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Anadromous fishes such as steelhead trout, Oncorhynchus mykiss, are exposed to a suite of infectious agents and migratory
challenges during their freshwater migrations. We assessed infectious agent load and richness and immune system gene
expression in gill tissue of Bulkley River (British Columbia, CA) steelhead captured at and upstream of a migratory barrier
to evaluate whether infectious burdens impacted migration success. We further considered the potential influences of water
temperature, sex and fish size on host infectious agents and transcription profiles. There were eight infectious agents detected
in steelhead gill tissue, with high prevalence of the bacteria Candidatus Branchiomonas cysticola (80%) and Flavobacterium
psychrophilum (95%) and the microparasite Sphaerothecum destruens (53%). Fish sampled at the falls had significantly greater
relative loads of Ca. B. cysticola and F. psychrophilum, higher infectious agent richness and differential gene expression
compared to fish captured upstream. Flavobacterium psychrophilum was only associated with immune gene expression
(particularly humoral immunity) of fish sampled at the falls, while water temperature was positively correlated with genes
involved in the complement system, metabolic stress and oxidative stress for fish captured upstream. This work highlights
interesting differences in agent–host interactions across fisheries and suggests that hydraulic barriers may reduce the passage
of fish with the heaviest infectious agent burdens, emphasizing the selective role of areas of difficult passage. Further, this work
expands our knowledge of infectious agent prevalence in wild salmonids and provides insight into the relationships between
infectious agents and host physiology.
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Introduction

Infectious agents (pathogenic microparasites including
viruses, bacteria, fungi and protozoa) are widespread in
aquatic environments (Price, 1980) and play an integral role
in shaping aquatic ecosystems through disease processes (e.g.
Cotner and Biddanda, 2002; Suttle, 2005; Smith, 2007).
Infectious diseases have resulted in declines in some wild
fish populations (Marty et al., 2003; Steinbach Elwell et al.,
2009) and have been hypothesized as a factor contributing to
collapse in others (Pearson et al., 1999; Gibson-Reinemer et
al., 2017). Infectious agents in an active state induce changes
to host physiology that can reduce performance of fish in the
wild (i.e. disease; Jeffries et al., 2014a; Miller et al., 2014;
Teffer et al., 2017; Bass et al., 2019). Fish have evolved
immune mechanisms to protect against and reduce the cost
of disease (Uribe et al., 2011), though ultimately there are
fitness consequences associated with host-immune responses
regardless of disease development (Zuk and Stoehr, 2002).
Consequently, understanding infection dynamics and host
physiological response in wild fish populations is important to
provide context for monitoring any population scale changes.
The study of infectious agent dynamics in wild fish has been
limited due to challenges associated with data collection
and the large spatial scale of these processes (Peeler and
Taylor, 2011). Recent advances in molecular genetics (Lawson
Handley, 2015) have allowed for rapid and cost-effective
quantification of gene expression, including the use of high-
throughput quantitative reverse transcriptase polymerase
chain reactions (PCR) on the BioMarkTM microfluidics
platform, which has recently been validated for detection
and quantification of salmon infectious agents (Miller et al.,
2016) and detection of a molecular signature indicative of
viral disease (Miller et al., 2017). This platform can help
deduce when an infectious agent has moved from a carrier
state to actively replicate and cause damage to the host, based
on the host-immune response (Casadevall and Pirofski, 1999;
Miller et al., 2014).

Infectious agent communities are dynamic and their preva-
lence among and within wild fish populations are highly
dependent on both biotic and abiotic factors. Intrinsic bio-
logical differences of potential host species such as life-history
stage (Castro et al., 2015), size (Boerlage et al., 2011; Moli-
na-Fernandez et al., 2015), age (Marty et al., 2003), condition
(Rohlenová et al., 2011) and sex (Richards et al., 2010; Teffer
et al., 2017) may alter individual susceptibility to infection.
For example, infectious hematopoietic necrosis virus causes
significant mortalities in juvenile salmonids but is relatively
nonpathogenic in adult fish (Traxler et al., 1997). Further,
sexually mature female rainbow trout, Oncorhynchus mykiss
(Linnaeus), have demonstrated greater parasitaemia and mor-
tality from the blood parasite Cryptobia salmositica than sex-
ually mature males (Currie and Woo, 2007). Environmental
conditions may affect infectious agent virulence and host vul-
nerability to these organisms (Wedemeyer, 1970; Rottmann
et al., 1992; Marcos-Lopez et al., 2010; Sepahi et al., 2013).

Temperature, in particular, has a critical influence on infec-
tious agent-fish host infection dynamics given the governing
role the environment has on fish physiology (Brett, 1971; Fry,
1971; Yada and Tort, 2016) and infectious agent productivity
(e.g. Thoen et al., 2016). Understanding the factors that con-
tribute to infectious agent prevalence and host physiology is
exceptionally important for anadromous fish that undertake
challenging, long-distance migrations and experience a suite
of physiological changes and novel agents upon returning to
freshwater to complete their reproductive cycle (Cooke et al.,
2011; Miller et al., 2014).

Migratory Pacific salmonid species typically enter rivers
to spawn after completing the marine portion of their life-
cycle (Schaffer, 2004). Pacific salmonids have been in decline
across much of their distribution (Beamish et al., 1999)
and there have been notable shifts in survival of return
migrating adult salmon (Cooke et al., 2006; Hinch et al.,
2012). Research has highlighted several potential sources
of prespawn mortality including increasing water temper-
atures (Hinch et al., 2012; Bowerman et al., 2018), fish-
eries captures (Baker and Schindler, 2009) and infectious
agents (Traxler et al., 1998). The impacts of which may be
exacerbated in areas of difficult passage (Hinch and Bratty,
2000).

