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Abstract
The Caribbean bonefish species Albula vulpes is an economically important nearshore marine sport fish that has notably 
declined in the Florida Keys over the past 20–30 years. The reasons for this decline are unclear, although habitat loss, water 
quality reductions, climate change, and other environmental drivers likely play a role. Infectious disease can also cause 
precipitous species-specific declines in wildlife populations, but virtually nothing is known about infection in bonefish. We 
analyzed communities of bacteria on the gills of bonefish from the Florida Keys, where declines are pronounced, and the 
islands of Eleuthera and Inagua in The Bahamas, where no such declines have been recorded. Bacterial community composi-
tion varied significantly among island location (Keys, Eleuthera, Inagua) and among sites within island locations (e.g., tidal 
creeks, coves, inlets). Seventeen times more bacterial taxa were over-represented in the Florida Keys than in The Bahamas, 
and several bacterial genera over-represented in the Florida Keys have been linked to environmental contamination and 
disease (e.g., Corynebacterium; Acholeplasma; Staphylococcus; and Streptococcus). These results show that gill bacterial 
community signatures may prove useful for investigating bonefish spatial ecology and that communities of microbes on 
bonefish gills contain differentially abundant and potentially pathogenic bacteria that covary with the overall “health” of 
the population.

Introduction

Bonefish (Albula spp.) are a circum-tropically distributed 
assemblage of genetically related species with a morphol-
ogy and physiology adapted for benthivory and high-speed 
burst swimming (Colborn et al. 1997; Murchie et al. 2011). 

Bonefish are highly prized as sport fish and represent a 
rare example of a recreational fishery that is predominantly 
catch-and-release, although they are harvested for con-
sumption in some areas (Danylchuk et al. 2007b; Adams 
and Cooke 2015; Filous et al. 2019). Much of the economic 
value of bonefish is tied to angling and eco-tourism, which 
can provide sustained revenue for communities close to the 
nearshore, shallow marine habitats (“flats”) that bonefish 
inhabit (Adams et al. 2014). Bonefish also play important 
ecological roles in coastal marine food webs (Haak et al. 
2019; Murchie et al. 2019). Sustainable management of 
bonefish populations is therefore a priority in both the trop-
ics and sub-tropics (Adams and Cooke 2015).

Unfortunately, bonefish populations in certain locations 
are declining precipitously (Adams et al. 2014). In the Flor-
ida Keys, for example, anglers and guides have reported 
substantial reductions in catch rates and fish sizes over the 
last several decades (Brownscombe et al. 2018; Kroloft et al. 
2019). Given the economic importance of flats fishing to 
Florida’s economy (estimated at over $465 million in 2012, 
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much of this distributed locally; Fedler 2013), determin-
ing the causes of bonefish declines is paramount. Proposed 
factors include habitat loss, water quality declines, weather 
and hydrological events, reductions in forage, chemical/toxic 
inputs, overexploitation, and interactions among these fac-
tors (Brownscombe et al. 2018; Kroloft et al. 2019). Direct 
evidence for specific factors is scant, however, and other 
“flats” species that are also targeted by recreational anglers 
(e.g., permit, Trachinotus falcatus, and Atlantic tarpon, 
Megalops atlanticus) have shown no evidence of similar 
declines.

Infectious disease can reduce or cause the extinction 
of wildlife populations, either alone or in synergy with 
other factors (McCallum 2012; Cunningham et al. 2017). 
Such diseases include those caused by viruses (e.g., Ebola 
virus disease in gorillas; Bermejo et al. 2006), bacteria 
(e.g., hemorrhagic septicemia in antelopes; Robinson et al. 
2019) fungi (e.g., white-nose syndrome in bats; Frick et al. 
2010), eukaryotic parasites (e.g., trichomonosis in finches; 
Lawson et al. 2012), and even transmissible cancers (e.g., 
facial tumor disease in Tasmanian devils; McCallum 2008). 
Infectious diseases are emerging at accelerated rates glob-
ally, driven by forces such as pollution, habitat degradation, 
species invasions, and climate change (Cunningham et al. 
2017; Young et al. 2017; Ogden et al. 2019), including in 
fish (e.g., Chen et al. 2018; Combe and Gozlan 2018; Reid 
et al. 2019). Southern Florida is noteworthy as an epicenter 
of invasive species, including their pathogens, due to high 
rates of introduction of exotic species and ecological condi-
tions favorable for their persistence (Simberloff et al. 1997; 
Farrell et al. 2019). Furthermore, certain infectious agents 
have narrow host ranges or are pathogenic to only one or 
a few species within ecological assemblages (McCallum 
2012). Infectious disease has not, to our knowledge, previ-
ously been considered among the panoply of factors contrib-
uting to bonefish declines.

