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Abstract
1.	 Telemetry,	or	the	remote	monitoring	of	animals	with	electronic	transmitters	and	
receivers,	has	vastly	enhanced	our	ability	to	study	aquatic	animals.	Radio	telem-
etry,	acoustic	telemetry	and	passive	integrated	transponders	are	three	common	
technologies	that	generate	detection	data	—	time‐stamped,	tag‐specific	records	
that	are	logged	by	receivers.

2.	 We	 review	current	 statistical	methods	 and	 comment	on	potential	 future	direc-
tions	for	analysing	detection	data	derived	from	fixed	telemetry	receiver	arrays.

3.	 To	illustrate	how	different	methods	may	be	used	to	achieve	diverse	study	objec-
tives,	we	provide	a	case	study	dataset	collected	by	an	array	of	42	acoustic	telem-
etry	receivers	on	187	bull	trout	in	the	Kinbasket	Reservoir	of	British	Columbia.	To	
close,	we	present	a	decision	tree	for	guiding	the	selection	of	a	method	based	on	
study	objectives	and	sampling	design.

4.	 This	paper	provides	both	experienced	and	novice	telemetry	researchers	with	the	
knowledge	and	tools	to	facilitate	more	comprehensive	analysis	of	detection	data	
and,	in	so	doing,	ask	a	wide	variety	of	ecological	questions	that	will	enhance	our	
understanding	of	aquatic	organisms.

K E Y W O R D S

acoustic	telemetry,	detection	data,	movement	ecology,	Ocean	Tracking	Network,	PIT	tag,	
radio	telemetry,	statistical	methods

1  | INTRODUC TION

Aquatic	animals	 live	 in	habitats	that	create	 inherent	challenges	for	
those	attempting	to	study	their	ecology,	behaviour	and	physiology.	

Telemetry	 enables	 the	 remote	 monitoring	 of	 free‐living	 animals,	
whereby	a	signal	emanating	 from	a	device	 (i.e.,	 transmitter	or	 tag)	
carried	by	an	animal	transfers	information	to	a	receiver.	The	advent	
of	telemetry	tools	has	provided	researchers	with	effective	means	of	
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studying	aquatic	animals	in	the	streams,	rivers,	lakes,	estuaries,	and	
oceans	of	the	world	(Hussey	et	al.,	2015;	Lucas	&	Baras,	2000).

Three	 common	 telemetry	 technologies	 used	 with	 aquatic	 ani-
mals	are	radio	and	acoustic	telemetry,	and	passive	integrated	tran-
sponders	(PIT).	Radio	telemetry	uses	radio	signals	that	are	detected	
by	 an	 antenna	 affixed	 to	 a	 receiver,	 whereas	 acoustic	 telemetry	
uses	sound	waves	to	transmit	tag	 information	to	a	hydrophone	on	
a	 receiver.	 The	 transmitters	 of	 both	 technologies	 are	 dependent	
on	 internal	batteries	 that,	 along	with	 the	 tag‐animal	 size	 ratio	and	
tag	 settings,	 limit	 the	duration	of	data	 collection.	PIT	 tags	 rely	on	
external	 energy	derived	 from	an	electromagnetic	 field	 emitted	by	
receiver	antennas,	which	prolongs	the	tag	lifespan	but	requires	close	
proximity	(Lucas	&	Baras,	2000).	Despite	design	differences	(Cooke,	
Hinch,	Lucas,	&	Lutcavage,	2012;	Lucas	&	Baras,	2000),	these	three	
telemetry	technologies	all	record	one	specific	kind	of	data:	detection	
data	 that	 consist	 of	 time‐stamped,	 tag‐specific	 records	 registered	
and	stored	by	receivers	when	tagged	animals	are	within	range.

Recently,	a	shift	from	mobile	tracking	towards	using	fixed	receiv-
ing	stations	that	automatically	log	detections	has	led	to	a	large	number	
of	tagged	animals	and	extensive	receiver	coverage	crossing	geopolit-
ical	boundaries	(Donaldson	et	al.,	2014).	The	collection	and	aggrega-
tion	of	large	aquatic	detection	datasets	has	created	both	challenges	
and	 opportunities	 for	 the	 study	 of	 wild	 aquatic	 animals	 (Lennox	
et	al.,	2017a).	Although	there	have	been	substantial	developments	in	
the	statistical	analysis	of	aquatic	detection	data,	to	our	knowledge,	
there	have	been	no	attempts	to	synthesize	the	existing	and	emerging	
methods.	Our	goal	is	to	provide	this	synthesis.	Although	the	methods	
we	review	are	the	most	ubiquitous	(today),	they	are	not	exhaustive.	
In	particular,	because	detection	data	are	limited	to	collection	at	dis-
crete	locations,	we	do	not	review	methods	for	spatially	continuous	
data	(e.g.	movement	paths	collected	by	satellite	telemetry	devices).	
It	 is	possible	 to	obtain	estimates	of	 spatially	 continuous	data	 from	
detection	 data	 using	 positioning	 systems	 (e.g.	 Niezgoda,	 Benfield,	
Sisak,	&	Anson,	2002;	Smith,	2013)	or	by	calculating	centers	of	ac-
tivity	(Simpfendorfer,	Heupel,	&	Hueter,	2002),	in	which	case	other	
statistical	methods	not	reviewed	herein	may	be	used,	 for	example,	
home	 range	 analysis	 (Marshell,	 Mills,	 Rhodes,	 &	 McIlwain,	 2011),	
state‐space	models	(Martins	et	al.,	2014),	or	hidden	Markov	models	
(Whoriskey	et	al.,	2017).	We	also	do	not	discuss	software	designed	
primarily	for	the	data	management	and	visualization	of	aquatic	de-
tection	data.	These	developments,	e.g.	the	Ocean	Tracking	Network	
Toolbox	(otndc@dal.ca),	ZoaTrack	(Dwyer	et	al.,	2015),	the	Integrated	
Marine	Observing	System's	Animal	Tracking	Facility	detection	data-
base	and	quality	control	procedures	(Hoenner	et	al.,	2018),	and	the	
R	(R	Core	Team	2018)	packages	glatos	(Holbrook,	Hayden,	&	Binder,	
2017),	and	VTrack	(Campbell,	Watts,	Dwyer,	&	Franklin,	2012),	pro-
vide	high‐quality	standardized	methods	for	handling	detection	data;	
however,	they	typically	do	not	incorporate	a	stochastic	component.

First,	we	review	statistical	methods	 for	detection	data	derived	
from	fixed	telemetry	arrays	in	aquatic	environments.	To	illustrate	the	
differences	between	statistical	methods,	throughout	the	review,	we	
analyse	a	portion	of	a	dataset	collected	on	acoustically	tagged	bull	
trout	(Salvelinus confluentus).	Then,	we	comment	on	potential	future	

directions	that	could	help	advance	our	understanding	of	how	aquatic	
animals	interact	with	each	other,	their	environment,	and	humans	in	a	
rapidly	changing	world.	To	close,	we	present	a	decision	tree	to	sum-
marize	 the	 differences	 among	 the	 statistical	methods	 and	 to	 help	
guide	researchers	on	how	to	analyse	their	detection	data	given	the	
scientific	questions	of	interest	and	sampling	design.

