and Medical Research Council’s Australian code for the care and use of animals for scientific purposes, 8th edition (2013)</td>
</tr>
<tr>
<td>Canada</td>
<td>Cephalopods and "some other higher invertebrates"</td>
<td>Canadian Council on Animal Care (1991)</td>
</tr>
<tr>
<td>European Union</td>
<td>Cephalopods</td>
<td>European Directive 2010/65/EU</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Octopus, squid, crab, lobster, crayfish</td>
<td>Animal Welfare Act (1999)</td>
</tr>
<tr>
<td>Norway</td>
<td>Squid, octopus, decapod crustaceans, honeybees</td>
<td>Norwegian Animal Welfare Act (2009)</td>
</tr>
</tbody>
</table>

Typically, protection is only accorded to animals used in scientific procedures and does not apply to aquaculture or public aquaria, unless research is being carried out in those facilities. Information was collated from the regulations cited and from Guillen (2017).
of human consciousness must first be obtained. I believe it is time to admit that until then we cannot answer the question of animal consciousness.” (see Dawkins, 2012; Mashour, 2018 for detailed accounts). In the opening editorial of the journal *Neuroscience of Consciousness*, the aim of which is to publish papers “…on the biological basis of consciousness….”, the editors state, “A challenge facing consciousness science is the lack of a consensual definition for consciousness.” (Seth et al., 2015). When it comes to fish, Allen (2013) concludes that, “…given the diversity of fish species and the limited extent to which they have been studied, blanket statements about fish cognition and consciousness are not responsible.” Thus, we argue that it is premature to base legally binding regulations on a concept that researchers cannot clearly define and do not understand, even in humans.

The central argument against sentience-pain-suffering in aquatic animals is based on long-existing knowledge of animal behaviour and basic principles of neurobiology, phylogenetics, and evolutionary parallelisms and homologies (possible functional equivalence or lack thereof), while also accepting their limitations, leading to the conclusion that it is unlikely in fish and invertebrates (Rose et al., 2014; Key, 2015; Diggle, 2018; see Box 1 for further details). The counter-argument distils down to a suggestion that a given animal group or species possesses some other neuroanatomical structures and physiological responses that, through functional equivalence, may endow it with sentience and the ability to experience pain and suffering (e.g. Braithwaite, 2010; Brown, 2015; Woodruff, 2017). Seemingly complex behavioural responses to noxious stimuli, some of which can be alleviated by pain killers that are effective in humans, are typically interpreted as being “consistent with” sentience and the ability to experience pain and suffering (e.g. Huntingford et al., 2006; Braithwaite, 2010; Brown, 2015; Sneddon et al., 2014). Consequently, some argue that to avoid the risk that we are causing suffering in untold numbers of animals, we should accept this as a sufficient basis to apply the precautionary principle and extend aquatic animals the benefit of the doubt, according them the same protections as other sentient animals (e.g. Huntingford et al., 2006; Sneddon, 2006; Braithwaite, 2010; Brown, 2015; Birch, 2017; Knutsson and Munthe, 2017). Importantly, the precautionary principle/benefit of the doubt approach reverses the burden of proof from a requirement to prove that these animals are conscious and experience pain and suffering, to proving that...
they are not and do not (Key, 2016b). Since the precautionary principle/benefit of the doubt approach cannot be falsified, it is an untestable hypothesis which, by definition, is not scientific (Key et al., 2017). As such, it seems imprudent to apply it as the basis for regulations with sweeping implications because it can only be reversed if convincing evidence—which is essentially impossible to produce—is brought forward. In such situations, and particularly when so much is at stake (see below), we argue for a pragmatic, pro-active problem-solving approach in which information on the well-being of fish and other aquatic animals is collected using objective indicators of stress, health status, and behaviour that are situation-specific and make no assumption about sentience, pain, or suffering (see Arlinghaus et al., 2009; Diggles et al., 2011 for detailed accounts). Applying the precautionary principle and presuming sentience, pain, and suffering when it might not exist, could result in the development and application of measures that are not well matched to the particular animal and, thereby, possibly reduce rather than increase its welfare. Alternately, the research community could conclude that these “wicked” questions cannot be answered by science as we currently know it, and that the pragmatic approach is inadequate/insufficient, which would make the debate exclusively ethical.