Steelhead O. mykiss (Walbaum) are unique to other Pacific
salmonids in their potential iteroparity and overwintering
behaviour prior to spawning (Scott and Crossman, 1973).
During their spawning migrations, steelhead may remain in
rivers for up to 10 months, increasing their potential exposure
to accumulated thermal units and to infectious agents relative
to other anadromous salmonids. Steelhead provide an ideal
model to study the impact of infectious agents on migratory
fish because their condition does not decline as rapidly and
severely during migrations relative to semelparous salmon
that undergo natural senescence. Despite growing evidence
that infectious agents can have negative impacts on wild
salmon populations (Jeffries et al., 2014a; Teffer et al., 2017;
Bass et al., 2019), the influence of infectious agents on
wild steelhead remains relatively unexamined. The Pacific
Northwest maintains some of the last remaining entirely
wild steelhead runs on Earth, with the rivers of the Skeena
watershed, British Columbia, supporting many of these wild
populations.

Adult steelhead returning to spawn in the Bulkley River of
British Columbia, Canada, must undertake a physiologically
challenging migration through Witset Falls 314 km into their
migration. Fish can be observed holding at the base of the
falls before making their ascent to spawning grounds. The
Wet’suwet’en First Nation have a long-standing salmon fish-
ery where they dip net fish holding in eddies as they attempt to
ascend the falls. They also conduct a steelhead mark-recapture
program in collaboration with the British Columbia Ministry
of Forests, Lands, Natural Resource Operations and Rural
Development—Skeena Region, with the recapture occurring
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part way up the falls. Above the falls, there is a high-effort
catch-and-release recreational angling fishery.

To determine if the falls act as a migration barrier for
weaker fish we evaluated the condition of steelhead based on
the transcription of biomarkers known to be associated with
immunity, stress, osmoregulation and metabolism, as well as
infectious agent presence and relative load at and above this
natural barrier to migration. We hypothesized that infectious
agent load would impact fish migration success (i.e. highly
infected fish would have a low success rate at passing the
migration barrier). We also explored relationships between
the relative loads of infectious agents and host biomarkers
and predicted that differential immune stimulation would be
associated with a subset of infectious agents with the greatest
pathogenic potential. We further considered the influence of
water temperature, sex and fish size on host biomarkers and
infectious agent load and richness. We predicted that host
biomarkers of immunity and stress would be generally upreg-
ulated with warmer temperatures, as observed in previous
temperature challenge studies (Jeffries et al., 2012a, 2014b)
and would be greater for females, as they have shown higher
stress and prespawn mortality during spawning migrations
(Kubokawa et al., 1999; Teffer et al., 2017).

Methods
Study site and collection
Adult steelhead were captured from 23 September to 29 Octo-
ber 2016 by dip net and angling and nonlethally sampled for
gill tissue. All fish captured by dip net were from Witset Falls
(314 rkm; height, 15 m) by Wet’suwet’en fishers. Steelhead
captured by dip net were transferred in <5 s to a trans-
port sling, which a runner then transported to a water-filled
sampling trough (total air exposure of <25 s). Angling was
completed upstream of Witset Falls (325–407 rkm) by local
or guided anglers that agreed to assist with the study. Anglers
used a combination of fly fishing, spin fishing and centre pin
fishing and various sizes of flies, inline spinners and artifi-
cial worms. Fish were transferred directly into a sampling
trough positioned in the river upon landing (no air exposure
period exceeded 30 s). The date of sampling differed between
capture methods, which represented inherent differences in
the fisheries we worked with to sample migrating steelhead.
The Wet’suwet’en salmon fishery operates from early August
until the last week in September at Witset Falls while salmon
and steelhead are actively migrating. The recreational fishery
operates primarily between mid-September to early Novem-
ber and is typically completed upstream of the falls where
there is greater and safer access to the river. Steelhead anglers
almost exclusively target slow moving water or refuge sites
where steelhead are known to hold prior to overwintering
in the river (Keefer et al., 2009). These sampling groups
therefore reflect fish in two different stages of migration and
freshwater acclimation, which has been previously confirmed
by telemetry (Twardek et al., 2019).

Once landed and secured in the water-filled sampling
trough (or recovery bag), steelhead were sampled nonlethally
for ∼ 0.5 mg of gill tissue (2–3 filament tips) using steril-
ized diagonal cutting pliers to prevent tearing (see Cooke
et al., 2005 for details on the technique). The presence of
infectious agents and corresponding physiological changes
can be effectively detected in gill tissue even when it is not
the primary infectious tissue (Mendonca and Arkush, 2004;
Tavares et al., 2016; Miller et al., 2017; Teffer et al., 2017)
and many studies investigating infection status have used this
method (e.g. Cornwell et al., 2013; Teffer et al., 2017; Bass
et al., 2019). Gill tissue was stored in 1.2 ml of RNAlater®

solution (Qiagen, MD, USA) in 1.5 ml microtubes and stored
at −20◦C for future genomic analyses. Nonlethal gill biopsy
sampling was undertaken due to conservation concerns for
Bulkley steelhead. All steelhead were assessed for fish length
(FL; mm) and sex and were sampled and released within
30 min of capture, during which they remained submerged
in water. Surface water temperatures (◦C) at the point of
capture were taken using a handheld digital thermometer
(Taylor Precision Digital Thermometer, #9847, Taylor USA,
Oak Brook, IL, USA) as an indication of the broader scale
patterns in temperatures experienced by fish throughout the
river and season. All sampling was conducted in accordance
with the guidelines of the Canadian Council on Animal Care
as administered by Carleton University (protocol 106247).