2  | ILLUSTR ATIVE DATA SET

Between	 2010	 and	 2012,	 187	 bull	 trout	 were	 acoustically	 tagged	
and	monitored	by	an	array	of	42	receivers	deployed	in	the	Kinbasket	
Reservoir	of	British	Columbia,	Canada	(Figure	1).	The	full	dataset	was	
previously	analysed	in	Martins	et	al.	(2013)	and	Gutowsky	et	al.	(2016);	
for	simplicity,	we	chose	to	analyse	data	collected	only	during	January	
2011.	The	resulting	dataset	comprised	three	files:	 receiver	metadata,	
that	 includes	 the	 identities	 and	 locations	 of	 the	 deployed	 receivers,	
along	with	environmental	 information;	 tag	metadata,	 that	consists	of	
the	unique	tag	ID	codes	and	other	animal	characteristics	(e.g.	length/
weight/sex);	and	detection	data,	 i.e.	the	records	of	tags	registered	by	
receivers	at	a	specific	date	and	time.	Together,	these	data	(hereafter	‘de-
tection	data’)	provide	a	comprehensive	view	on	individual	movements.

For	any	 telemetry	 study,	 the	question	of	 interest	and	 the	 spa-
tiotemporal	 design	 of	 the	 receiver	 deployments	will	 influence	 the	
applicability	of	various	statistical	methods.	Once	a	method	has	been	
chosen,	the	detection	data	will	need	to	be	summarized	into	an	ap-
propriate	response	variable	(y).	Examples	 include:	counts	of	detec-
tions	(Zhang	et	al.,	2015),	counts	or	proportions	of	receivers	visited	
within	a	specific	time	scale	(Udyawer,	Read,	Hamann,	Simpfendorfer,	
&	 Heupel,	 2015),	 presence/absence	 data	 (Dudgeon,	 Lanyon,	 &	
Semmens,	2013;	Kessel	et	al.,	2014a),	time	spent	in	particular	areas	

F I G U R E  1  Study	location	of	the	illustrative	dataset,	i.e.	the	
Kinbasket	reservoir	in	British	Columbia,	Canada,	with	the	location	
of	the	dam	in	yellow,	and	the	receiver	locations	in	dark	blue.	
Detection	range	was	assumed	to	be	500	m,	a	distance	shorter	than	
the	width	of	either	Reach	in	most	places
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or	residency	indices	(Kessel	et	al.,	2014a;	Ketchum	et	al.,	2014),	and	
movement	rates	(Stich,	Kinnison,	Kocik,	&	Zydlewski,	2015).	We	dis-
cuss	 the	 form	of	 the	 response	variable	 for	each	method	 reviewed	
below,	and	use	the	Kinbasket	dataset	to	illustrate	the	versatility	of	
detection	data.

3  | RE VIE W OF CURRENT STATISTIC AL 
METHODS

3.1 | Generalized modelling framework

Researchers	who	use	telemetry	are	often	interested	in	determin-
ing	 whether	 there	 is	 a	 relationship	 between	 animal	 movement	
patterns	 and	 a	 set	 of	 putative	 explanatory	 variables	 or	 covari-
ates.	 Because	many	 of	 the	 possible	 response	 variables	 are	 non‐
Gaussian,	 traditional	 statistical	methods	 like	analysis	of	variance	
and	 linear	regression	are	not	directly	applicable.	Generalized	 lin-
ear	models	(GLMs)	enable	the	modelling	of	non‐Gaussian	response	
variables	provided	they	follow	a	distribution	belonging	to	the	ex-
ponential	family	(Wood,	2006).	A	GLM	links	an	observation	yi	to	a	
set	of	covariates	Xi:

where	E[	•	]	denotes	the	expectation	of	a	random	variable,	g(	•	)	is	a	
monotonic	link	function,	and	the	vector	β	contains	k	+	1	entries	that	
describe	 the	 relationship	between	�i	 and	 the	k	 covariates	 (plus	an	
intercept)	contained	in	each	row	vector	Xi	(Wood,	2006).

Because	 telemetry	 does	 not	 directly	measure	 animal	 absence,	
researchers	must	decide	whether	 to	 interpret	a	 lack	of	detections	
as	absence	and	encode	them	as	zeros	within	a	dataset.	The	temporal	
resolution	of	the	study	directly	affects	the	number	of	zeros	 in	the	
response,	whereby	many	zeros	will	be	included	if	animals	are	rarely	
detected	 over	 numerous	 short	 time	 intervals.	 Furthermore,	 envi-
ronmental	 features	 like	 topography,	weather,	 and	biological	 noise,	
as	well	as	collisions	with	other	telemetry	transmissions,	can	lead	to	
false	 absences	 (Cagua,	Berumen,	&	Tyler,	 2013).	A	dataset	will	 be	
more	 difficult	 to	 accurately	model	when	 the	 number	 of	 observed	
zeros	 is	 substantially	 greater	 than	 the	 number	 predicted;	 such	
models	may	 show	evidence	of	overdispersion	 (when	 the	 response	
variance	 is	 larger	 than	expected)	or	 lack	of	 fit	 (Zuur,	 Ieno,	Walker,	
Saveliev,	&	Smith,	2009).	 In	 these	cases,	zero‐inflated	models	may	
provide	more	accurate	results	(Zuur	et	al.,	2009).

Both	discrete	and	continuous	covariates	can	be	included	in	GLMs	
if	 they	are	 linearly	 related	to	 the	response.	For	nonlinear	 relation-
ships,	generalized	additive	models	 (GAMs)	relate	the	response	and	
covariates	 using	 a	 sum	of	 smooth	 functions	 f(	 •	 )	 of	 the	 variables	
(Wood,	2006),	e.g.

Detection	data	have	been	related	to	covariates	like	lunar	phase	and	tidal	
stage	(Dudgeon	et	al.,	2013),	water	temperature	(Kessel	et	al.,	2014a;	
Udyawer	et	 al.,	 2015),	 discharge	 (Richard,	Bernatchez,	Valiquette,	&	

Dionne,	2014;	Stich	et	al.,	2015),	and	diel	period	(Ketchum	et	al.,	2014;	
Zhang	et	 al.,	 2015).	 Temporal	 data	 can	 also	be	used,	 often	by	 sum-
marizing	the	response	 into	temporal	blocks	and	 including	the	blocks	
as	a	covariate.	Blocks	can	be	defined	based	on	species	ecology	 (e.g.	
reproductive	timing),	or	anthropogenically	 (e.g.	by	monthly	 intervals;	
Matich	&	Heithaus,	2014).	When	investigating	a	temporal	trend	in	the	
response,	temporal	autocorrelation	should	be	checked	and	accounted	
for	if	the	assumption	of	independence	is	violated,	e.g.	by	incorporating	
lagged	temporal	variables	(Kessel	et	al.,	2014a)	or	including	a	correla-
tion	structure	(Börger	et	al.,	2006).

