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2. We review current statistical methods and comment on potential future direc-

Handling Editor: Luca Borger tions for analysing detection data derived from fixed telemetry receiver arrays.

3. To illustrate how different methods may be used to achieve diverse study objec-
tives, we provide a case study dataset collected by an array of 42 acoustic telem-
etry receivers on 187 bull trout in the Kinbasket Reservoir of British Columbia. To
close, we present a decision tree for guiding the selection of a method based on
study objectives and sampling design.

4. This paper provides both experienced and novice telemetry researchers with the
knowledge and tools to facilitate more comprehensive analysis of detection data
and, in so doing, ask a wide variety of ecological questions that will enhance our

understanding of aquatic organisms.
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1 | INTRODUCTION Telemetry enables the remote monitoring of free-living animals,

whereby a signal emanating from a device (i.e., transmitter or tag)
Aquatic animals live in habitats that create inherent challenges for carried by an animal transfers information to a receiver. The advent
those attempting to study their ecology, behaviour and physiology. of telemetry tools has provided researchers with effective means of
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studying aquatic animals in the streams, rivers, lakes, estuaries, and
oceans of the world (Hussey et al., 2015; Lucas & Baras, 2000).
Three common telemetry technologies used with aquatic ani-
mals are radio and acoustic telemetry, and passive integrated tran-
sponders (PIT). Radio telemetry uses radio signals that are detected
by an antenna affixed to a receiver, whereas acoustic telemetry
uses sound waves to transmit tag information to a hydrophone on
a receiver. The transmitters of both technologies are dependent
on internal batteries that, along with the tag-animal size ratio and
tag settings, limit the duration of data collection. PIT tags rely on
external energy derived from an electromagnetic field emitted by
receiver antennas, which prolongs the tag lifespan but requires close
proximity (Lucas & Baras, 2000). Despite design differences (Cooke,
Hinch, Lucas, & Lutcavage, 2012; Lucas & Baras, 2000), these three
telemetry technologies all record one specific kind of data: detection
data that consist of time-stamped, tag-specific records registered
and stored by receivers when tagged animals are within range.
Recently, a shift from mobile tracking towards using fixed receiv-
ing stations that automatically log detections hasled to alarge number
of tagged animals and extensive receiver coverage crossing geopolit-
ical boundaries (Donaldson et al., 2014). The collection and aggrega-
tion of large aquatic detection datasets has created both challenges
and opportunities for the study of wild aquatic animals (Lennox
et al.,, 2017a). Although there have been substantial developments in
the statistical analysis of aquatic detection data, to our knowledge,
there have been no attempts to synthesize the existing and emerging
methods. Our goal is to provide this synthesis. Although the methods
we review are the most ubiquitous (today), they are not exhaustive.
In particular, because detection data are limited to collection at dis-
crete locations, we do not review methods for spatially continuous
data (e.g. movement paths collected by satellite telemetry devices).
It is possible to obtain estimates of spatially continuous data from
detection data using positioning systems (e.g. Niezgoda, Benfield,
Sisak, & Anson, 2002; Smith, 2013) or by calculating centers of ac-
tivity (Simpfendorfer, Heupel, & Hueter, 2002), in which case other
statistical methods not reviewed herein may be used, for example,
home range analysis (Marshell, Mills, Rhodes, & Mcllwain, 2011),
state-space models (Martins et al., 2014), or hidden Markov models
(Whoriskey et al., 2017). We also do not discuss software designed
primarily for the data management and visualization of aquatic de-
tection data. These developments, e.g. the Ocean Tracking Network
Toolbox (otndc@dal.ca), ZoaTrack (Dwyer et al., 2015), the Integrated
Marine Observing System's Animal Tracking Facility detection data-
base and quality control procedures (Hoenner et al., 2018), and the
R (R Core Team 2018) packages glatos (Holbrook, Hayden, & Binder,
2017), and VTrack (Campbell, Watts, Dwyer, & Franklin, 2012), pro-
vide high-quality standardized methods for handling detection data;
however, they typically do not incorporate a stochastic component.
First, we review statistical methods for detection data derived
from fixed telemetry arrays in aquatic environments. To illustrate the
differences between statistical methods, throughout the review, we
analyse a portion of a dataset collected on acoustically tagged bull
trout (Salvelinus confluentus). Then, we comment on potential future

directions that could help advance our understanding of how aquatic
animals interact with each other, their environment, and humans in a
rapidly changing world. To close, we present a decision tree to sum-
marize the differences among the statistical methods and to help
guide researchers on how to analyse their detection data given the
scientific questions of interest and sampling design.

2 | ILLUSTRATIVE DATASET

Between 2010 and 2012, 187 bull trout were acoustically tagged
and monitored by an array of 42 receivers deployed in the Kinbasket
Reservoir of British Columbia, Canada (Figure 1). The full dataset was
previously analysed in Martins et al. (2013) and Gutowsky et al. (2016);
for simplicity, we chose to analyse data collected only during January
2011. The resulting dataset comprised three files: receiver metadata,
that includes the identities and locations of the deployed receivers,
along with environmental information; tag metadata, that consists of
the unique tag ID codes and other animal characteristics (e.g. length/
weight/sex); and detection data, i.e. the records of tags registered by
receivers at a specific date and time. Together, these data (hereafter ‘de-
tection data’) provide a comprehensive view on individual movements.