In an important contribution to the debate about animal sentience and its connection to welfare, Dawkins (2012, 2017) concluded—as do Gutfreund (2017) and Mashour (2018)—that the question of consciousness has not yet been settled for any animal and is unlikely to be resolved for some time. Dawkins argued that animal welfare considerations do not/should not hinge on whether a given animal is conscious. One particularly important ramification of Dawkins’ view is that, if a given taxon or species were convincingly shown to be devoid of consciousness, that fact must not diminish the importance of welfare considerations. We consider this position equivalent to/consistent with the pragmatic approach to aquatic animal welfare described above.

Where are things going?

As Diggles (2018) points out, applying the precautionary principle/benefit of the doubt approach, while at the same time defining pain using behavioural responses that are not exclusively associated with pain (as in Sneddon et al., 2014), and are incompatible with the widely accepted definition of pain (Box 1), means that it will be increasingly difficult to levy any scientific argument against extending the regulations to all aquatic animals. There are also calls to abandon the distinction between animals that are “in our care” vs. wild animals, vertebrate, and invertebrate alike (Knutsson, 2016; Brennan, 2017; Knutsson and Munthe, 2017). Arguments put forward that would achieve the same end are, for example, that the moment a fish strikes a hook or lure it is “in our care”, or the moment an aquatic animal enters a trawl, seine or gill-net, it is “in our care”. From that moment, it would be covered by the regulations and we would have to treat it accordingly. In applications such as commercial capture fishing using trawls, seines, or gill nets, that is currently impossible. Thus, following the precautionary principle, to avoid the possibility of inflicting pain and suffering on fish, crabs, squids, octopods, krill, shrimp, etc., the only solution would be to shut down these activities, which would have sweeping social, economic, and food security implications. As Adamo (2018) states, “Given the present uncertainty regarding sentience in fish, caution should be applied regarding the precautionary principle. Adopting this principle may cause distress to humans, who are certainly sentient, as they strive to protect animals that may not be.”

Decapods and honeybees are already regulated in some countries (Table 1). If the argument to include decapods under the regulations was successful, despite the uncertainties reviewed by Diggles (2018), it is likely that analogous arguments will be made to include all aquatic invertebrates. Diggles (2018) also points out that the evidentiary standard being applied to conclude that pain and suffering is possible cannot exclude insects or robots (also see Adamo, 2016a,b; Tomasik, 2017). Indeed, there are already discussions of sentience in plants (Pelizzon and Gagliano, 2015; Calvo et al., 2017; Gagliano, 2017).

Despite the uncertainty surrounding the existence of conscious feelings in any animal, there has been a notable increase in the use of terms associated with human psychological disorders (often semantically linked with suffering) in the literature about aquatic animals. Although these are now numerous (e.g. articles referring to fish with anxiety disorders, anorexia, depression, aggressive personalities, coping mechanisms, etc.), readers can get a sense of such studies from that by Vindas et al. (2016) in which the authors conclude that their observations of serotonergic activation, increased cortisol production and behavioural inhibition in growth-stunted farmed Atlantic salmon (Salmo salar) are “…reminiscent of a depressed state, similar to those described in mammals…” This led to news articles with headlines such as, “Your salmon is probably really, really depressed—and may be suicidal” (http://metro.co.uk/2016/05/25/your-salmon-is-probably-really-really-depressed-and-may-be-suicidal-5903714/). It is difficult to see a scientific basis for using terminology associated with human psychological disorders when interpreting studies on lower vertebrates or invertebrates, because one could easily use terms that do not invoke human mental disorders, as has been the standard for decades in the ethnology literature. Readers might consider the possibility that the growing use of terms associated with human psychological disorders has something to do with the legal requirement that an animal group or species must be sentient and experience pain and suffering to be included in the regulations.