Because	most	detection	data	are	collected	under	the	largely	un-
controlled	 conditions	 of	 the	 natural	 environment,	 some	 responses	
may	 only	 be	 independent	 when	 conditioned	 upon	 other	 variables.	
These	variables,	also	known	as	random	effects,	can	be	accounted	for	
by	 incorporating	a	second	stochastic	term	 into	GLMs	and	GAMs	to	
form	generalized	linear	mixed	models	(GLMMs)	and	generalized	addi-
tive	mixed	models	(GAMMs;	Wood,	2006).	In	practice,	random	effects	
are	often	included	to	account	for	variation	within	and	among	sampling	
units.	For	example,	detection	data	are	usually	collected	on	a	random	
subset	of	individuals	from	a	population.	To	conduct	population‐level	
inference,	 individual	 ID	can	be	included	as	a	random	effect	with	ei-
ther,	or	both,	an	intercept	and	slope	(Bolker	et	al.,	2009).	Random	ef-
fects	can	also	be	associated	with	space	or	time,	e.g.	receiver	location	
(Ketchum	et	al.,	2014)	or	age	and	sampling	year	(Börger	et	al.,	2006).

Generalized	models	were	 used	 to	 assess	 the	 factors	 affecting	
spatial	distribution	and	movement	of	bull	 trout	 in	 the	 full	 comple-
ment	 of	 the	 illustrative	 dataset	 (Gutowsky	 et	 al.,	 2016).	 Using	 a	
GLMM,	Gutowsky	et	al.	(2016)	assessed	the	effects	of	year,	season,	
sex,	 and	body	 size	 (covariates	 in	X)	 on	home	 range	 size	 (response	
y;	95%	minimum	convex	polygon).	A	GAMM	was	used	 to	quantify	
the	relationship	between	total	displacement	(response	y;	sum	of	dis-
tances	between	receivers)	and	sex,	body	size,	and	smoothed	month.	
Larger	 β	 coefficient	 values	 for	 spring	 and	 fall	 suggested	 that	 bull	
trout	home	ranges	were	larger	in	those	seasons	than	in	winter	and	
summer.	Additionally,	a	positive	sex‐size	interaction	term	suggested	
that	larger	females	moved	farther	than	smaller	females.

3.2 | Survival (time‐to‐event) analysis

Telemetry	measures	animal	positions	over	time	and	changes	in	po-
sition	can	be	 related	 to	 important	ecological	 events.	For	example,	
tagged	animals	may	disperse	or	migrate	(Kawabata	et	al.,	2010),	inter-
act	with	humans	(Thorley,	Youngson,	&	Laughton,	2007),	pass	an	ob-
stacle	(Castro‐Santos	&	Haro,	2003;	Martins	et	al.,	2013;	Naughton	
et	al.,	2005),	be	depredated	(Danylchuk	et	al.,	2007;	Lennox	et	al.,	
2017b),	 or	 die	 (Curtis,	 Johnson,	 Diamond,	 &	 Stunz,	 2015).	 These	
events	can	be	analysed	with	GLMs	using	a	binomial	response,	where	
study	animals	are	grouped	into	those	that	experience	an	event	and	
those	that	do	not.	Survival	analysis	extends	the	response	by	incor-
porating	the	time	it	takes	for	the	event	to	occur	(e.g.	y	=	2	days)	and	
estimates	the	survival	function,	S(t),

(1)
�i≡E

[
yi
]
,

g
(
�i
)
=Xi� =�0+�1xi,1+�2xi,2+⋯+�kxi,k
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(2)g
(
�i
)
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(
xi,1
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which	 describes	 the	 probability,	 Pr(	 •	 ),	 that	 an	 event	 will	 occur	 at	
some	random	time	T	after	the	set	time	t	(Klein	&	Moeschberger,	2003;	
Pollock,	Winterstein,	 Bunck,	 &	 Curtis,	 1989).	 Two	 common	 survival	
function	 estimators	 include	 the	 non‐parametric	 Kaplan–Meier	 and	
Nelson‐Aalen	 estimators	 (Klein	 &	Moeschberger,	 2003).	 A	 log‐rank	
test	can	be	used	to	compare	the	estimated	survival	curves	of	differ-
ent	 groups	 (e.g.	 sex	 and	 reproductive	 state	 or	moult	 stage;	 Pollock,	
Winterstein,	et	al.,	1989;	Huserbråten	et	al.,	2013).

Further	inference	is	possible	with	the	hazard	function	h(t),	which	
describes	the	conditional	rate	of	an	event	occurring	during	a	period	
of	time	{t, t + Δt}	given	that	it	has	not	already	been	experienced	(Klein	
&	Moeschberger,	2003):

When	the	shape	of	the	hazard	or	survival	function	is	assumed,	
parametric	 survival	 analysis	 can	 be	 performed	 with	 error	 distri-
butions	 (e.g.	Weibull)	 and	 this	 allows	 for	 predictive	 extrapolation	
(Benoît	et	al.,	2015).	However,	selecting	a	parametric	hazard	func-
tion	 requires	 accurate	 knowledge	 of	 the	 true	 shape,	which	 is	 not	
often	known	(Murray,	2006;	White	&	Garrott,	1990).	Consequently,	
using	semi‐parametric	Cox	proportional	hazards	 regression	can	be	
advantageous	 because	 there	 is	 no	 assumption	 about	 the	 hazard	
shape,	yet	the	response	can	still	be	compared	to	a	set	of	covariates	X 
(Harrell,	2015;	Murray,	2006),

The	hazard	h(	•	)	is	related	to	an	arbitrary	baseline	hazard	h0(	•	)	
that	is	treated	non‐parametrically,	and	a	known	parametric	function	
c(	•	)	of	the	covariates	and	their	coefficients	(Klein	&	Moeschberger,	
2003).	The	Cox	proportional	hazards	model	is	also	less	sensitive	to	
outlying	observations	than	parametric	models,	but	does	require	haz-
ard	proportionality	which	can	be	verified	graphically	or	by	 testing	
for	 independence	between	Schoenfeld	residuals	and	time	 (Harrell,	
2015).	Violations	of	this	assumption	may	be	compensated	for	by	fit-
ting	stratified	models	(Harrell,	2015).

In	 telemetry	 studies,	 animals	 often	 go	 undetected	 for	 ex-
tended	periods,	either	because	they	leave	the	detection	range	of	
the	array	or	because	 they	are	 inactive.	The	 resulting	monitoring	
gaps	can	cause	discontinuity	in	the	hazard	function	(Murray,	2006)	
and	 bias	 survival	 estimates	 (Bunck,	 Chen,	&	 Pollock,	 1995).	 The	
Andersen–Gill	estimator	 (Andersen	&	Gill,	1982)	 is	a	variation	of	
the	Cox	proportional	hazards	model	that	uses	a	counting	process	
to	 account	 for	discontinuous	monitoring	 (Murray,	2006;	 see	e.g.	
Johnson,	Boyce,	Schwartz,	&	Haroldson,	2004).	 In	addition,	 indi-
viduals	 that	 fully	 drop	out	of	 the	 study	before	 the	event	occurs	
can	be	censored	from	survival	analysis	techniques	without	having	
to	be	removed	entirely	(Pollock,	Winterstein	&	Conroy	1989).	For	
example,	 Topping	 and	 Szedlmayer	 (2011)	 used	 survival	 analysis	
to	 study	 the	 residency	 time	 (event	=	 emigration)	 of	 red	 snapper	
(Lutjanus campechanus),	 and	 censored	 fish	 that	 either	 died	 be-
fore	emigration	or	did	not	emigrate	in	order	to	retain	them	in	the	
analysis.