For any telemetry study, the question of interest and the spa-
tiotemporal design of the receiver deployments will influence the
applicability of various statistical methods. Once a method has been
chosen, the detection data will need to be summarized into an ap-
propriate response variable (y). Examples include: counts of detec-
tions (Zhang et al., 2015), counts or proportions of receivers visited
within a specific time scale (Udyawer, Read, Hamann, Simpfendorfer,
& Heupel, 2015), presence/absence data (Dudgeon, Lanyon, &

Semmens, 2013; Kessel et al., 2014a), time spent in particular areas
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FIGURE 1 Study location of the illustrative dataset, i.e. the
Kinbasket reservoir in British Columbia, Canada, with the location
of the dam in yellow, and the receiver locations in dark blue.
Detection range was assumed to be 500 m, a distance shorter than
the width of either Reach in most places
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or residency indices (Kessel et al., 2014a; Ketchum et al., 2014), and
movement rates (Stich, Kinnison, Kocik, & Zydlewski, 2015). We dis-
cuss the form of the response variable for each method reviewed
below, and use the Kinbasket dataset to illustrate the versatility of
detection data.

3 | REVIEW OF CURRENT STATISTICAL
METHODS

3.1 | Generalized modelling framework

Researchers who use telemetry are often interested in determin-
ing whether there is a relationship between animal movement
patterns and a set of putative explanatory variables or covari-
ates. Because many of the possible response variables are non-
Gaussian, traditional statistical methods like analysis of variance
and linear regression are not directly applicable. Generalized lin-
ear models (GLMs) enable the modelling of non-Gaussian response
variables provided they follow a distribution belonging to the ex-
ponential family (Wood, 2006). A GLM links an observationy; to a
set of covariates X;:

Hi= E [y,-] ,
E (Hi) =XiB=Po+P1Xi1+PoXio+ -+ BiXix (1)

where E[ e | denotes the expectation of a random variable, g( e ) is a
monotonic link function, and the vector $ contains k + 1 entries that
describe the relationship between y; and the k covariates (plus an
intercept) contained in each row vector X; (Wood, 2006).

Because telemetry does not directly measure animal absence,
researchers must decide whether to interpret a lack of detections
as absence and encode them as zeros within a dataset. The temporal
resolution of the study directly affects the number of zeros in the
response, whereby many zeros will be included if animals are rarely
detected over numerous short time intervals. Furthermore, envi-
ronmental features like topography, weather, and biological noise,
as well as collisions with other telemetry transmissions, can lead to
false absences (Cagua, Berumen, & Tyler, 2013). A dataset will be
more difficult to accurately model when the number of observed
zeros is substantially greater than the number predicted; such
models may show evidence of overdispersion (when the response
variance is larger than expected) or lack of fit (Zuur, leno, Walker,
Saveliev, & Smith, 2009). In these cases, zero-inflated models may
provide more accurate results (Zuur et al., 2009).

Both discrete and continuous covariates can be included in GLMs
if they are linearly related to the response. For nonlinear relation-
ships, generalized additive models (GAMs) relate the response and
covariates using a sum of smooth functions f( e ) of the variables
(Wood, 2006), e.g.

8 (mi) =fy (xi1) +F2 (X2 Xi3) + - 2
Detection data have beenrelated to covariates like lunar phase and tidal

stage (Dudgeon et al., 2013), water temperature (Kessel et al., 2014a;
Udyawer et al., 2015), discharge (Richard, Bernatchez, Valiquette, &

Dionne, 2014; Stich et al., 2015), and diel period (Ketchum et al., 2014;
Zhang et al., 2015). Temporal data can also be used, often by sum-
marizing the response into temporal blocks and including the blocks
as a covariate. Blocks can be defined based on species ecology (e.g.
reproductive timing), or anthropogenically (e.g. by monthly intervals;
Matich & Heithaus, 2014). When investigating a temporal trend in the
response, temporal autocorrelation should be checked and accounted
for if the assumption of independence is violated, e.g. by incorporating
lagged temporal variables (Kessel et al., 2014a) or including a correla-
tion structure (Borger et al., 2006).

Because most detection data are collected under the largely un-
controlled conditions of the natural environment, some responses
may only be independent when conditioned upon other variables.
These variables, also known as random effects, can be accounted for
by incorporating a second stochastic term into GLMs and GAMs to
form generalized linear mixed models (GLMMs) and generalized addi-
tive mixed models (GAMMs; Wood, 2006). In practice, random effects
are often included to account for variation within and among sampling
units. For example, detection data are usually collected on a random
subset of individuals from a population. To conduct population-level
inference, individual ID can be included as a random effect with ei-
ther, or both, an intercept and slope (Bolker et al., 2009). Random ef-
fects can also be associated with space or time, e.g. receiver location
(Ketchum et al., 2014) or age and sampling year (Borger et al., 2006).