Sample analyses
All sample analyses were completed at the Pacific Biological
Station (Fisheries and Oceans Canada). To determine the
abundance of infectious agents and host gene expression
simultaneously, high-throughput nanofluidic quantitative
PCR (qPCR; Fluidigm BioMarkTM Dynamic Array, CA, USA;
outlined in Jeffries et al., 2014a and Miller et al., 2014, 2016)
were undertaken on gill RNA using assays for 47 infectious
agents known or suspected to cause disease in salmon
(Supplementary Table S1) and 59 genes with a broad range
of immune pathways of defence and stress responses. The
magnitude of host response (measured herein via host gene
expression) can be used to evaluate the relative likelihood an
infectious agent is causing damage and therefore disease
to the host (Casadevall and Pirofski, 1999; Miller et al.,
2014, 2017). To provide an overview of the processing
method, each sample was independently homogenized
with a MM301 mixer mill (Restch Inc., PA, USA) and
aliquots of the aqueous phase (containing genetic material)
were taken. RNA quantity (A260) and purity (A260/280)
were evaluated by spectrophotometry, and samples were
normalized accordingly. RNA was used to construct cDNA
(InvitrogenTM SuperScriptTM VILOTM CA, USA, cDNA
Synthesis Kit) that underwent a specific targeted amplification
(STA) to provide sufficient template molecules for qPCR on
the Fluidigm BioMark (impacts of STA on the analytical
performance of infectious agent assays presented in Miller
et al., 2016). Samples were then treated with ExoSAP-IT®

PCR Product Cleanup (MJS BioLynx Inc., ON, Canada)
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to remove unincorporated nucleotides and primers and
were diluted 5-fold with DNA Suspension Buffer (Teknova,
Hollister, California). Sample and assay mixes were loaded
onto the Fluidigm Dynamic Array using an IFC Controller
HX, and the GE 96 × 96 Standard v1.pcl. (TaqMan®)
protocol was used for qPCR. TaqMan assays to infectious
agents were designed to target RNA, which can assess
microparasites in an active state through detection of mRNA,
and allows for simultaneous screening of RNA viruses (Miller
et al., 2016) and host genes (Miller et al., 2017). A subset
of samples with strong activation of a biomarker panel
associated with a viral disease development (VDD) state
(Miller et al., 2017), but that did not test positively for any
viruses in our initial panel, was screened for 10 additional
salmon viruses recently discovered in BC salmon (Gideon
Mordecai, unpublished data). On each dynamic array, we
included a negative extraction control, a negative and positive
cDNA control, a negative and positive control during the STA
stage and a control that did not undergo pre-amplification (as
described in Miller et al., 2016).

Samples and agent assays were run in duplicate during the
final qPCR resulting in quadruplicate measures of infectious
agent expression while biomarker assays and reference assays
(78d16.1, MrpL40 and Coil-P84) were run singly, resulting
in duplicate cycle threshold (CT) values for each sample.
The BioMark real-time PCR analysis software was used to
assign CT values for each reaction curve based on visual
assessment of curve shape and replicate similarity (a negative
scale from 0–40 corresponding to the maximum number of
cycles completed on the BioMark). CTs were averaged for
host biomarker and infectious agent assays. Samples that
had two or more quadruplicates fail to amplify infectious
agent products were treated as negative detections. Positive
infectious agent detections were only assigned for samples
with a CT below the 95% limit of detection, which varied for
each infectious agent assay (Miller et al., 2016). Averaged CT
scores underwent an efficiency correction using the formula
CT((log(1 + efficiency)/(log(2))) as specified by the GenEx
Software (www.multid.se). Biomarker assays with efficiencies
outside 1.0 ± 0.2 were considered failed and were removed
from analysis (Supplementary Table S2). Biomarker data were
normalized against reference genes (developed in-house by
the Molecular Genetics Laboratory at the Pacific Biolog-
ical Station, Nanaimo, BC) and pooled sample using the
2∧��CT method (Livak and Schmittgen, 2001; Teffer et al.,
2017).

Statistical analyses
Prior to analysis, infectious agent abundance data were trans-
formed to a positive scale by subtracting each CT value
from 40 (the maximum number of cycles completed on the
BioMark as per Bass et al., 2017). This measurement reflects
the relative abundance or ‘loading’ for each microbe between
individuals and is hereby termed ‘relative load’. The variable
‘agent richness’ was also calculated from infectious agent data

and was defined as the number of individual infectious agents
found within each fish.

To test the relationship between the relative loads of infec-
tious agents and the predictor variables of sampling location,
water temperature at the time of sampling, sex and fish size,
we used multiple regression models. Two separate multiple
regression models used the relative loads of either Flavobac-
terium psychrophilum or Candidatus Branchiomonas cys-
ticola as response variables, limiting the data to positive
infectious agent detections only. Only these two agents were
present in enough fish to merit analysis of effect. Diagnostic
plots suggested that the relative load models for both infec-
tious agents had minimal deviations from normality. To test
the relationship between infectious agent richness and the
predictor variables of sampling location, water temperature
at the time of sampling, sex and fish size, we used a Poisson
regression model to account for count data and a right skewed
distribution. To evaluate the relationship between relative
loads of Ca. B. cysticola, F. psychrophilum and Sphaerothe-
cum destruens we used Spearman’s ran correlations for all
individuals with positive detections.