An	 example	 of	 survival	 analysis	 using	 detection	 data	 can	 be	
found	 in	Martins	 et	 al.	 (2013),	where	 the	Kaplan–Meier	 estimator	
was	used	 to	compute	 the	 risk	of	bull	 trout	unintentionally	passing	
through	hydro‐electric	dam	turbines	(the	event	of	interest)	from	the	
full	Kinbasket	dataset.	The	Kaplan–Meier	estimator	exhibits	 larger	
jumps	 in	the	survival	curve	for	the	fall	and	winter,	suggesting	that	
the	risk	of	passing	through	the	dam	was	higher	during	those	seasons.

3.3 | Mark‐recapture models

Mark‐recapture	models	are	used	for	estimating	movement	or	demo-
graphic	attributes,	e.g.	abundance	or	survival.	These	models	are	fit-
ted	to	data	collected	by	capturing	and	marking	a	sample	of	animals	
from	 a	 population,	 subsequent	 release,	 and	 resampling	 such	 that	
additional	samples	can	include	both	marked	and	unmarked	animals	
(Amstrup,	McDonald,	&	Manly,	2005).	When	using	telemetry,	mark‐
recapture	models	are	applicable	if	the	tagging	procedure	is	consid-
ered	 the	marking	process,	and	detections	are	 the	 recaptures.	Few	
telemetry	studies	record	the	presence	of	untagged	animals	(but	see	
Dudgeon,	Pollock,	Braccini,	Semmens,	&	Barnett,	2015),	 therefore	
the	 most	 applicable	 mark‐recapture	 models	 incorporate	 data	 col-
lected	on	tagged	animals	only,	which	include	known‐fate,	live‐recap-
ture,	and	recovery	models	(Lindberg,	2012).

Known	 fate	models	 (related	 to	 survival	 analysis)	 assume	per-
fect	 detection	 probabilities,	 which	 rarely	 occur	 in	 telemetry.	
Alternatively,	 live‐recapture	models	are	highly	applicable	 for	an-
alyzing	 detection	 data	 because	 they	 enable	 the	 joint	 estimation	
of	 detection	 probability	 and	 demographic	 quantities.	 Among	
live‐recapture	 models,	 the	 Cormack–Jolly–Seber	 model	 is	 fre-
quently	 used,	 often	 to	 estimate	 survival	 along	migratory	 routes	
(e.g.	Moore	et	al.,	2015;	Welch	et	al.,	2009).	The	Cormack–Jolly–
Seber	model	 is	 fitted	 using	 a	 product	 of	 probabilities	 	with	 two	
basic	parameters:	ϕ	 is	 the	probability	 that	an	 individual	 survives	
between	detections,	and	p	 is	the	probability	that	an	 individual	 is	
detected	if	alive	and	marked	(Amstrup	et	al.,	2005).	The	response	
variable	consists	of	a	binary	encounter	history	 (absence	=	0	and	
presence	=	1)	for	every	marked	animal	that	 is	recorded	on	a	dis-
crete	temporal	scale	chosen	by	the	researcher.	If	a	single	animal's	
encounter	history	is	encoded	as	1101,	where	the	first	digit	is	the	
initial	capture	and	tagging,	then	the	associated	encounter	proba-
bility	would	be

if	ϕ and p	are	assumed	constant	through	time,	or

if	 these	 probabilities	 are	 allowed	 to	 vary.	 Because	 the	 Cormack–
Jolly–Seber	model	 cannot	 distinguish	 between	mortality	 and	 emi-
gration,	survival	estimates	are	more	appropriately	termed	apparent	
survival	(Williams,	Nichols,	&	Conroy,	2001).

A	 useful	 extension	 of	 the	 Cormack–Jolly–Seber	 model	 is	 the	
multi‐state	Arnason–Schwarz	model,	which	estimates	 survival	 and	
detection	 probabilities	 as	 a	 function	 of	 an	 observed	 animal	 state	

(4)h (t)= lim
Δt→0

P[t≤T< t+Δt | T≥ t]

Δt

(5)h
(
ti
)
=h0

(
ti
)
c
(
Xi�

)
.

(6)�p�
(
1−p

)
�p,

(7)�1p2�2

(
1−p3

)
�3p4,



     |  5Methods in Ecology and EvoluonWHORISKEY Et al.

(Schwarz,	Schweigert,	&	Arnason,	1993;	Amstrup	et	al.,	2005).	The	
states	are	assumed	to	follow	a	first‐order	Markov	process	governed	
by	 transition	 probabilities	 (Amstrup	 et	 al.,	 2005).	 It	 has	 been	 ap-
plied	to	detection	data	to	estimate	daily	probabilities	of	horseshoe	
crab	spawning	(Limulus polyphemus;	reproductive	state;	Brousseau,	
Sclafani,	Smith,	&	Carter,	2004),	survival	of	downstream	migrating	
Atlantic	 salmon	 (Salmo salar;	 location	state;	Holbrook,	Kinnison,	&	
Zydlewski,	2011),	and	movement	probabilities	along	walleye	(Sander 
vitreus)	migratory	routes	(location	state;	Hayden	et	al.,	2014).

Recovery	mark‐recapture	models	are	useful	when	the	recapture	
process	 is	 terminal	 (Lindberg,	 2012).	 Information	 on	 deceased	 in-
dividuals	can	be	jointly	modeled	with	live	detection	data	using	the	
Burnham	model	 (Burnham,	1993),	which	has	been	used	to	provide	
more	precise	survival	estimates	(Sollmann,	Furtado,	Jácomo,	Tôrres,	
&	Silveira,	2010)	and	to	estimate	the	joint	probability	that	tagged	in-
dividuals	were	caught	and	reported	(Martins	et	al.,	2011).	The	Barker	
model	 is	 an	 extension	 of	 the	Burnham	model	 useful	 for	 analysing	
temporally	continuous	detection	data	(Barker,	1997),	and	has	been	
used	to	estimate	the	effects	of	gastric	lavage	on	common	snook	sur-
vival	 (Centropomus undecimalis;	Barbour,	Boucek,	&	Adams,	2012).	
Finally,	Fouchet,	Santin	Janin,	Sauvage,	Yoccoz,	and	Pontier	 (2016)	
proposed	an	approach	for	temporally	continuous	data	that	combines	
survival	analysis	with	an	inhomogenous	Poisson	process	for	model-
ling	detection	probability.

We	 fitted	 several	 Cormack–Jolly–Seber	 models	 using	 MARK	
(White	&	Burnham,	1999)	and	RMark	(Laake,	2013)	to	test	whether	
sex	or	 length	were	associated	with	weekly	bull	 trout	survival,	and	
whether	the	receiver	array	detection	probability	changed	over	time.	
We	compared	candidate	models	using	corrected	Akaike's	 informa-
tion	criterion	(AICc),	and	found	that	the	best	model	estimated	inter-
cepts	only	for	both	survival	and	the	detection	probability	(Table	1).	
The	apparent	weekly	survival	probability	was	estimated	at	0.91.	In	
addition,	the	detection	probability	was	estimated	at	0.69,	which	sug-
gests	 that	 a	 combination	of	 receiver	 coverage/efficiency,	 environ-
mental	 conditions,	 and	 fish	behaviour	 limited	 the	array's	 ability	 to	
detect	bull	trout.