Generalized models were used to assess the factors affecting
spatial distribution and movement of bull trout in the full comple-
ment of the illustrative dataset (Gutowsky et al., 2016). Using a
GLMM, Gutowsky et al. (2016) assessed the effects of year, season,
sex, and body size (covariates in X) on home range size (response
y; 95% minimum convex polygon). A GAMM was used to quantify
the relationship between total displacement (response y; sum of dis-
tances between receivers) and sex, body size, and smoothed month.
Larger f coefficient values for spring and fall suggested that bull
trout home ranges were larger in those seasons than in winter and
summer. Additionally, a positive sex-size interaction term suggested
that larger females moved farther than smaller females.

3.2 | Survival (time-to-event) analysis

Telemetry measures animal positions over time and changes in po-
sition can be related to important ecological events. For example,
tagged animals may disperse or migrate (Kawabata et al., 2010), inter-
act with humans (Thorley, Youngson, & Laughton, 2007), pass an ob-
stacle (Castro-Santos & Haro, 2003; Martins et al., 2013; Naughton
et al., 2005), be depredated (Danylchuk et al., 2007; Lennox et al.,
2017b), or die (Curtis, Johnson, Diamond, & Stunz, 2015). These
events can be analysed with GLMs using a binomial response, where
study animals are grouped into those that experience an event and
those that do not. Survival analysis extends the response by incor-
porating the time it takes for the event to occur (e.g. y = 2 days) and

estimates the survival function, S(t),

St)=Pr (T>t), )
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which describes the probability, Pr( e ), that an event will occur at
some random time T after the set time t (Klein & Moeschberger, 2003;
Pollock, Winterstein, Bunck, & Curtis, 1989). Two common survival
function estimators include the non-parametric Kaplan-Meier and
Nelson-Aalen estimators (Klein & Moeschberger, 2003). A log-rank
test can be used to compare the estimated survival curves of differ-
ent groups (e.g. sex and reproductive state or moult stage; Pollock,
Winterstein, et al., 1989; Huserbraten et al., 2013).

Further inference is possible with the hazard function h(t), which
describes the conditional rate of an event occurring during a period
of time {t, t + At} given that it has not already been experienced (Klein
& Moeschberger, 2003):

he= lim Plt<T<t+At|T>1]

At—0 At ()

When the shape of the hazard or survival function is assumed,
parametric survival analysis can be performed with error distri-
butions (e.g. Weibull) and this allows for predictive extrapolation
(Benoit et al., 2015). However, selecting a parametric hazard func-
tion requires accurate knowledge of the true shape, which is not
often known (Murray, 2006; White & Garrott, 1990). Consequently,
using semi-parametric Cox proportional hazards regression can be
advantageous because there is no assumption about the hazard
shape, yet the response can still be compared to a set of covariates X
(Harrell, 2015; Murray, 2006),

h(t)=ho (t;) c (XiB)- (5)

The hazard h( ) is related to an arbitrary baseline hazard h( e )
that is treated non-parametrically, and a known parametric function
c( o) of the covariates and their coefficients (Klein & Moeschberger,
2003). The Cox proportional hazards model is also less sensitive to
outlying observations than parametric models, but does require haz-
ard proportionality which can be verified graphically or by testing
for independence between Schoenfeld residuals and time (Harrell,
2015). Violations of this assumption may be compensated for by fit-
ting stratified models (Harrell, 2015).

In telemetry studies, animals often go undetected for ex-
tended periods, either because they leave the detection range of
the array or because they are inactive. The resulting monitoring
gaps can cause discontinuity in the hazard function (Murray, 2006)
and bias survival estimates (Bunck, Chen, & Pollock, 1995). The
Andersen-Gill estimator (Andersen & Gill, 1982) is a variation of
the Cox proportional hazards model that uses a counting process
to account for discontinuous monitoring (Murray, 2006; see e.g.
Johnson, Boyce, Schwartz, & Haroldson, 2004). In addition, indi-
viduals that fully drop out of the study before the event occurs
can be censored from survival analysis techniques without having
to be removed entirely (Pollock, Winterstein & Conroy 1989). For
example, Topping and Szedlmayer (2011) used survival analysis
to study the residency time (event = emigration) of red snapper
(Lutjanus campechanus), and censored fish that either died be-
fore emigration or did not emigrate in order to retain them in the

analysis.

An example of survival analysis using detection data can be
found in Martins et al. (2013), where the Kaplan-Meier estimator
was used to compute the risk of bull trout unintentionally passing
through hydro-electric dam turbines (the event of interest) from the
full Kinbasket dataset. The Kaplan-Meier estimator exhibits larger
jumps in the survival curve for the fall and winter, suggesting that

the risk of passing through the dam was higher during those seasons.