Kruskal’s nonmetric multidimensional scaling (NMDS)
was used to evaluate relationships between sampling location
and host gene expression values. NMDS is an ordination
technique that uses nonlinear dimensionality reduction to
visualize relationships between observations for multiple
response variables and is an effective statistical approach
for gene expression data (Taguchi and Oono 2005). A
Bray–Curtis distance matrix was created based on the gene
expression values for each fish (R function ‘metaMDS’;
package ‘vegan’). Dimensionality of the ordination was
determined as the fewest number of axes needed to reduce the
disagreement between rank orders of observed and predicted
distances to appropriate levels (stress < 0.2; Kruskal, 1964).
Biomarker scores were determined using weighted averages
of all predicted distances. The external variable sampling
location was fit into the ordination using the ‘envfit’ function
(package ‘vegan’) to test for differences in gene expression
above and at the falls. The envfit function fits external
variables to predicted points by maximizing their correlation.
Separate NMDS analyses for fish sampled at the falls
and above the falls were completed to determine whether
infectious agents and other external variables were having
unique impacts on fish physiology at different stages in the
migration. These two NMDS analyses were completed for
fish at and above the falls fitting the relative loads of F.
psychrophilum and Ca. B cysticola, agent richness, water
temperature, sex and FL as external variables. Only infectious
agents with high prevalence were fit to the ordination to
reduce bias associated with agents that had only a few positive
detections (as per Teffer et al., 2017). Continuous variables
(agent loads, agent richness, water temperature and FLs)
were plotted as vectors that represent maximal correlation
of each variable with the ordination. Vector lengths were
shortened and biomarker labels were adjusted to increase
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Table 1: The prevalence and relative loads (40-CT) of infectious agents present in adult Bulkley River steelhead across fisheries/sampling
locations.

Assay name Agent name Type
Prevalence (%) Relative load (40-CT)

At falls Above falls At falls Above falls

c_b_cys Candidatus Branchiomonas cysticola Bacterium 93 80 27.6 (22.4–32.1) 23.9 (15.9–31.7)

fl_psy Flavobacterium psychrophilum Bacterium 100 92 22.6 (18.7–24.2) 18.0 (13.2–23.6)

pch_sal Piscichlamydia salmonis Bacterium 13 4 22.7 (21.7–23.8) 13.1

lo_sal Loma salmonae Parasite 20 0 15.8 (14.7–16.7) 0

pa_ther Paranucleospora theridion Parasite 13 0 17.1 (15.0–19.3) 0

te_bry Tetracapsuloides bryosalmonae Parasite 0 4 0 24.7

sp_des Sphaerothecum destruens Parasite 66 40 21.4 (15.8–24.7) 19.1 (14.4–25.2)
Each assay lists the abbreviation, infectious agent name, type of agent, prevalence and mean relative load (range) by location. Mean relative loads were calculated using
positive infectious agent detections only

plot comprehension. Significance was assessed at α < 0.05.
Where applicable, means and standard errors are presented.
All statistical analyses were conducted in R Version 3.4.3
(R Core Team, 2015), and figures were constructed in Sigma
Plot Version 11.0.0.75.

Results
Fifteen steelhead (598 ± 62 mm; 53% female) were captured
by dip net at Witset Falls (314 rkm) between 23 and 29
September 2016. An additional 25 steelhead (688 ± 16 mm;
68% female) were captured by angling (325–407 rkm)
between 23 September and 29 October 2016. Sampling
temperatures remained cool for fish both at (8.6 ± 0.4◦C;
7.0–11.5◦C) and above (6.2 ± 0.3◦C; 3.0–10.3◦C) the falls.
Sampling temperature was closely correlated with date
(r = −0.76; P < 0.01) highlighting its usefulness as a proxy
for broad scale changes in temperatures experienced as the
sampling period progressed.

Infectious agents
Seven infectious agents were initially detected in Bulkley
River steelhead gill tissue, though only two were sufficiently
prevalent to evaluate drivers of their abundance and their
influence on host physiology. Candidatus Branchiomonas
cysticola (80%), F. psychrophilum (95%) and S. destruens
(53%) were the most prevalent infectious agents, with low
prevalence of Loma salmonae (20%), Piscichlamydia salmo-
nis (13%), Paranucleospora theridion (13%) and Tetracap-
suloides bryosalmonae (4%; Supplementary Table S1). The
prevalence of all agents was higher in fish captured at the
falls than above (Table 1), except for T. bryosalmonae that
was only detected in one fish above the falls. The relative
load of Ca. B. cysticola was not significantly correlated with
water temperature at the time and location of sampling
(R2 = 0.03; P = 0.25), sex (P = 0.97) or FL (R2 = 0.03; P = 0.33)
but was significantly greater for fish sampled at the falls than

above (t = 2.86; P < 0.01; Fig. 1A). The relative load of F. psy-
chrophilum was not significantly correlated with water tem-
perature (R2 = 0.13; P = 0.94), sex (P = 0.07) or FL (R2 = 0.01;
P = 0.31) but was significantly greater for fish sampled at
the falls than above (t = 4.37; P < 0.01; Fig. 1B; Table 2).
The relative loads of Ca. B. cysticola and F. psychrophilum
were not closely correlated (rs = 0.28), neither were Ca. B.
cysticola and S. destruens (rs = 0.28) nor F. psychrophilum and
S. destruens (rs = 0.39). Agent richness was also significantly
greater (χ 2 = 11.79; DF = 1; P < 0.01) for fish sampled at the
falls (3.1 ± 0.3 agents) compared to fish above (2.1 ± 0.2
agents; Fig. 1C; Table 3). Water temperature (P = 0.19), sex
(P = 0.12) and FL (P = 0.94) were not significant predictors of
agent richness.