It is important to be aware of how new animal groups or species get added to those already covered by the regulations. Either nationally or internationally, the organization charged with such matters will be asked for a scientific opinion on the matter. These institutions will then conduct a literature review and possibly a meta-analysis, which is typically discussed by an internal panel, often supplemented by external experts. The process can take months to years and typically ends with a report (e.g. EFSA, 2005, 2009; Swiss Federal Ethics Committee on Non-Human Biotechnology, 2014; Le Neindre et al., 2017). Those reports are then used as the basis for further discussions by the regulatory and legislative bodies (in which all stakeholders are involved), which may or may not decide to follow the recommendations. Scientists involved in this process must be disciplined, remaining impartial and offering only the best and most up-to-date scientific information. Approaches to accomplishing this, even when faced with very limited and uncertain science, have been developed (e.g. EFSA, 2014, 2018). They must scrupulously avoid conflating the science with ethics or philosophy. However, that is not always the reality of these processes, as there is a tendency for those with strong positions on either side of the debate to become involved. Often, it is simply the balance or imbalance of personalitie}s who happen to be appointed to the committee that
determines the outcome—that is, the science does not play the deciding role, particularly when it is inconclusive. We are particularly concerned that the scientists with the most experience with/ knowledge of the animals concerned often opt out of participating in such committees, or are unaware of their existence.

When the issue to be debated by the regulatory authorities and lawmakers is one such as animal welfare, it attracts those—on all sides—who are deeply invested in the outcome. As an example, the Center for Animal Law Studies, and Lewis and Clark Law School, recently launched the Aquatic Animal Law Initiative (AALI). The AALI “…works to protect and promote the interests of aquatic animals by: advocating on their behalf through the legal system; promoting their value to the public by providing education about their cognitive, emotional, and physiological capacities; and harmonizing human, animal, and environmental interests.” Some of their priority areas are to work towards obtaining regulatory protection for fish within the United States Animal Welfare Act, to reduce the use of aquatic species in testing of chemicals and toxins, and to address the impacts of aquaculture on animals as well as on the natural and human environments. The AALI is linked—via common participants—to the Humane Society of the United States and to similar law school initiatives in Switzerland, the UK and Australia, as well as to the Oxford Centre for Animal Ethics. Another example is Sentience Politics, an organization associated with the Effective Altruism Foundation, that advocates “…for a society in which the interests of all sentient beings are considered, regardless of their species membership…”. Sentience Politics organizes “…political initiatives, publish scientific policy papers, and host conferences to bring forward-thinking minds together to address the major sources of suffering in the world.” The Effective Altruism Foundation is also associated with Wild-Animal Suffering Research, an organization that conducts research on wild animal suffering, vertebrate and invertebrate. They state that, “suffering in nature is suffering we should prevent.”

The implications of this are clear: whether supported by sound and unequivocal science or not, we are moving toward a situation where human interactions with/use of all aquatic animals will be far more restrictive than it is today, at least in the world’s most affluent countries. Importantly, we are not arguing that the treatment of aquatic animals by humans should be unregulated. Rather, we are drawing attention to the weaknesses—at this time—of the scientific basis for regulating all aquatic animals on the presumption that they might be sentient and allegedly experience pain and suffering, and the consequences of accepting that position.

What does it/will it mean?

We will now explore some of the consequences of the current situation, and extend it to the future scenario in which some countries have adopted the most stringent welfare regulations and include all vertebrates and invertebrates. This exercise is relevant and needed in the context of weighing the perceived risk of inflicting pain and suffering on aquatic animals (if, in fact, they can experience pain and suffering) against the effect on society of implementing regulations that cover all aquatic animals, in all of the myriad forms of human interactions with them. Such a balanced risk assessment—that includes all stakeholders—should always be undertaken, and particularly if the precautionary principle/benefit of the doubt approach is being applied (in the absence of clear scientific support) as the basis for the regulations.