3.4 | Network analysis

Networks	are	mathematical	objects	consisting	of	nodes	connected	
by	edges	 (Dale	&	Fortin,	2010).	They	can	be	used	 to	study	animal	
movement	by	analysing	the	relationships	between	nodes,	which	can	
represent	receivers	or	tagged	animals	separately	(unipartite	graphs;	
e.g.	 Jacoby,	Brooks,	Croft,	&	Sims,	2012)	or	 simultaneously	 in	 the	
same	graph	(bipartite	graphs;	e.g.	Finn	et	al.,	2014).	To	study	move-
ment,	 nodes	 are	 often	 specified	 as	 the	 stationary	 receivers	 and	
edges	 represent	 either	 the	 directed	 or	 undirected	 movements	 of	
animals	between	receivers.	Social	aggregations	can	also	be	studied	
when	the	animals	are	treated	as	nodes,	e.g.	by	testing	whether	there	
exist	preferred	associations	among	individuals	(Stehfast	et	al.,	2013).

A	network's	response	variable	is	an	adjacency	matrix,	which	de-
scribes	the	connections	between	pairs	of	nodes	(Farine	&	Whitehead,	
2015).	For	example,	the	adjacency	matrix

describes	a	 system	of	 three	 receivers	 (R1,	R2,	 and	R3),	where	 three	
movements	were	 recorded	 from	R2	 to	R3	and	 four	 records	 indicate	
animals	staying	at	R3.	Adjacency	matrices	for	null	networks	can	also	be	
of	interest,	e.g.	to	document	potential	direct	routes	among	receivers.	
For	the	above	example,	the	following	null	network

indicates	that	movements	are	possible	between	all	pairs	of	receivers	
except	from	R1	to	R3	in	either	direction.	Once	the	adjacency	matrix	
is	defined,	visuals	and	metrics	can	be	calculated	 that	describe	 the	
network	connectivity	(Dale	&	Fortin,	2010).	For	example,	the	node	
degree	 is	 the	 number	 of	 incoming	 and	 outgoing	 edges	 of	 a	 node,	
which	describes	the	amount	of	traffic	through	a	receiver	and	there-
fore	may	indicate	areas	of	 importance	(Farine	&	Whitehead,	2015;	
Jacoby	et	al.,	2012),	whereas	edge	density	is	the	fraction	of	observed	
edges	to	all	theoretically	possible	edges,	and	can	help	 indicate	the	
amount	of	random/non‐random	movement	(Jacoby	et	al.,	2012).

Network	metrics	can	be	compared	amongst	groups,	e.g.	to	de-
termine	sex‐specific	differences	 in	movement	 (Jacoby	et	al.,	2012)	
or	preferred	areas	(Stehfast,	Patterson,	Barnett,	&	Semmens,	2015).	
When	 the	 groups	 are	 not	 necessarily	 known	 a priori,	 community	
detection	algorithms	can	be	used	to	identify	groups	of	receivers	or	
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TA B L E  1  Model	fits	with	corrected	AIC	(AICc)	values	from	
the	mark	recapture	analysis	of	the	illustrative	bull	trout	dataset.	
Construction	of	the	model	is	given	by	the	Model	Formula,	where	
Φ(∙)	denotes	the	effects	related	to	the	apparent	survival	probability	
and	p(∙)	denotes	those	related	to	the	probability	of	detection.	~1	
denotes	an	intercept	only	model.	DeltaAICc	is	the	difference	in	
AICc	from	the	best	model

Model formula No. parameters AICc ΔAICc

Φ(~1)p(~1) 2 258.0 0.00

Φ(~length)p(~1) 3 259.4 1.41

Φ(~sex)p(~1) 3 260.0 2.02

Φ(~sex	×	length)
p(~1)

5 260.6 2.59

Φ(~sex	+	length)
p(~1)

4 261.5 3.42

Φ(~1)p(~time) 4 261.5 3.50

Φ(~length)p(~time) 5 263.3 5.29

Φ(~sex)p(~time) 5 263.6 5.58

Φ(~sex	×	length)
p(~time)

7 264.6 6.57

Φ(~sex	+	length)
p(~time)

6 265.4 7.39
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animals	that	are	closely	related,	for	example	to	identify	home	ranges	
(Finn	et	al.,	2014).	If	an	observed	network	can	be	classified	as	a	the-
oretical	network	pattern,	then	known	properties	can	be	interpreted	
(e.g.	Fox	&	Bellwood,	2014).	Finally,	disrupting	the	networks	by	re-
moving	nodes	and	studying	the	subsequent	network	fragmentation	
can	help	 to	 assess	 the	 effects	 of	 habitat	 disruption	 (Jacoby	et	 al.,	
2012)	 and	 the	protective	 capabilities	 of	 potential	marine	 reserves	
(Espinoza,	Lédée,	Simpfendorfer,	Tobin,	&	Heupel,	2015).

Direct	hypothesis	testing	on	network	measures	is	possible	using	
GLMMs,	 but	 the	 assumption	 of	 independence	 may	 be	 violated	
(Farine	&	Whitehead,	2015).	Permutation	and	randomization	tech-
niques	 provide	 non‐parametric	methods	 for	 hypothesis	 testing	 by	
comparing	an	observed	statistic	to	those	calculated	from	randomly	
generated	networks	 (Dale	&	Fortin,	2010),	and	have	been	used	 to	
assess	whether	animals	are	moving	randomly	(Espinoza	et	al.,	2015).	
In	addition,	networks	can	be	compared	to	each	other	or	other	dy-
adic	 variables	 using	 a	Mantel	 test	 which	 assesses	 the	 correlation	
between	 two	matrices	 (Farine	&	Whitehead,	 2015;	 Urban,	Minor,	
Treml,	&	Schick,	2009),	e.g.	to	test	whether	yellowfin	tuna	(Thunnus 
albacares)	 social	 associations	 are	 related	 to	 pre‐defined	 cohorts	
(Stehfast	 et	 al.,	 2013).	 Relationships	 between	 networks	 and	more	
than	one	covariate	can	be	evaluated	using	 the	multiple	 regression	
quadratic	assignment	procedure	(Farine	&	Whitehead,	2015),	which	
has	 been	 used	 to	 assess	 the	 effect	 of	 environmental	 variables	 on	
small‐spotted	 catshark	 (Scyliorhinus canicula)	 movements	 (Jacoby	
et	al.,	2012).

We	applied	network	analysis	to	the	bull	trout	dataset	(Figure	2)	
after	summarizing	detection	data	into	directed	movements	between	
pairs	 of	 receivers.	 Using	 the	 R	 package	 igraph	 (Csárdi	 &	 Nepusz,	
2006)	 and	 treating	 the	 receivers	 as	 nodes,	 we	 plotted	 a	 network	
for	 each	 sex	making	 the	 size	of	 each	node	proportional	 to	 its	 de-
gree	and	using	weighted	edges	to	represent	the	number	of	directed	
movements	between	nodes.	These	networks	suggest	that	the	main	
pool	 of	 the	 reservoir	 experiences	 more	 fish	 traffic	 compared	 to	
either	of	 the	 reaches,	 and	 therefore	 likely	 contains	 important	bull	
trout	overwintering	habitat.	In	addition,	a	Mantel	test	between	the	
two	networks	suggested	a	weak	but	statistically	significant	(r	=	0.17,	
p <	0.05)	correlation	in	movement	patterns	between	the	males	and	
females.