3.3 | Mark-recapture models

Mark-recapture models are used for estimating movement or demo-
graphic attributes, e.g. abundance or survival. These models are fit-
ted to data collected by capturing and marking a sample of animals
from a population, subsequent release, and resampling such that
additional samples can include both marked and unmarked animals
(Amstrup, McDonald, & Manly, 2005). When using telemetry, mark-
recapture models are applicable if the tagging procedure is consid-
ered the marking process, and detections are the recaptures. Few
telemetry studies record the presence of untagged animals (but see
Dudgeon, Pollock, Braccini, Semmens, & Barnett, 2015), therefore
the most applicable mark-recapture models incorporate data col-
lected on tagged animals only, which include known-fate, live-recap-
ture, and recovery models (Lindberg, 2012).

Known fate models (related to survival analysis) assume per-
fect detection probabilities, which rarely occur in telemetry.
Alternatively, live-recapture models are highly applicable for an-
alyzing detection data because they enable the joint estimation
of detection probability and demographic quantities. Among
live-recapture models, the Cormack-Jolly-Seber model is fre-
qguently used, often to estimate survival along migratory routes
(e.g. Moore et al., 2015; Welch et al., 2009). The Cormack-Jolly-
Seber model is fitted using a product of probabilities with two
basic parameters: ¢ is the probability that an individual survives
between detections, and p is the probability that an individual is
detected if alive and marked (Amstrup et al., 2005). The response
variable consists of a binary encounter history (absence = 0 and
presence = 1) for every marked animal that is recorded on a dis-
crete temporal scale chosen by the researcher. If a single animal's
encounter history is encoded as 1101, where the first digit is the
initial capture and tagging, then the associated encounter proba-
bility would be

¢pd (1-p) ¢p, (6)

if ¢ and p are assumed constant through time, or

H1P2by (1-P3) aba, (7)

if these probabilities are allowed to vary. Because the Cormack-
Jolly-Seber model cannot distinguish between mortality and emi-
gration, survival estimates are more appropriately termed apparent
survival (Williams, Nichols, & Conroy, 2001).

A useful extension of the Cormack-Jolly-Seber model is the
multi-state Arnason-Schwarz model, which estimates survival and

detection probabilities as a function of an observed animal state



WHORISKEY ET AL.

Methods in Ecology and Evolution 5

(Schwarz, Schweigert, & Arnason, 1993; Amstrup et al., 2005). The
states are assumed to follow a first-order Markov process governed
by transition probabilities (Amstrup et al., 2005). It has been ap-
plied to detection data to estimate daily probabilities of horseshoe
crab spawning (Limulus polyphemus; reproductive state; Brousseau,
Sclafani, Smith, & Carter, 2004), survival of downstream migrating
Atlantic salmon (Salmo salar; location state; Holbrook, Kinnison, &
Zydlewski, 2011), and movement probabilities along walleye (Sander
vitreus) migratory routes (location state; Hayden et al., 2014).

Recovery mark-recapture models are useful when the recapture
process is terminal (Lindberg, 2012). Information on deceased in-
dividuals can be jointly modeled with live detection data using the
Burnham model (Burnham, 1993), which has been used to provide
more precise survival estimates (Sollmann, Furtado, Jacomo, Torres,
& Silveira, 2010) and to estimate the joint probability that tagged in-
dividuals were caught and reported (Martins et al., 2011). The Barker
model is an extension of the Burnham model useful for analysing
temporally continuous detection data (Barker, 1997), and has been
used to estimate the effects of gastric lavage on common snook sur-
vival (Centropomus undecimalis; Barbour, Boucek, & Adams, 2012).
Finally, Fouchet, Santin Janin, Sauvage, Yoccoz, and Pontier (2016)
proposed an approach for temporally continuous data that combines
survival analysis with an inhomogenous Poisson process for model-
ling detection probability.

We fitted several Cormack-Jolly-Seber models using MARK
(White & Burnham, 1999) and RMark (Laake, 2013) to test whether
sex or length were associated with weekly bull trout survival, and
whether the receiver array detection probability changed over time.
We compared candidate models using corrected Akaike's informa-
tion criterion (AlCc), and found that the best model estimated inter-
cepts only for both survival and the detection probability (Table 1).
The apparent weekly survival probability was estimated at 0.91. In
addition, the detection probability was estimated at 0.69, which sug-
gests that a combination of receiver coverage/efficiency, environ-
mental conditions, and fish behaviour limited the array's ability to
detect bull trout.

3.4 | Network analysis

Networks are mathematical objects consisting of nodes connected
by edges (Dale & Fortin, 2010). They can be used to study animal
movement by analysing the relationships between nodes, which can
represent receivers or tagged animals separately (unipartite graphs;
e.g. Jacoby, Brooks, Croft, & Sims, 2012) or simultaneously in the
same graph (bipartite graphs; e.g. Finn et al., 2014). To study move-
ment, nodes are often specified as the stationary receivers and
edges represent either the directed or undirected movements of
animals between receivers. Social aggregations can also be studied
when the animals are treated as nodes, e.g. by testing whether there
exist preferred associations among individuals (Stehfast et al., 2013).