Host gene expression
Gene expression data were successfully reduced into a 2D
ordination (stress, 0.18; Fig. 2). The genes most positive on
NMDS1 included RSAD, IFIT5, Mx, NFX, DEXH, VAR1,
X52Ro and IFI44A, which are indicative of a VDD response
when co-expressed (Miller et al., 2017). Five individuals had
a value >0.18 on NMDS1, suggesting they were in a state
of VDD. Four of these individuals were captured above the
falls and one was captured at the falls. Further screening of
these samples with a more comprehensive panel of 10 viruses
newly discovered through application of the VDD panel in
BC salmon (Gideon Mordecai, unpublished data) revealed a
novel strain of cutthroat trout virus (CTV-2) detected in two
of the five samples (data not shown). The other three samples
may have a yet to be identified virus inducing this viral disease
signature.

Sampling location was significantly associated with the
ordination gradient (P < 0.01). Fish sampled at the falls (ear-
lier in migration during the active upstream movement phase)
were closer in ordination space to osmoregulatory genes
typically elevated during saltwater preparation (HBA and
CA4). Fish sampled upstream of the falls (more advanced in
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Figure 1: Boxplots depicting the relative load of (A) Ca. B. cysticola
(B) F. psychrophilum and (C) agent richness in the gill tissue of
steelhead sampled above the falls and at the falls. Asterisks denote a
statistically significant difference (P < 0.05).

migration) were closer in ordination space to genes related
to stress and immunity such as IL-17D, IL8 and MMP13,
particularly humoral immune genes (IgMs and IgT).

Gene expression of fish captured by dip net
at Witset Falls (earlier in migration)
Gene expression data were reduced to a 2D ordination
(stress, 0.15) for the fish captured at Witset Falls (Fig. 3A).
Relative load of F. psychrophilum was correlated with
the ordination gradient (R2 = 0.52; P = 0.01) being slightly
positive on NMDS1 and negative on NMDS2. Relative
load of F. psychrophilum was close in ordination space to
SAA and opposite to IgT. Neither the relative load of Ca.
B. cysticola (R2 = 0.30; P = 0.13), infectious agent richness
(R2 = 0.10; P = 0.51), water temperature (R2 = 0.03; P = 0.82),
sex (P = 0.37) nor FL (R2 = 0.15; P = 0.51) were correlated
with the ordination gradient.

Gene expression of fish captured by angling
upstream of Witset Falls (later in migration)
Gene expression data were reduced to a 2D ordination (stress,
0.16) for the fish captured above Witset Falls (Fig. 3B).
Neither infectious agent load, F. psychrophilum (R2 = 0.09;
P = 0.51) or Ca. B. cysticola (R2 = 0.15; P = 0.32), was
correlated with the ordination gradient, nor was infectious
agent richness (R2 = 0.04; P = 0.73). Water temperature
had a significant relationship with the ordination gradient
(R2 = 0.27; P = 0.03) and was close in ordination space to
C3 and C7 and opposite to CA4. Neither sex (P = 0.73) nor
FL (R2 = 0.05; P = 0.52) was correlated with the ordination
gradient.

Discussion
Wild steelhead captured by dip net below Witset Falls were
found to have greater infectious agent richness, higher relative
loads of Ca. B. cysticola, and F. psychrophilum, and differ-
ential gene expression compared to fish captured upstream
of the falls by angling. We hypothesize that higher infectious
burdens (in gill tissue) in fish sampled below the falls may
have impacted the ability of fish to ascend the falls (i.e.
migratory culling; Bradford et al., 2010; Altizer et al., 2011).
Below, we discuss prominent differences between these groups
of fish and how those differences may contribute to the
observed findings. Fish sampled at Witset Falls were sampled
earlier in the season and further downstream suggesting lower
freshwater preparedness. This is consistent with the elevated
expression of CA4 and HBA in this group of fish which
are important in the earlier stages of freshwater acclimation
(Houde et al., in review) and higher expression of humoral
immune genes (IgMs and IgT) and B2M, MHCIIB and IRF1
that tend to increase over the course of migration in sock-
eye salmon (Teffer et al., 2017). Radio telemetry work has
indicated that steelhead upstream of Witset Falls represent
successful migrants that are holding at or near spawning sites,
while fish at Witset Falls are in the active stage of upstream
migration (Twardek et al., 2019; Økland et al., 2001).
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Table 2: Multiple regression output predicting the relative load of Ca. B. cysticola and the relative load of F. psychrophilum in
the gill tissue of steelhead captured in the Bulkley River, BC.