Aquatic animals in research

The opinion that fish, and some invertebrates such as decapods and cephalopods, can experience pain and suffering was adopted by the European Food Safety Authority in 2009 (EFSA, 2009). This led to the inclusion of fish and cephalopods in Directive 2010/63/EU on the Protection of Animals used for Scientific Purposes in the European Union (notably, not decapods, despite the recommendation in the EFSA opinion). As noted above, some other countries also regulate decapods (Table 1). The Directive stipulates, among other things, that approval by national animal welfare committees is required for research involving these aquatic animal groups. Some national animal welfare committees have a legal requirement to involve stakeholders other than scientists in the evaluation of proposals, sometimes including delegates from animal rights groups, theologians, and philosophers. In principle, the latter are present to opine on whether the benefits of the research to society outweigh the potential pain and suffering that would plausibly be inflicted on the experimental animals (i.e. an ethical assessment that goes far beyond the science itself). To be prudent, one must now start the application process 8–12 months in advance of the work. Even then, the application might be denied, or modifications required, further delaying the work, or terminating it. To be clear, we are not arguing against the need for welfare protocols or for a cost–benefit analysis grounded in ethics. We are only identifying the growing constraints on researchers. Over time, unless the approvals process is streamlined, this scenario will reduce the number of researchers in these areas, since it would be an unacceptable risk to engage a graduate student in a project that might not be approved, or only be approved half-way through the student’s studies. Another disconcerting and ironic result of this process is that research that contributes to a better understanding of aquatic animal sentience, pain, and suffering—that might lead to improving their welfare—is less-and-less likely to be approved (Allen, 2012; Rose et al., 2014).

The three Rs principle is now widely applied by animal welfare committees, which requires that the minimal possible number of animals be used. This is not always practical, and risks decreasing the sample size and replication to levels that might compromise the strength of the inferences that can be drawn from the experiment and, thereby, its relevance to policy-makers, resource managers, or fishers. Applying the three Rs principle to experiments with the early life stages of some aquatic animals is particularly problematic because, even under the best conditions, they often have high natural mortality and, therefore, if your initial numbers are small, you will quickly have no animals to sample or observe. This is particularly troublesome in research on new species being developed for aquaculture, in which the fecundity of a single female can be in the thousands to hundreds of thousands and larval mortality in the early stages of research to develop appropriate husbandry techniques can be >90%.

Relatively small-scale field surveys that involve direct physical interaction with fish (tagging, measuring, stripping eggs or milt . . .), cephalopods and, in some countries, decapods, also require approval. If the approach above is applied to scientific population census surveys of fish in the wild (e.g. with gill-nets, fyke nets, trawls, seines), dramatic changes in current practice will be required as each fish will have to be rendered unconscious and insensitive before it is euthanized. That will, at the very least, greatly reduce the sample sizes in such surveys. If planktonic
Aquatic animals in aquaculture

The possibility that fish are sentient and allegedly experience pain and suffering when held in captivity has also become a prominent topic in aquaculture in the context of providing appropriate husbandry conditions and endpoints on slaughter (unconscious and insensible when killed). In response, policies designed to harmonize regulations surrounding fish welfare in aquaculture across Europe have been developed (e.g. Council of Europe, 2006; European Commission, 2017). In 2006, the Standing Committee of the European Convention for the Protection of Animals Kept for Farming Purposes released generic welfare recommendations for the protection of farmed fish (Council of Europe, 2006). The document promised to provide species-specific appendices outlining the holding conditions required to meet welfare standards. However, these were never released because members of the Council of Europe failed to reach the required unanimity, most likely owing to the general absence of research on the welfare of most cultured species (particularly invertebrates), making it difficult to develop so-called animal-based measures of welfare for farmed aquatic animals that are analogous to those applied to farmed terrestrial animals (EFSA, 2012). Nevertheless, policymakers and veterinarians in charge of controlling national welfare standards require farmers to produce simplified welfare checklists that are used to judge whether the husbandry conditions being provided are appropriate (Anonymous, 2013). While it is usually reasonably straightforward to measure the pathogen-based (e.g. virus, bacterial, or parasite load) or survival/growth-based welfare status of individuals, animal-based measures of the behaviour of farmed aquatic animals is much trickier in terms of establishing clear links to welfare state. The focus on individual behaviour as indicative of animal welfare is also a driver for the kind of research alluded to above on the so-called psychoses and coping mechanisms of farmed aquatic animals.