A network's response variable is an adjacency matrix, which de-
scribes the connections between pairs of nodes (Farine & Whitehead,
2015). For example, the adjacency matrix

TABLE 1 Model fits with corrected AIC (AICc) values from

the mark recapture analysis of the illustrative bull trout dataset.
Construction of the model is given by the Model Formula, where
@(-) denotes the effects related to the apparent survival probability
and p(-) denotes those related to the probability of detection. ~1
denotes an intercept only model. DeltaAlCc is the difference in
AlCc from the best model

Model formula No. parameters AlCc AAICc
®(~1)p(~1) 2 258.0 0.00
®(~length)p(~1) 3 259.4 1.41
d(~sex)p(~1) 3 260.0 2.02
@d(~sex x length) 5 260.6 2.59
p(~1)
@(~sex + length) 4 261.5 3.42
p(~1)
@O (~1)p(~time) 4 261.5 3.50
@(~length)p(~time) 5 263.3 5.29
(~sex)p(~time) 5 263.6 5.58
@d(~sex x length) 7 264.6 6.57
p(~time)
@(~sex + length) 6 265.4 7.39
p(~time)
R1({0 O O
R2]10 O 3
R3|0 0 4 (8)
R1 R2 R3

describes a system of three receivers (R1, R2, and R3), where three
movements were recorded from R2 to R3 and four records indicate
animals staying at R3. Adjacency matrices for null networks can also be
of interest, e.g. to document potential direct routes among receivers.

For the above example, the following null network

R1(1 1 0

R2[1 1 1

R3l0 1 1 ©
R1R2R3

indicates that movements are possible between all pairs of receivers
except from R1 to R3 in either direction. Once the adjacency matrix
is defined, visuals and metrics can be calculated that describe the
network connectivity (Dale & Fortin, 2010). For example, the node
degree is the number of incoming and outgoing edges of a node,
which describes the amount of traffic through a receiver and there-
fore may indicate areas of importance (Farine & Whitehead, 2015;
Jacoby et al., 2012), whereas edge density is the fraction of observed
edges to all theoretically possible edges, and can help indicate the
amount of random/non-random movement (Jacoby et al., 2012).
Network metrics can be compared amongst groups, e.g. to de-
termine sex-specific differences in movement (Jacoby et al., 2012)
or preferred areas (Stehfast, Patterson, Barnett, & Semmens, 2015).
When the groups are not necessarily known a priori, community

detection algorithms can be used to identify groups of receivers or
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animals that are closely related, for example to identify home ranges
(Finn et al., 2014). If an observed network can be classified as a the-
oretical network pattern, then known properties can be interpreted
(e.g. Fox & Bellwood, 2014). Finally, disrupting the networks by re-
moving nodes and studying the subsequent network fragmentation
can help to assess the effects of habitat disruption (Jacoby et al.,
2012) and the protective capabilities of potential marine reserves
(Espinoza, Lédée, Simpfendorfer, Tobin, & Heupel, 2015).

Direct hypothesis testing on network measures is possible using
GLMMs, but the assumption of independence may be violated
(Farine & Whitehead, 2015). Permutation and randomization tech-
niques provide non-parametric methods for hypothesis testing by
comparing an observed statistic to those calculated from randomly
generated networks (Dale & Fortin, 2010), and have been used to
assess whether animals are moving randomly (Espinoza et al., 2015).
In addition, networks can be compared to each other or other dy-
adic variables using a Mantel test which assesses the correlation
between two matrices (Farine & Whitehead, 2015; Urban, Minor,
Treml, & Schick, 2009), e.g. to test whether yellowfin tuna (Thunnus
albacares) social associations are related to pre-defined cohorts
(Stehfast et al., 2013). Relationships between networks and more
than one covariate can be evaluated using the multiple regression
quadratic assignment procedure (Farine & Whitehead, 2015), which
has been used to assess the effect of environmental variables on
small-spotted catshark (Scyliorhinus canicula) movements (Jacoby
et al., 2012).

We applied network analysis to the bull trout dataset (Figure 2)
after summarizing detection data into directed movements between
pairs of receivers. Using the R package igraph (Csardi & Nepusz,
2006) and treating the receivers as nodes, we plotted a network
for each sex making the size of each node proportional to its de-
gree and using weighted edges to represent the number of directed
movements between nodes. These networks suggest that the main
pool of the reservoir experiences more fish traffic compared to
either of the reaches, and therefore likely contains important bull
trout overwintering habitat. In addition, a Mantel test between the
two networks suggested a weak but statistically significant (r = 0.17,
p < 0.05) correlation in movement patterns between the males and

females.