4  | FUTURE DIREC TIONS

4.1 | Gaussian random fields

Gaussian	random	fields	(GRFs)	are	a	promising	approach	for	analyzing	
detection	data	within	a	spatial	context.	Specifically,	GRFs	estimate	
the	residual	spatial	correlation	remaining	after	accounting	for	meas-
ured	 explanatory	 variables	 (Thorson	 &	 Minto,	 2015).	 In	 fisheries,	
they	have	been	used	to	model	the	spatial	dependence	of	population	
processes	and	to	understand	the	relationship	between	fish	distribu-
tion	and	habitat	(Carson,	Shackell,	&	Mills	Flemming,	2017;	Thorson	
&	Minto,	2015;	Thorson	et	al.,	2015).	With	telemetry	data,	GRFs	have	
been	used	to	show	how	the	number	of	at‐sea	seal	encounters	co‐var-
ied	with	bathymetry	and	distance	to	the	seal	haul‐out	site	(Carson	&	
Mills	Flemming,	2014).	In	that	study,	the	receiver	locations	changed	
through	time;	here,	we	demonstrate	the	potential	of	GRFs	for	detec-
tion	data	 collected	 at	 fixed	 locations	by	 investigating	whether	 the	
presence	of	the	dam	affects	bull	trout	distribution	using	the	illustra-
tive	dataset.	Because	the	GRF	is	a	flexible	hierarchical	model,	these	
data	could	have	been	modeled	in	several	different	ways.	For	exam-
ple,	we	could	have:	modeled	the	duration	or	number	of	detections	
(e.g.	Carson	&	Mills	Flemming,	2014);	accounted	for	false	absences	
by	using	a	zero‐inflated	distribution	(e.g.	Cosandey‐Godin,	Krainski,	
Worm,	&	Mills	Flemming,	2015);	or	used	a	state‐space	model	to	ac-
count	for	technological	error	(e.g.	Thorson	et	al.,	2015).

We	assumed	that	the	number	of	individuals	ys	detected	at	a	given	
receiver	location	s	(of	which	there	are	n)	was	Poisson	distributed:

We	linked	the	mean	of	the	distribution,	λs,	to	the	linear	predictor,	
ηs,	through	a	log‐link	function:

In	turn,	ηs	was	related	to	the	distance	between	the	receiver	and	
the	dam	through	the	linear	equation:

where	β0	 represents	 the	 log	 of	 the	 number	 of	 detections	 expected	
when	the	distance	to	the	dam	(xs)	and	the	spatial	 random	effect	 (ξs)	
both	have	no	effect,	 and	β1	 is	 the	 regression	 coefficient	 for	xs.	 The	

(10)ys∼Poisson
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)
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(11)log
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F I G U R E  2  Sex‐specific	results	
from	applying	network	analysis	to	the	
illustrative	dataset.	Yellow	represents	the	
position	of	the	dam.	Circles	denote	the	
receiver	positions,	and	are	weighted	based	
on	their	node	degree,	i.e.	the	number	of	
incoming	and	outgoing	edges	of	a	node.	
Edges	are	weighted	based	on	the	number	
of	directed	bull	trout	movements	between	
receivers.	Males	are	on	the	left	(green),	
and	females	are	on	the	right	(orange)
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random	effect	ξs	accounts	for	the	effect	of	unknown	spatial	factors	in-
fluencing	the	response	and	we	model	it	as	a	GRF,	meaning	that	for	any	
𝜉s∈D⊂ℝ

2,	where	D	is	the	domain,	we	let	�=
(
�1,… ,�n

)T	be	distributed	
as	a	multivariate	normal:

Here,	Σ	is	a	n	×	n	covariance	matrix	where	the	(i, j)th	element	of	
Σ	 is	defined	by	 the	Matérn	covariance	structure,	which	 for	 i	≠	 j	 is	
defined	as:

where	hi,j	is	the	Euclidean	distance	between	receiver	locations	si and sj,	
the	smoothness	parameter	ν	is	set	equal	to	1,	and	the	spatial	scale	κ and 
marginal	variance	σ2	are	both	estimated.	As	in	Thorson	et	al.	(2015),	we	
used	R‐INLA	(Illian,	Sørbye,	&	Rue,	2012)	to	simplify	model	implemen-
tation	with	 stochastic	 partial	 differential	 equations	 (SPDEs)	 and	we	
used	TMB	(Kristensen,	Nielsen,	Berg,	Skaug,	&	Bell,	2016)	to	estimate	
the	model	parameters.

Model	fitting	resulted	in	parameter	estimates	of	β0	=	2.42	(95%	
CI:	1.73–3.12)	and	β1	=	−	0.042	(95%	CI:	−0.063	to	−0.022),	indicat-
ing	that	as	distance	to	the	dam	increased	the	number	of	individuals	
detected	 decreased.	 This	may	 result	 in	 part	 because	 the	 distance	
from	the	dam	increases	proportional	to	the	distance	from	the	main	
lacustrine	habitat	for	most	locations	within	the	reservoir.	In	addition,	
the	spatial	correlation	of	the	GRF	accounts	for	some	of	the	bull	trout	
distribution	not	explained	by	distance	from	the	dam	(Figure	3).

4.2 | Accounting for spatial correlation and 
measurement error

We	expect	that	methods	for	estimating	spatial	correlation	associated	
with	animal	movement	will	grow	in	popularity	as	receiver	coverage	
and	method	documentation	continue	to	expand.	While	we	proposed	
the	GRF	as	a	flexible	method	for	modelling	animal	movement	data	
with	a	spatial	component,	other	spatial	methods	exist	that	could	be	
applied	to	detection	data.	For	example,	one	terrestrial	study	used	a	
spatial	 (and	 temporal)	 correlation	 structure	within	 a	GLMM	 to	 as-
sess	the	factors	affecting	home	range	size	of	radio‐tracked	roe	deer	
(Capreolus capreolus;	 although	 home	 range	 in	 this	 case	was	 calcu-
lated	 from	 spatially	 continuous	 detection	 data,	 similar	 principles	
would	apply	 to	 responses	calculated	 from	discrete	detection	data;	
Börger	 et	 al.,	 2006).	 Network	 autocorrelation	 models	 (Leenders,	
2002)	could	be	used	to	estimate	the	correlation	between	network	
attributes	caused	by	receiver	location.	In	addition,	spatial	capture–
recapture	models	are	a	spatial	extension	of	mark‐recapture	models,	
and	are	well	 established	 in	 terrestrial	 studies	with	encounter	data	
like	those	generated	by	camera	trapping	(Royle,	Chandler,	Sollmann,	
&	Gardner,	 2014).	 These	models	 involve	 hierarchical	modelling	 of	
a	 spatial	 point	 process	 of	 unobserved	 animal	 activity	 centres	 and	
a	 detection	 probability	 function	 depending	 on	 distance	 from	 the	
activity	centres	 (Efford	&	Fewster,	2013).	Despite	similarities	with	
terrestrial	 encounter	 data,	 we	 have	 seen	 few	 studies	 that	 apply	

spatial	 capture–recapture	methods	 to	 aquatic	 detection	 data,	 but	
see	Raabe,	Gardner,	and	Hightower	(2014),	who	studied	the	survival	
and	movement	of	PIT‐tagged	American	shad	(Alosa sapidissima)	using	
these	methods.