Aquaculture has rapidly become one of the most important sources of protein for human consumption, and is more efficient than the production of protein from farmed terrestrial animals (FAO, 2016a,b; Froehlich et al., 2018). The impact of increasing welfare-related constraints on aquaculture (even when not supported by scientific evidence) is difficult to predict, even in terms of the desired effect of improving the welfare of the farmed animal. This, combined with the greater difficulty to impossibility of conducting research on these animals (as above), will leave society less able to produce high-quality protein to feed a still-growing global population.

Commercial capture fishing

There are growing calls for the development of animal-based measures of the welfare state of aquatic animals, and for the adoption of endpoints (unconscious and insensible at the time of slaughter) in commercial capture fishing (Metcalfe, 2009; Sandee et al., 2009). As stated above, the argument is that the moment the animal enters the capture gear it is “in our care” and subject to regulation. It is also important to note that the regulations associated with the care, welfare, and euthanasia of laboratory or farm animals focuses on individuals. It remains unclear how or if this can be practiced on commercial capture fishing or scientific surveys during which tons of fish, crustaceans, and plankton are collected under circumstances where it would be impossible to apply an individual-based approach to either assessing their welfare state or euthanizing them (Diggles et al., 2011; Veldhuizen et al., 2018).

Like aquaculture, capture fishing is a major source of high-quality protein for human consumption, and is also more efficient than the production of protein from farmed terrestrial animals (Hilborn and Tellier, 2012; FAO, 2016a,b; Poore and Nemecek, 2018). The impact of increasing welfare-related constraints on capture fishing (even when not supported by scientific evidence) could quickly lead to outright banning of gear such as gill-nets, and impose severe limitations on large-scale fishing using trawls and seines. This, combined with the greater difficulty to impossibility of conducting research that would be the basis for technological improvement, will leave society less able to produce high-quality protein, which would impose huge environmental and economic constraints and, more importantly, lead to food and nutritional insecurity, especially in poorer societies.

Recreational fishing

Accepting the premise that fish are sentient and experience pain and suffering has had a pervasive impact on recreational fishing, particularly in Germany and Switzerland (Arlinghaus et al., 2009, 2012). In Germany, risk assessments weighing the presumed suffering of fish against the benefits to anglers, and to local economies and fish conservation from angling, has led to severe constraints or bans on competitive fishing, put-and-take fishing, and the use of live baitfish and keep nets. One of the key ongoing debates involves the voluntary catch-and-release of legal-sized fish. In contrast to the mandatory release of sizes or species protected for purposes of conservation, where the presumed
suffering associated with catch-and-release is considered ethically acceptable, the release of legal-sized fish is prohibited in some Federal states (Arlinghaus et al., 2009, 2012). This is because catch-and-release fishing is deemed to cause unnecessary suffering to fish and the non-consumptive benefits to anglers are considered of insufficient weight in the risk assessment calculation (as opposed to the importance of fish conservation, which outweighs the risk of suffering). Thus, under such regulations, the only legally accepted reason for recreational fishing is to harvest and consume the catch, which leads to a far greater number of fish deaths caused by mandatory catch-and-kill policies. It can be argued that life is the major component of fitness/well-being and, hence, that catch-and-release has a lower welfare impact than catch-and-kill (Bovenkerk and Braithwaite, 2016).