4 | FUTURE DIRECTIONS

4.1 | Gaussian random fields

Gaussian random fields (GRFs) are a promising approach for analyzing
detection data within a spatial context. Specifically, GRFs estimate
the residual spatial correlation remaining after accounting for meas-
ured explanatory variables (Thorson & Minto, 2015). In fisheries,
they have been used to model the spatial dependence of population
processes and to understand the relationship between fish distribu-
tion and habitat (Carson, Shackell, & Mills Flemming, 2017; Thorson
& Minto, 2015; Thorson et al., 2015). With telemetry data, GRFs have
been used to show how the number of at-sea seal encounters co-var-
ied with bathymetry and distance to the seal haul-out site (Carson &
Mills Flemming, 2014). In that study, the receiver locations changed
through time; here, we demonstrate the potential of GRFs for detec-
tion data collected at fixed locations by investigating whether the
presence of the dam affects bull trout distribution using the illustra-
tive dataset. Because the GRF is a flexible hierarchical model, these
data could have been modeled in several different ways. For exam-
ple, we could have: modeled the duration or number of detections
(e.g. Carson & Mills Flemming, 2014); accounted for false absences
by using a zero-inflated distribution (e.g. Cosandey-Godin, Krainski,
Worm, & Mills Flemming, 2015); or used a state-space model to ac-
count for technological error (e.g. Thorson et al., 2015).

We assumed that the number of individuals y, detected at a given

receiver location s (of which there are n) was Poisson distributed:

ys ~ Poisson () . (10)

We linked the mean of the distribution, 4, to the linear predictor,
11, through a log-link function:

log (1) =n,. (11)
In turn, _ was related to the distance between the receiver and

the dam through the linear equation:

Ns = ﬂO +ﬁ1Xs +§s1 (12)

where f, represents the log of the number of detections expected
when the distance to the dam (x,) and the spatial random effect (&)

both have no effect, and f, is the regression coefficient for x_. The

FIGURE 2 Sex-specific results

from applying network analysis to the
illustrative dataset. Yellow represents the
position of the dam. Circles denote the
receiver positions, and are weighted based
on their node degree, i.e. the number of
incoming and outgoing edges of a node.
Edges are weighted based on the number
of directed bull trout movements between
receivers. Males are on the left (green),
and females are on the right (orange)
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random effect £ accounts for the effect of unknown spatial factors in-
fluencing the response and we model it as a GRF, meaning that for any
& €D cR? where Dis the domain, we let £= (£, ... ,§n)T be distributed

as a multivariate normal:
E~MVN (0,2‘.) . (13)

Here, X is a n x n covariance matrix where the (i, j)th element of
X is defined by the Matérn covariance structure, which for i # j is
defined as:

Cov [54]= (chij)" K, (xhyj) s (14)

O
I (v)2v-1
where h,.y]. is the Euclidean distance between receiver locations s; and S;
the smoothness parameter vis set equal to 1, and the spatial scale x and
marginal variance o2 are both estimated. As in Thorson et al. (2015), we
used R-INLA (lllian, Sgrbye, & Rue, 2012) to simplify model implemen-
tation with stochastic partial differential equations (SPDEs) and we
used TMB (Kristensen, Nielsen, Berg, Skaug, & Bell, 2016) to estimate
the model parameters.

Model fitting resulted in parameter estimates of g, = 2.42 (95%
Cl: 1.73-3.12) and 5, = - 0.042 (95% Cl: -0.063 to -0.022), indicat-
ing that as distance to the dam increased the number of individuals
detected decreased. This may result in part because the distance
from the dam increases proportional to the distance from the main
lacustrine habitat for most locations within the reservoir. In addition,
the spatial correlation of the GRF accounts for some of the bull trout

distribution not explained by distance from the dam (Figure 3).

4.2 | Accounting for spatial correlation and
measurement error

We expect that methods for estimating spatial correlation associated
with animal movement will grow in popularity as receiver coverage
and method documentation continue to expand. While we proposed
the GRF as a flexible method for modelling animal movement data
with a spatial component, other spatial methods exist that could be
applied to detection data. For example, one terrestrial study used a
spatial (and temporal) correlation structure within a GLMM to as-
sess the factors affecting home range size of radio-tracked roe deer
(Capreolus capreolus; although home range in this case was calcu-
lated from spatially continuous detection data, similar principles
would apply to responses calculated from discrete detection data;
Borger et al., 2006). Network autocorrelation models (Leenders,
2002) could be used to estimate the correlation between network
attributes caused by receiver location. In addition, spatial capture-
recapture models are a spatial extension of mark-recapture models,
and are well established in terrestrial studies with encounter data
like those generated by camera trapping (Royle, Chandler, Sollmann,
& Gardner, 2014). These models involve hierarchical modelling of
a spatial point process of unobserved animal activity centres and
a detection probability function depending on distance from the
activity centres (Efford & Fewster, 2013). Despite similarities with

terrestrial encounter data, we have seen few studies that apply

spatial capture-recapture methods to aquatic detection data, but
see Raabe, Gardner, and Hightower (2014), who studied the survival
and movement of PIT-tagged American shad (Alosa sapidissima) using
these methods.