Many	 studies	 have	 investigated	 the	 measurement	 error	 of	
aquatic	tracking	technology	by	estimating	the	detection	efficiency	
(the	 frequency	with	which	a	 receiver	will	detect	a	 fish	within	 its	
given	 range;	 Simpfendorfer,	 Heupel,	 &	 Collins,	 2008),	 detection	
range	(the	probability	of	detection	given	distance	from	a	receiver;	
Kessel	et	al.,	2014b),	or	 the	 frequency	of	 false	detections	 (when	
a	 receiver	 logs	 a	 false	 ID	 or	 detects	 an	 absent	 animal;	 Heupel,	
Semmens,	 &	 Hobday,	 2006).	 However,	 few	 studies	 incorporate	
this	information	into	their	biological	inferences.	Those	that	do	may	
use	it	to	pre‐process	their	data	(e.g.	Hoenner	et	al.,	2018;	Kessel	
et	al.,	2014a),	or	directly	incorporate	measurement	error	into	the	
statistical	method	(Pedersen	&	Weng,	2013;	Simpfendorfer	et	al.,	
2008;	Winton,	Kneebone,	Zemeckis,	&	Fay,	2018).	Measurement	
error	 can	 additionally	 be	 used	 to	 help	 numerically	 optimize	 the	
spatiotemporal	design	of	a	receiver	array	before	deployment,	re-
sulting	 in	 a	 study	 design	with	 enhanced	 ability	 to	 acquire	 high‐
quality	data	(Pedersen,	Burgess,	&	Weng,	2014).

State‐space	 models	 are	 hierarchical	 models	 that	 can	 pair	 a	
measurement	equation	with	a	model	for	animal	movement,	and	si-
multaneously	estimate	both	processes	 (Auger‐Méthé	et	 al.,	 2017).	
Two	notable	examples	with	detection	data	 include:	 (a)	a	non‐para-
metric	function	for	detection	probability	paired	with	an	Ornstein–
Uhlenbeck	 movement	 process	 to	 estimate	 the	 home	 range	 of	 a	
humphead	 wrasse	 (Cheilinus undulatus;	 Pedersen	 &	Weng,	 2013);	
and	 (b)	 a	 Gaussian	 decay	 measurement	 equation	 coupled	 with	 a	
binomial	 spatial	 point	 process	 to	 estimate	 centres	 of	 activity	 of	 a	
black	sea	bass	(Centropristis striata;	Winton	et	al.,	2018).	State‐space	
models	 have	 gained	 popularity	 for	 analyzing	 spatially	 continuous	
animal	movement	 data,	 likely	 because	 of	 their	 flexibility—multiple	
measurement	error	distributions	can	be	included	and	matched	spe-
cifically	to	the	tracking	technology	(e.g.	Winship	et	al.,	2012),	and	the	
movement	process	can	range	from	individual	models	of	movement	
(e.g.	Auger‐Méthé	et	al.,	2017)	 to	GRFs	 (e.g.	Thorson	et	al.,	2015).	
We	believe	that	state‐space	models	could	provide	a	framework	that	
improves	the	reliability	of	statistical	analyses	of	detection	data.

4.3 | Broadening the scope of animal 
movement analyses

Telemetry	technology	will	continue	to	 improve	technically	 in	ways	
that	will	increase	study	longevity,	target	more	species	or	life	stages,	
and	expand	the	scope	of	data	collection	(Lennox	et	al.,	2017a).	Study	
designs	will	 also	 evolve,	 as	 auxiliary	 biological	 and	 environmental	
variables	are	collected	during	sampling	or	independently,	and	as	te-
lemetry	networks	facilitate	the	sharing	of	resources	and	multi‐spe-
cies	data	 (Lennox	et	al.,	2017a).	As	a	 result,	 telemetry	 studies	will	
have	 the	 potential	 to	 generate	massive,	 interdisciplinary	 datasets,	
and	 statistical	methods	 for	 analysing	 such	 complex	 data	will	 have	
to	adapt	appropriately.	In	the	future,	movement	ecologists	may	look	
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to	 the	burgeoning	research	 field	of	human	mobility,	which	has	ex-
ploded	since	the	advent	of	the	smartphone	with	GPS	tracking	and	
geolocated	social	media	postings	(Thums	et	al.,	2018).	Because	hu-
mans	and	non‐human	animals	appear	to	conform	to	similar	ecologi-
cal	 principles,	 e.g.	 site	 fidelity,	 aggregation,	 and	 sociality	 (Meekan	
et	al.,	2017),	movement	ecologists	will	have	the	opportunity	to	read-
ily	 appropriate	 big	 data	 approaches	 from	 human	 mobility	 studies	
(Thums	et	al.,	2018).

5  | DISCUSSION

To	aid	 researchers	 in	matching	a	statistical	method	 to	 their	data	
and	study	objective,	we	devised	a	decision	tree	which	we	present	
in	Figure	4.	We	recognize	that	accounting	for	every	possible	study	
design	would	be	unrealistic,	 therefore	we	suggest	that	research-
ers	utilize	our	decision	tree	as	a	first	general	guide	through	some	
of	the	possible	statistical	methods,	not	an	exhaustive	instruction	
catalog.	We	 hope	 that	 a	 tree	will	 help	 researchers	 narrow	 their	
selection,	 but	 then	we	 strongly	 suggest	 that	 this	 is	 followed	 by	
comprehensive	 study	 of	 the	 chosen	method(s),	 and	 its(their)	 ac-
companying	 assumptions.	 To	 that	 end,	 we	 summarize	 our	 guide	
below.

We	suggest	using	mark‐recapture	methods	when	studying	popu-
lation	dynamics,	especially	when	the	detection	ability	of	the	array	is	
suspect.	However,	note	that	the	most	commonly	used	mark‐recapture	

method,	the	Cormack–Jolly–Seber	model,	is	dependent	upon	the	fol-
lowing	assumptions:	(a)	tags	are	not	lost	and	do	not	fail;	(b)	survival	is	
not	influenced	by	the	tag	or	tagging	procedure;	and	(c)	survival	and	
detection	probability	do	not	vary	among	tagged	animals.	Preliminary	
laboratory	studies	assessing	tag	attachment	and	retention	can	help	
to	determine	the	risk	of	tag	loss	or	failure	(Holbrook,	Perry,	Brandes,	
&	Adams,	2013).	Holding	studies	can	be	used	to	assess	whether	tag-
ging	 influences	survival	 (Furey	et	al.,	2016);	however,	 tagging	may	
negatively	affect	multiple	traits	in	a	cumulative	way	such	that	the	full	
influence	is	not	understood	by	assessing	the	effect	on	survival	alone	
(Bodey	 et	 al.,	 2018).	 In	 fact,	 tagging	 can	 affect	 traits	 like	 growth,	
swimming	performance,	 and	 social	 interactions	 (Jepsen,	Thorstad,	
Havn,	&	Lucas,	2015),	and	these	potential	effects	should	be	carefully	
considered	in	any	analysis.	Finally,	some	of	the	factors	affecting	indi-
vidual	variation	in	survival	and	detection	(e.g.	sex,	age)	can	be	incor-
porated	into	the	Cormack–Jolly–Seber	model	through	stratification	
or	regression	analysis	(Williams	et	al.,	2001).