To protect sea bass (Dicentrarchus labrax) populations, the EU recently implemented a catch-and-release only fishing policy on the recreational fisheries. When this conservation measure was launched, fisheries agencies in two German states imposed a ban on recreational fishing for sea bass (Arlinghaus, 2018). The reasoning behind the ban was that recreational fishing is only tolerated if the fish caught are consumed. Because that cannot be assured in the current recreational fishery, fishing for sea bass was banned overnight. This case is instructive because the intent of the EU policy was to conserve sea bass while maintaining the recreational fisheries. Rather, it opened the door to a complete ban hence, that catch-and-release has a lower welfare impact than catch-and-kill (Bovenkerk and Braithwaite, 2016).

To protect sea bass (Dicentrarchus labrax) populations, the EU recently implemented a catch-and-release only fishing policy on the recreational fisheries. When this conservation measure was launched, fisheries agencies in two German states imposed a ban on recreational fishing for sea bass (Arlinghaus, 2018). The reasoning behind the ban was that recreational fishing is only tolerated if the fish caught are consumed. Because that cannot be assured in the current recreational fishery, fishing for sea bass was banned overnight. This case is instructive because the intent of the EU policy was to conserve sea bass while maintaining the recreational fisheries. Rather, it opened the door to a complete ban on fishing, stemming directly from the precautionary principle/benefit of the doubt argument.

The narrowing of opportunities for people to engage in fishing undermines an important source of concern for aquatic animal welfare and fish conservation (Bate, 2001; Schwab, 2003; Rose 2007). In contrast, positive messages to consider fish welfare in recreational fisheries can quite easily win the support of anglers, benefiting the fish, angler, and fishery (Cooke and Sneddon, 2007, Arlinghaus et al., 2007b, 2009; FAO, 2012).

Ornamental fish keeping
Ornamental fish keeping in ponds and aquaria has been a popular pastime for centuries. Millions of fish are kept under conditions that are difficult/impossible to assess or monitor, let alone regulate. Many hobby fish keepers will also regularly carry out their own breeding and crossing experiments. In contrast to the situation in research, such experiments are done without any form of external control or approval. This is an example of the inconsistency in regulatory standards in current aquatic animal welfare policies in Europe: they apply to researchers, aquaculturists and, in some countries, to recreational anglers, but not to ornamental fish keepers, aquaria and zoos. One reason for this is the impracticality of it. This too may soon change, with calls for reconsidering the practice of feeding animals in zoos and aquaria live invertebrates (Keller, 2017), or ending the practice of keeping animals in captivity (e.g. Born Free Foundation).

Losing ornamental fish keepers would undermine a large support base for the welfare of aquatic animals and their conservation (Cracknell et al., 2018), and risk millions of jobs worldwide, particularly in developing countries (Costa Leal et al., 2016).

Moving forward
What if fish and/or aquatic invertebrates are not able to experience pain or suffering? Would the issue of their welfare cease to exist? It would not, because one could address fish welfare using indicators other than those based upon a pain-centred perspective (Arlinghaus et al., 2009; Diggles et al., 2011; Diggles, 2016a).

To move forward and design strategies for avoiding the surprisingly counter-productive and sometimes inconsistent outcomes that a pain-centred policy has to offer for the welfare of aquatic animals, two directions are worth contemplating.

First, a sober look at the welfare of aquatic animals would exclusively focus on objectively measurable welfare indicators such as behaviour, physiology, growth, fecundity, health, and stress (Arlinghaus et al., 2009). Obviously more species-specific research would be needed before these indicators could be put into practice (EFSA, 2012). Unfortunately, owing to the current precautionary principle/benefit of the doubt approach toward largely accepting, de facto, that fish and other aquatic animals are sentient and experience pain and suffering, it is increasingly difficult to conduct this research.