Many studies have investigated the measurement error of
aquatic tracking technology by estimating the detection efficiency
(the frequency with which a receiver will detect a fish within its
given range; Simpfendorfer, Heupel, & Collins, 2008), detection
range (the probability of detection given distance from a receiver;
Kessel et al., 2014b), or the frequency of false detections (when
a receiver logs a false ID or detects an absent animal; Heupel,
Semmens, & Hobday, 2006). However, few studies incorporate
this information into their biological inferences. Those that do may
use it to pre-process their data (e.g. Hoenner et al., 2018; Kessel
et al., 2014a), or directly incorporate measurement error into the
statistical method (Pedersen & Weng, 2013; Simpfendorfer et al.,
2008; Winton, Kneebone, Zemeckis, & Fay, 2018). Measurement
error can additionally be used to help numerically optimize the
spatiotemporal design of a receiver array before deployment, re-
sulting in a study design with enhanced ability to acquire high-
quality data (Pedersen, Burgess, & Weng, 2014).

State-space models are hierarchical models that can pair a
measurement equation with a model for animal movement, and si-
multaneously estimate both processes (Auger-Méthé et al., 2017).
Two notable examples with detection data include: (a) a non-para-
metric function for detection probability paired with an Ornstein-
Uhlenbeck movement process to estimate the home range of a
humphead wrasse (Cheilinus undulatus; Pedersen & Weng, 2013);
and (b) a Gaussian decay measurement equation coupled with a
binomial spatial point process to estimate centres of activity of a
black sea bass (Centropristis striata; Winton et al., 2018). State-space
models have gained popularity for analyzing spatially continuous
animal movement data, likely because of their flexibility—multiple
measurement error distributions can be included and matched spe-
cifically to the tracking technology (e.g. Winship et al., 2012), and the
movement process can range from individual models of movement
(e.g. Auger-Méthé et al., 2017) to GRFs (e.g. Thorson et al., 2015).
We believe that state-space models could provide a framework that

improves the reliability of statistical analyses of detection data.

4.3 | Broadening the scope of animal
movement analyses

Telemetry technology will continue to improve technically in ways
that will increase study longevity, target more species or life stages,
and expand the scope of data collection (Lennox et al., 2017a). Study
designs will also evolve, as auxiliary biological and environmental
variables are collected during sampling or independently, and as te-
lemetry networks facilitate the sharing of resources and multi-spe-
cies data (Lennox et al., 2017a). As a result, telemetry studies will
have the potential to generate massive, interdisciplinary datasets,
and statistical methods for analysing such complex data will have
to adapt appropriately. In the future, movement ecologists may look
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to the burgeoning research field of human mobility, which has ex-
ploded since the advent of the smartphone with GPS tracking and
geolocated social media postings (Thums et al., 2018). Because hu-
mans and non-human animals appear to conform to similar ecologi-
cal principles, e.g. site fidelity, aggregation, and sociality (Meekan
etal., 2017), movement ecologists will have the opportunity to read-
ily appropriate big data approaches from human mobility studies
(Thums et al., 2018).

5 | DISCUSSION
To aid researchers in matching a statistical method to their data
and study objective, we devised a decision tree which we present
in Figure 4. We recognize that accounting for every possible study
design would be unrealistic, therefore we suggest that research-
ers utilize our decision tree as a first general guide through some
of the possible statistical methods, not an exhaustive instruction
catalog. We hope that a tree will help researchers narrow their
selection, but then we strongly suggest that this is followed by
comprehensive study of the chosen method(s), and its(their) ac-
companying assumptions. To that end, we summarize our guide
below.

We suggest using mark-recapture methods when studying popu-
lation dynamics, especially when the detection ability of the array is

suspect. However, note that the most commonly used mark-recapture

A FIGURE 3 Results from the GRF
analysis on the illustrative dataset. (a)
shows the mesh calculated by the INLA
SPDE; (b) represents the expected number
of bull trout across the reservoir returned
by the full model; (c) represents the
expected number of fish as influenced by
distance from the dam; and (d) represents
i the expected number of fish based on the
effect of the GRF only. Yellow represents
the position of the dam

exp(&)

method, the Cormack-Jolly-Seber model, is dependent upon the fol-
lowing assumptions: (a) tags are not lost and do not fail; (b) survival is
not influenced by the tag or tagging procedure; and (c) survival and
detection probability do not vary among tagged animals. Preliminary
laboratory studies assessing tag attachment and retention can help
to determine the risk of tag loss or failure (Holbrook, Perry, Brandes,
& Adams, 2013). Holding studies can be used to assess whether tag-
ging influences survival (Furey et al., 2016); however, tagging may
negatively affect multiple traits in a cumulative way such that the full
influence is not understood by assessing the effect on survival alone
(Bodey et al., 2018). In fact, tagging can affect traits like growth,
swimming performance, and social interactions (Jepsen, Thorstad,
Havn, & Lucas, 2015), and these potential effects should be carefully
considered in any analysis. Finally, some of the factors affecting indi-
vidual variation in survival and detection (e.g. sex, age) can be incor-
porated into the Cormack-Jolly-Seber model through stratification
or regression analysis (Williams et al., 2001).