Variable
Relative load: Ca. B. cysticola Relative load: F. psychrophilum

Parameter Estimate ± SE t-value P Estimate ± SE t-value P

(Intercept) 32.427 ± 6.124 5.295 <0.001 14.531 ± 3.431 4.235 <0.001

Fishery/location: at falls∗∗ 4.795 ± 1.676 2.861 0.008 4.066 ± 0.929 4.372 <0.001

Water temperature −0.472 ± 0.399 −1.182 0.248 0.016 ± 0.224 0.071 0.943

Sex: male 0.053 ± 1.394 0.038 0.970 1.456 ± 0.786 1.852 0.073

FL −0.008 ± 0.008 −1.001 0.326 0.004 ± 0.004 1.031 0.310
The model includes fisheries/sampling location and sex as categorical variables and water temperature (◦C) and FL (mm) as continuous variables.
Asterisks denote a statistically significant difference (P < 0.05)

Table 3: Poisson regression output predicting infectious agent
richness in the gill tissue of steelhead captured in the Bulkley River,
BC.

Variable
Agent richness

Parameter χ 2 DF P

Fishery/location∗∗ 11.791 1 <0.001

Water temperature 1.739 1 0.187

Sex 2.511 1 0.113

FL 0.005 1 0.944
The model includes fishery/sampling location and sex as categorical variables
and water temperature (◦C) and FL (mm) as continuous variables. Asterisks
denote a statistically significant difference (P < 0.05)

Sampling location—fisheries selectivity
Witset Falls may act as a natural barrier influencing infection
dynamics during steelhead migration, and successful migrants
(angled fish) may be biased towards fish with lower infectious
agent loads relative to actively migrating fish at Witset Falls
(i.e. migratory culling; Altizer et al., 2011; Risely et al.,
2018). Witset Falls constitutes the most difficult hydraulic
reach of the Bulkley River. Steelhead are known to delay
their migration at this point, resulting in large densities of
steelhead below the falls, and ∼8–12% of steelhead that enter
the canyon/falls area do not successfully migrate upstream
of the falls (Welch et al., 2009; Twardek et al., 2019).
Confinement of steelhead below this migratory barrier may
increase exposure to infected individuals and correspondingly
increase infectious agent prevalence and loads at this location
(Bebak-Williams et al., 2002). Direct fish to fish transfer of
infections has been observed for Ca. B. cysticola in presmolt
Atlantic salmon, Salmo salar (Linnaeus), suggesting transfer
between steelhead may also occur during confinement
(Wiik-Nielsen et al., 2017). Increased agent loads (including
Ca. B. cysticola and F. psychrophilum) can entail reduced
swimming capabilities, lethargy, negative effects on movement

and decreased survival (Schachte, 1983; Kent et al., 1989;
Barber et al., 2000; Wagner et al., 2003; Risely et al., 2018),
potentially explaining why fewer heavily burdened fish were
observed upstream of the falls. Evidence to this effect comes
both from the finding that F. psychrophilum was correlated
with gene expression of fish at the falls but not those that
successfully migrated above to holding sites, and the finding
of three agents capable of causing gill disease primarily
detected in fish at the falls. If these agents were negatively
impacting the osmoregulatory or oxygen-carrying capacity
of the host, or causing inflammation, we cannot discount the
possibility that they may have impacted the ability of the fish
to ascend the falls. A concurrent telemetry study evaluating
steelhead migratory survival following angling suggested that
infectious agent-attributed mortality during fall migration is
low for steelhead captured upstream of Witset Falls (Twardek
et al., 2018). This study found one mortality (1.5% of fish)
that could not be readily explained by the capture event itself,
which indicates that infectious agent-induced mortality is
minimal for fish upstream of the falls (Twardek et al., 2018).
The notion of migratory culling is partly supported by the
described telemetry work (Twardek et al., 2018, 2019), but
future telemetry studies should additionally include gill agent-
transcriptome analyses such as performed herein.

As presented above, our data indicate that fish caught
in the dip net fishery had higher infectious burdens and
potentially greater pathological effects of F. psychrophilum
than those caught upstream by angling. Previous research
has highlighted that various fishing gears have sampling bias
that may select for fish with phenotypes that make them
more vulnerable to capture (Diaz Pauli et al., 2015; Philipp
et al., 2015). The Wet’suwet’en dip net fishery at the falls takes
advantage of congregations of fish resting within small eddies
as they attempt to ascend the falls. It is possible that fish with
greater infectious agent burdens spend more time resting in
these eddies and may be more vulnerable to capture by this
fishery. Conversely, angling has been suggested to capture fish
with higher metabolic rates (Hessenauer et al., 2015), lower
metabolic stress (Louison et al., 2017) and higher activity
levels (Alós et al., 2012), which would likely be correlated
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Figure 2: An NMDS plot of host gene expression in the gill tissues of Bulkley River steelhead (n = 40). The colour represents fishery/sampling
location (red represents angling upstream of falls; blue, dip net at falls). Confidence ellipses (95%) are shown in blue and red. The most
influential variables on NMDS1 are RSAD (8.7%), IFIT5 (5.6%) and HSP90alike (5.3%) and on NMDS2 are CA4 (6.9%), MHCI (5.9%) and IgT (5.7%).

with reduced vulnerability to infectious agents (Maule et al.,
1989; Pickering and Pottinger, 1989). This is consistent with
our finding that angled fish had lower expression of genes
responsive to oxygen availability and metabolism and lower
prevalence and relative loads of infectious agents. However,
these sampling biases can be inconsistent across gears, species
and environments making it difficult to develop generaliza-
tions (Hollins et al., 2018). There is also a small amount of
capture-and-release mortality from the dip net fishery (<1%
of the population) that could reduce the number of fish with
high infectious burdens upstream of the falls (Twardek et
al., 2019). Our data cannot evaluate the extent of fisheries
selectivity towards fish with certain infectious agent profiles
without downstream angled fish data for comparison, but
we recognize that this selectivity may be occurring between
gear types in our study. Future research should consider
both possibilities of migratory culling at natural barriers, and
infection-related sampling bias associated with angling vs. net
capture, especially for other species/regions where fish are
harvested and fisheries would have stronger selective pressure.