To	understand	 the	occurrence	of	an	event	when	 temporal	 re-
cords	for	the	event	exist,	consider	using	survival	analysis.	Survival	
analysis	can	be	used	to	understand	the	survival	of	tagged	animals;	
however,	 it	 is	 distinguishable	 from	 mark‐recapture	 via	 their	 re-
sponse	variables.	Survival	analysis	requires	a	temporal	value	for	the	
response	 (e.g.	y	=	12	hr),	whereas	mark‐recapture	uses	a	discrete	
time	series	(e.g.	1001101),	and	time	is	often	incorporated	by	allow-
ing	probabilities	to	be	dynamic.	Although	a	temporal	response	can	
also	 be	 modelled	 using	 GLMs/GLMMs/GAMs/GAMMs,	 survival	

F I G U R E  3  Results	from	the	GRF	
analysis	on	the	illustrative	dataset.	(a)	
shows	the	mesh	calculated	by	the	INLA	
SPDE;	(b)	represents	the	expected	number	
of	bull	trout	across	the	reservoir	returned	
by	the	full	model;	(c)	represents	the	
expected	number	of	fish	as	influenced	by	
distance	from	the	dam;	and	(d)	represents	
the	expected	number	of	fish	based	on	the	
effect	of	the	GRF	only.	Yellow	represents	
the	position	of	the	dam

INLA Mesh λ

5

10

15

exp(β1xs)

0.2

0.4

0.6

0.8

exp(ξ)

0.5

1.0

1.5

2.0

(a) (b)

(c) (d)



     |  9Methods in Ecology and EvoluonWHORISKEY Et al.

analysis	 can	 account	 for	 the	 fact	 that	 for	 some	 study	 animals	 it	
may	 not	 be	 possible	 to	 determine	 whether	 they	 experience	 the	
event	(censoring).	Censoring	is	appropriate	as	long	as	the	probabil-
ity	of	being	censored	is	independent	of	the	probability	of	the	event	
(Harrell,	2015).

To	describe	the	connectivity	among	receiver	locations	or	tagged	
animals,	we	encourage	the	use	of	network	analysis	which	provides	
easily	interpretable	visualizations	of	this	connectivity.	However,	net-
work	analysis	does	assume	that	all	 the	nodes	of	a	system	are	rep-
resented	 in	 the	graph	 (Dale	&	Fortin,	2010)	and	 is	 therefore	more	
useful	for	datasets	collected	by	many	receivers/individuals.	Nodes	
and	edges	must	be	carefully	defined	in	order	to	accurately	represent	
the	study	system;	any	deviations	from	the	true	network,	for	example	
through	data	transformation,	 inclusion	of	false	absences,	or	exclu-
sion	of	 individuals,	can	significantly	 impact	network	measures	and	
the	overall	network	structure	(Farine	&	Whitehead,	2015).

If	 spatial	 correlation	 is	of	 interest	 then	 researchers	 should	use	
spatially	explicit	methods	like	GRFs.	It	is	possible	to	incorporate	spa-
tial	information	into	some	of	the	other	statistical	methods	we	have	
described.	For	example,	with	network	analysis	a	receiver	node	can	
include	a	location,	and	with	regression‐type	analyses	(e.g.	Cormack–
Jolly–Seber	models	or	GLMs)	spatial	references	can	be	incorporated	
as	 covariates.	 However,	 spatial	 models	 are	 distinguishable	 from	
these	 methods	 because	 they	 estimate	 spatial	 correlation,	 which	
when	 ignored	 can	 invalidate	 analyses	 by	 violating	 the	 assumption	
of	 independence	 (Thorson	&	Minto,	2015).	 In	 addition,	 estimating	
spatial	correlation	can	show	how	unobserved/unmeasured	variables	
correlated	 in	 space	 affect	 the	 response	 variable	 (Carson	 &	 Mills	
Flemming,	 2014;	 Thorson	 et	 al.,	 2015).	 Network	 autocorrelation	
models,	spatial	capture–recapture,	or	spatial	generalized	models	(not	
reviewed	here;	see	Zuur	et	al.,	2009)	can	also	be	used	to	estimate	
spatial	correlation.

F I G U R E  4  Decision	tree	for	identifying	
appropriate	statistical	methodologies	
for	analyzing	detection	data	collected	by	
acoustic,	radio,	or	PIT	telemetry
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Finally,	 for	most	other	 scenarios,	we	 recommend	using	GLMs/
GLMMs	or	GAMs/GAMMs.	Generalized	modelling	 is	 arguably	 the	
most	accessible	statistical	method	presented	in	this	paper	in	terms	
of	documentation	and	application.	It	is	also	flexible,	as	several	differ-
ent	response	variables	can	be	used,	both	linear	and	nonlinear	covari-
ate	 relationships	 are	 possible,	 and	 random	effects	 and	 correlative	
structures	can	be	included	(Zuur,	Ieno,	&	Saveliev,	2017).	However,	
these	methods	come	with	their	own	assumptions	 (e.g.	distribution	
assumptions	of	the	residuals)	and	complexities,	therefore	we	would	
encourage	readers	to	consult	more	specific	guides	(e.g.	Bolker	et	al.,	
2009)	before	implementation.

6  | CONCLUSION

Telemetry	is	increasingly	used	to	track	aquatic	animals.	This	has	led	
to	a	massive	expansion	in	the	volume	and	detail	of	ensuing	movement	
data,	and	significant	growth	in	the	availability	of	suitable	statistical	
methods.	It	is	often	no	longer	sufficient	to	rely	on	relatively	simple	
descriptive	analytical	techniques,	yet	choosing	from	among	available	
methods	can	be	daunting.	We	reviewed	advanced	statistical	meth-
ods	useful	for	detection	data	in	order	to	introduce	them	to	aquatic	
telemetry	users	and	provide	researchers	with	the	tools	necessary	for	
more	 comprehensive	 detection	 data	 analysis.	We	 focused	 specifi-
cally	on	detection	data	recorded	in	aquatic	environments,	which	can	
differ	in	small	but	substantial	ways	from	those	collected	in	terrestrial	
studies.	For	example,	the	camera	traps	often	used	in	terrestrial	stud-
ies	 can	detect	previously	unknown/unmarked	 individuals,	whereas	
acoustic,	radio,	and	PIT	receivers	can	only	identify	tagged	individu-
als,	thus	hindering	our	ability	to	estimate	population	size	from	these	
data	using	mark‐recapture	methods.	However,	some	of	the	methods	
mentioned	here	(e.g.	spatially	explicit	capture–recapture)	have	been	
established	in	terrestrial	studies	for	10+	years,	and	minor	modifica-
tions	 could	 significantly	 enhance	 the	 analysis	 of	 aquatic	 detection	
data.	Going	forward,	we	recommend	that	aquatic	ecologists	look	to-
wards	terrestrial	studies	and	other	fields	like	human	mobility	to	help	
motivate	the	statistical	advances	that	will	be	needed	to	analyse	de-
tection	datasets	that	are	rapidly	growing	in	both	size	and	complexity.
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