To understand the occurrence of an event when temporal re-
cords for the event exist, consider using survival analysis. Survival
analysis can be used to understand the survival of tagged animals;
however, it is distinguishable from mark-recapture via their re-
sponse variables. Survival analysis requires a temporal value for the
response (e.g. y = 12 hr), whereas mark-recapture uses a discrete
time series (e.g. 1001101), and time is often incorporated by allow-
ing probabilities to be dynamic. Although a temporal response can
also be modelled using GLMs/GLMMs/GAMs/GAMMs, survival
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FIGURE 4 Decision tree for identifying
appropriate statistical methodologies

for analyzing detection data collected by
acoustic, radio, or PIT telemetry

Yes

'e

Mark-
Recapture

analysis can account for the fact that for some study animals it
may not be possible to determine whether they experience the
event (censoring). Censoring is appropriate as long as the probabil-
ity of being censored is independent of the probability of the event
(Harrell, 2015).

To describe the connectivity among receiver locations or tagged
animals, we encourage the use of network analysis which provides
easily interpretable visualizations of this connectivity. However, net-
work analysis does assume that all the nodes of a system are rep-
resented in the graph (Dale & Fortin, 2010) and is therefore more
useful for datasets collected by many receivers/individuals. Nodes
and edges must be carefully defined in order to accurately represent
the study system; any deviations from the true network, for example
through data transformation, inclusion of false absences, or exclu-
sion of individuals, can significantly impact network measures and
the overall network structure (Farine & Whitehead, 2015).

Network
analysis

occurrence of a particular event?

Generalized
linear/ additive
mixed models

Do you want to
model connectivity?

7N\
/ N\

Do you want to explicitly
estimate spatial correlation?

' N\

No Yes

7 N\
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Spatially explicit models
(e.g., GRFs)

N./ N\

€s

/ N

Do you want to estimate
demographic parameters?

Is your response
variable time?

N\ 7N

No No S

A4 N

Survival
analysis

Do you have repeated
observations within sampling
units (i.e., random effects)?

/7 N\

Generalized
linear/ additive
models

If spatial correlation is of interest then researchers should use
spatially explicit methods like GRFs. It is possible to incorporate spa-
tial information into some of the other statistical methods we have
described. For example, with network analysis a receiver node can
include a location, and with regression-type analyses (e.g. Cormack-
Jolly-Seber models or GLMs) spatial references can be incorporated
as covariates. However, spatial models are distinguishable from
these methods because they estimate spatial correlation, which
when ignored can invalidate analyses by violating the assumption
of independence (Thorson & Minto, 2015). In addition, estimating
spatial correlation can show how unobserved/unmeasured variables
correlated in space affect the response variable (Carson & Mills
Flemming, 2014; Thorson et al., 2015). Network autocorrelation
models, spatial capture-recapture, or spatial generalized models (not
reviewed here; see Zuur et al., 2009) can also be used to estimate
spatial correlation.
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Finally, for most other scenarios, we recommend using GLMs/
GLMMs or GAMs/GAMMs. Generalized modelling is arguably the
most accessible statistical method presented in this paper in terms
of documentation and application. It is also flexible, as several differ-
ent response variables can be used, both linear and nonlinear covari-
ate relationships are possible, and random effects and correlative
structures can be included (Zuur, leno, & Saveliev, 2017). However,
these methods come with their own assumptions (e.g. distribution
assumptions of the residuals) and complexities, therefore we would
encourage readers to consult more specific guides (e.g. Bolker et al.,
2009) before implementation.

6 | CONCLUSION

Telemetry is increasingly used to track aquatic animals. This has led
to a massive expansion in the volume and detail of ensuing movement
data, and significant growth in the availability of suitable statistical
methods. It is often no longer sufficient to rely on relatively simple
descriptive analytical techniques, yet choosing from among available
methods can be daunting. We reviewed advanced statistical meth-
ods useful for detection data in order to introduce them to aquatic
telemetry users and provide researchers with the tools necessary for
more comprehensive detection data analysis. We focused specifi-
cally on detection data recorded in aquatic environments, which can
differ in small but substantial ways from those collected in terrestrial
studies. For example, the camera traps often used in terrestrial stud-
ies can detect previously unknown/unmarked individuals, whereas
acoustic, radio, and PIT receivers can only identify tagged individu-
als, thus hindering our ability to estimate population size from these
data using mark-recapture methods. However, some of the methods
mentioned here (e.g. spatially explicit capture-recapture) have been
established in terrestrial studies for 10+ years, and minor modifica-
tions could significantly enhance the analysis of aquatic detection
data. Going forward, we recommend that aquatic ecologists look to-
wards terrestrial studies and other fields like human mobility to help
motivate the statistical advances that will be needed to analyse de-

tection datasets that are rapidly growing in both size and complexity.
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