Infectious agents Ca. B. cysticola and F.
psychrophilum
Steelhead migrating up the Bulkley River had high-observed
prevalence of the bacteria Ca. B. cysticola and F. psy-
chrophilum. Ca. B. cysticola transmission has primarily been
recorded in the marine environment, while F. psychrophilum
is only transmitted in freshwater (Tucker et al., 2018).
Both bacteria have been found at high prevalence in wild
salmon across BC (Bass et al., 2017; Teffer et al., 2017).
Candidatus Branchiomonas cysticola has been associated

with proliferative gill formation, bacterial cysts in the gills,
epithelial hyperplasia and subepithelial inflammation associ-
ated with bacterial inclusions (Toenshoff et al., 2012; Mitchell
et al., 2013; Wiik-Nielsen et al., 2017). Flavobacterium
psychrophilum is typically most prevalent and pathogenic
at temperatures below 10◦C (Holt, 1987) and is the causative
agent for bacterial cold-water disease, characterized by tissue
necrosis and eventual mortality (Starliper, 2011; Nematollahi
et al., 2003). The low temperature of the Bulkley River during
sampling (7.1 ± 0.3◦C) may explain the high prevalence
of F. psychrophilum. In the nearby Babine River (Skeena
watershed) Flavobacterium spp. were the most prevalent
agents identified in rainbow trout, O. mykiss (Walbaum),
where temperatures were even cooler at the time of sampling
(Wellband and Heath, 2013).

Although we observed higher prevalence and loads of
Ca. B. cysticola at rather than above the falls, we failed
to observe any significant associations between host relative
loads of Ca. B. cysticola and gene expression. This is consis-
tent with previous studies on Pacific Salmon that have failed
to observe impacts of Ca. B. cysticola on host physiology
in freshwater (Bass et al., 2017; Teffer et al., 2017), but
the agent has been associated with inflammation in Chum
salmon in the marine environment (Cook, 2018). Flavobac-
terium psychrophilum was associated with negative or neutral
expression of most immune genes (e.g. CD8a, Il-8, MHCIIB,
IgT and IgMs). The greatest downregulation was observed
in genes involved in the humoral immune response (IgT and
IgMs), which are known to be suppressed by F. psychrophilum
(discussed in Barnes and Brown, 2011; Teffer et al., 2017).
This relationship between loads of F. psychrophilum and
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Figure 3: NMDS plots of host gene expression in the gill tissues of Bulkley River steelhead (n = 40) caught (A) at Witset Falls and (B) above
Witset Falls. The shape of each point reflects sex (circle reflects female; triangle, male). Vectors represent external variables fit into the ordination
including the relative loads of Ca. B. cysticola and F. psychrophilum, agent richness, water temperature and FL. Bolded lines indicate significant
vectors. Confidence ellipses (95%) are shown in blue and red. In plot (A) the most influential variables on NMDS1 are RSAD (5.0%), NFX (4.9%)
and IFIT5 (4.2%) and on NMDS2 are HSP90alike (8.6%), IgT (5.8%) and SAA (4.2%). In plot (B) the most influential variables on NMDS1 are RSAD
(8.6%), HSP90alike (6.2%) and IFIT5 (4.3%) and on NMDS2 are RSAD (8.6%), MHCI (3.1%) and IFIT5 (4.3%).

downregulation of immune genes has also been observed in
adult sockeye salmon, Oncorhynchus nerka (Teffer et al.,
2017) and immune challenged wild rainbow trout responding
to Flavobacterium spp. (TNF, IFN and CXC8; Wellband
and Heath, 2013) suggesting there may be a relationship
between immunosuppression and F. psychrophilum (Barnes

and Brown, 2011). This association between host immunity
and F. psychrophilum was only present for fish captured at
Witset Falls, which suggests the agent was causing damage
to these fish (i.e. disease; Casadevall and Pirofski, 1999). It
could be that fish with heavy burdens of F. psychrophilum
were less capable of surpassing the hydraulically challenging
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swim through Witset Falls related to this damage (Kent et al.,
1989; Risely et al., 2018).

Sphaerothecum destruens and low
prevalence infectious agents
Approximately half of the Bulkley River steelhead tested
positively for S. destruens, a eukaryotic generalist parasite
that can infect fish in both freshwater and marine ecosys-
tems (Kent, 2011; Andreou and Gozlan, 2016). Sphaerothe-
cum destruens has resulted in sublethal consequences for
infected cyprinids including inflammation, lesions and cell
death (Andreou et al., 2011). Sphaerothecum destruens was
also associated with mortality in winter-run juvenile chinook
salmon, Oncorhynchus tshawytscha (Walbaum), from the
Sacramento River, though juvenile rainbow trout seemed to
be more resilient to infection (Arkush et al., 1998). Three
other infectious agents known to cause gill disease and asso-
ciated mortality were observed primarily in fish caught in
the dip net fishery at the falls: P. theridion, P. salmonis
and L. salmonae (Nowak and LaPatra, 2006; Nylund et al.,
2010, 2011; Schmidt-Posthaus et al., 2012; Speare and Lovy,
2012). However, as these agents were not highly prevalent,
we did not attempt to quantify their influence on host gene
expression. Given previously reported consequences of these
agents, future studies with larger sample sizes should consider
the influence that they may have on salmonid host gene
expression. Further research is also needed to understand the
transmission requirements for these agents though it is known
that L. salmonae may be transmitted in both marine and
freshwater systems (Tucker et al., 2018).