Second, more emphasis could be placed on the win-win reality that everyone benefits from keeping aquatic animals in a high state of welfare during capture, holding, husbandry, and through slaughter (e.g. Diggles, 2016b). Indeed, it is in the interest of the researcher, aquaculturist, and ornamental fish keeper that fish held in captivity live well, and in the interest of the commercial fisher that fish captured in a trawl maintain high flesh quality and, thereby, receive a high market price. There is also a growing insistence among consumers that the animals that they are eating were well treated. Similarly, it is in the interest of recreational anglers to ensure that released fish survive unharmed and reproduce. Self-interest, assisted by recommendations based on scientifically established welfare indicators that are not based on alleged pain, would be an effective way to minimize or even avoid many of the situations mentioned above. It would also provide a positive and constructive message that, we argue, is more likely to gain the support of stakeholders (e.g. Arlinghaus et al., 2009).

There are surely some lively debates and tough choices ahead. We hope that this essay will serve to help those involved to identify sound science and the key questions on which more research is needed (or those that science cannot resolve), as well as highlighting the need to stringently separate the scientific evidence from the ethical debate. In the end, extending legal protection to aquatic animals is a societal choice, but that choice should not be ascribed to strong support from a body of research that does not yet exist, and may never exist, and the consequences of making that decision must be carefully weighed.

Disclaimer: The opinions and positions taken in this article are those of the authors and do not necessarily reflect those of their employers, ICES or OUP.

Declarations of interest
H.I.B. works for the Institute of Marine Research, Norway, a government research institute charged with generating science and providing advice in support of the sustainable use of marine resources. He conducts research on aquatic animals. None of the directed funding he has received to date has been related to fish sentience-pain-suffering. He is Editor-in-Chief of this Journal, which is owned by the International Council for the Exploration of the Sea (ICES), a global intergovernmental organization that develops science and advice to support the sustainable use of the oceans. He declares no conflicts of interest.

S.J.C. is a researcher with funding from a variety of entities including federal/provincial natural resource management agencies as well as commercial and recreational angling organizations.
None of the directed funding he has received to date has been related to fish sentence. He declares no conflicts of interest.

I.G.C. is researcher working on international fisheries development with funding from a variety of public and commercial sources. None of the directed funding he has received to date has been related to fish sentence. He declares no conflicts of interest.

S.W.G.D. holds a joint appointment in the Clinical Imaging Research Centre in Singapore where he mostly investigates the neural basis of human pain. He does no research with aquatic animals and declares no conflicts of interest.

A.K. works for the Moscow State University, Russia, where he is charged with education and generating science. A.K. conducts research on sensory systems and behaviour in freshwater and marine fish and has published articles identifying fish responsiveness to aversive and attractive stimuli. He declares no conflicts of interest.

B.K. declares no conflicts of interest.

J.D.R. declares no conflicts of interest.

A.S. declares no conflicts of interest.

A.B.S. works for the Institute of Marine Research, Norway, a government research institute charged with generating science and providing advice in support of the sustainable use of marine resources. She conducts research on aquatic animals. None of the directed funding that she has received to date has been related to fish sentence-pain-suffering. She declares no conflicts of interest.

E.D.S. is funded by the National Sciences and Engineering Research Council of Canada to study “Fish physiology: fundamental aspects of analgesics in fishes”. He declares no conflicts of interest.

C.W. works for the University of Florida’s Institute of Food and Agricultural Sciences. His research and extension activities support commercial aquaculture industries. He declares no conflicts of interest.

R.A. works for the Leibniz-Institute of Freshwater Ecology and Inland Fisheries and Humboldt-Universität zu Berlin, Germany.

Both are tax payer funded research and teaching institutions charged with generating basic and applied science in support of sustainable fisheries and aquatic ecosystem management. R.A. conducts research on recreational fisheries. He declares no conflicts of interest.

Acknowledgements
We thank Mohan Raj and Simon More for constructive comments on the manuscript. HIB’s contribution to this essay was supported by the Norwegian Institute of Marine Research’s Project # 83741 (“Scientific publishing and editing”).

References

Derbyshire, S. W. G. 2016. Fish lack the brains and psychology for pain. Commentary on Key on Fish Pain. Animal Sentience, 2016: 025.

Woodruff, M. L. 2017. Consciousness in teleosts: there is something it feels like to be a fish. Animal Sentience, 2017.010.