Patterns in the expression of a suite of genes associated
with viral disease response in salmon were identified in five
individuals of this population and drove differentiation along
NMDS1, depicting the strongest physiological driver in our
data. This response is characterized by strong upregulation of
RSAD, IFIT5, Mx, NFX, DEXH, VAR1, X52Ro and IFI44A
(Miller et al., 2017). However, the initial infectious agent
panel used in this study did not indicate a viral infectious
agent was present. Additional screening of these individuals
with a suite of novel viruses recently identified in BC salmon
(Mordecai, unpublished data) indicated that a novel strain
of CTV-2 was present in some but not all of these fish.
We speculate that other as yet unidentified viruses may be
present in the remaining fish. This is the first data showing
that the novel CTV-2 strain is present in steelhead, though
other strains of this virus are known to be widely distributed
throughout trout populations in the United States (Batts
et al., 2011). While we do not yet know if the CTV-2 strain
is pathogenic, the previously characterized strain is not con-
sidered to be highly pathogenic, with no observed mortality
in rainbow trout, cutthroat trout (Oncorhynchus clarkia,
Richardson) and kokanee salmon (O. nerka) following water-
borne exposure to the virus (Hedrick et al., 1991). Given the
individuals with CTV-2 detection show molecular evidence
indicative of a viral disease state, further examination of

this viral strain for pathogenic potential is warranted in
steelhead.

Temperature and host physiology
Despite cool water temperatures well below the upper
temperature tolerance for O. mykiss, temperature had an
influence on gene expression of fish upstream of Witset
Falls (Yada and Tort, 2016). The most positive associations
were with genes related to the complement system (C3
and C7), metabolic stress (LDHB), and oxidative stress
(SEPW1). Although water temperature was not significantly
correlated with gene expression in fish sampled earlier in the
migration at Witset Falls, these genes were also in similar
ordination space as water temperature in this group of fish.
Expression of genes in the complement system indicates
that a component of the innate immune system is increasing
with temperature (Bowden, 2008), though many other innate
immunity biomarkers had neutral or negative relationships
with temperature. LDHB was also greater at warmer
temperatures which is consistent with the observation that
lactic acidosis in white muscle and blood generally increases
with warmer temperatures in rainbow trout and steelhead
(Kieffer et al., 1994; Twardek et al., 2018). Despite evidence
of higher levels of metabolic products with increasing water
temperature, glycolytic genes were generally not upregulated
with temperature. This relationship has been observed in
wild rainbow trout in similar temperature conditions as
the Bulkley River, with increased resting state expression of
glycolytic genes (PK and PEP3K) with temperature (Wellband
and Heath, 2013). Water temperature also showed a positive
association with SEPW1, which functions as an antioxidant
(Whanger, 2009), and is a known temperature responsive gene
(Akbarzadeh et al., 2018). SEPW1 was also elevated in adult
sockeye salmon held at water temperatures >19◦C compared
to 13–14◦C (Jeffries et al., 2014b). Water temperature was not
correlated with other well-characterized thermal-responsive
genes (Akbarzadeh et al., 2018) such as those encoding
heat shock proteins (e.g. HSP90a and SERPINH1). Previous
work evaluating the influence of thermal stress on the
transcriptome of sockeye and pink salmon, Oncorhynchus
gorbuscha (Walbaum), indicated upregulation of heat shock
proteins (HSP90AA1, HSPAB1 and SERPINH1) with warm
temperatures (Miller et al., 2009; Evans et al., 2011; Jeffries
et al., 2014b). Our data suggest that the relatively low water
temperatures observed on the Bulkley River were likely
not altering protein conformation or protein aggregation in
steelhead to a degree that would necessitate changes in the
expression of this family of chaperone proteins.

Conclusions
Positive detections of eight infectious agents of bacterial,
viral, fungal, myxozoan and other eukaryotic origin were
found in steelhead from the Bulkley River. The majority
of fish sampled were infected with Ca. B. cysticola, F.
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psychrophilum and S. destruens. Despite a small sample
size, interesting differences were observed across sampling
sites at and above Witset Falls. Infectious loads of most
identified infectious agents were greater in fish at vs. above
the falls including three agents capable of causing gill disease
(L. salmonae, P. theridion and P. salmonis). The relative load
of F. psychrophilum was associated with the physiology of
fish only at the falls, suggesting this agent may impact the
migration of success of fish at this barrier. Fish upstream of
the falls were further along in their migration, and observed
differences in their physiology were consistent with later-stage
migration. Our findings provide insight into the relationship
between physiology and infectious agents and potential links
to migratory outcomes in wild Steelhead. If salmonids with
the highest infectious agent burdens are unable to reach
spawning sites and successfully reproduce, then there may
be broad scale consequences to recruitment across salmon
populations. We encourage future research to evaluate the
migratory culling hypothesis for long-distance salmonid
migrations by combining tools in molecular genetics and
biotelemetry (see Miller et al., 2011, as example). Future
work should also seek to validate disease susceptibility
and impacts of the agents identified in steelhead using
histopathology.
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