The purpose of this study was to provide a provisional 
assessment of the hypothesis that microbes are contributing 
to the decline of bonefish in the Florida Keys (Goldberg 
2019). We examined differences in bacterial communities 
on the gills of bonefish from several sites in the Florida 
Keys, where marked declines have occurred, and in The 
Bahamas, which are latitudinally and ecologically similar 
but where bonefish declines have not been observed. We 
then identified bacterial taxa that differed most significantly 
in abundance between the Florida Keys and The Bahamas, 
and we examined whether those taxa might be associated 
with disease. We chose to analyze gill bacterial communi-
ties because gills are immunologically active organs that 
are entry points for bacterial pathogens of teleost fishes 
(Secombes and Wang 2012). Previous studies have shown 
the gill microbial communities of fishes to be diverse and 
distinct from those of other body compartments (Merrifield 

and Rodiles 2015; Pratte et al. 2018), even serving as reser-
voirs of bacterial diversity for complex ecosystems such as 
coral reefs (Reverter et al. 2017). Fish gill microbiomes also 
reflect disease states, such as developmental abnormalities 
(Hess et al. 2015) and chronic gastroenteritis (Legrand et al. 
2017). In bonefish, gills develop during the post-larval life 
stage, such that bonefish must acquire their gill microbial 
communities as they metamorphose between 41 and 71 days 
after fertilization (Mojica et al. 1995; Miller and Tsukamoto 
2004; Diaz-Viloria et al. 2017). Gill microbiomes should 
therefore offer insights that are specific for the bonefish juve-
nile and adult life stages.

Methods

Sampling bonefish

Bonefish were sampled by angling (using spinning and 
fly-fishing tackle) from nearshore environments in the 
Florida Keys and the islands of Eleuthera and Inagua in 
The Bahamas (Fig. 1; Table S1). Within each of these 
three locations, fish were sampled from multiple sites that 
included tidal creeks, islets, coves, saltwater ponds, and 
similar features. To avoid physiological exhaustion and 
to maximize post-release survival, fish were angled for 
minimal duration (Danylchuk et al. 2007a). Once a fish 
was captured, it was briefly removed from the water and a 
sterile polyester swab with a Dacron tip (Fisher Scientific, 
Waltham, MA) was inserted briefly between the gill fila-
ments and gently rotated approximately five times. Swabs 
were then immediately placed tip-down into a 1.2-ml cryo-
vial (Fisher Scientific, Waltham, MA) containing 0.25 ml 
RNAlater nucleic acid stabilization solution (Qiagen, 
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Fig. 1  Map of sampling locations. The Florida Keys are highlighted 
in red, the Bahamian island of Eleuthera in dark blue, and the Baha-
mian island of Inagua in light blue
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Hilden, Germany) and swab shafts were cut flush with 
the tube opening using sterile scissors, after which tubes 
were capped and labeled. An approximately 1 × 1 cm fin 
clip was then removed from the fish for genetic analysis 
using sterile scissors and placed immediately into a sepa-
rate 1.2-ml cryovial containing 0.5 ml RNAlater. Tubes 
containing swab tips and fin clips were stored at − 20 °C 
within 6 h of sampling, shipped at ambient temperature to 
the laboratory, and stored at − 80 °C thereafter.

Molecular analyses

In addition to A. vulpes, two other species of bonefish, A. 
goreensis and A. sp. cf. vulpes, occur in the areas sampled 
(Wallace and Tringali 2016). To identify the bonefish spe-
cies used for analysis, we conducted microsatellite-based 
genetic species identification analyses of fin clips as previ-
ously described (Wallace and Tringali 2016).

To assess microbial communities, we first extracted 
nucleic acids from gill swabs using the Qiagen AllPrep 
PowerViral DNA/RNA Kit (Qiagen, Hilden, Germany), 
following the manufacturer’s instructions and eluting in a 
50 µL volume. We then conducted polymerase chain reac-
tion (PCR) amplification of the 16S ribosomal RNA V4 
gene region using protocols developed by the Earth Micro-
biome Project (Gilbert et al. 2014). Each PCR contained 
2 µL DNA template, 9.5 µL of Qiagen Nuclease free water, 
12.5 µL of Qiagen HotStarTaq master mix 0.5 µL of 10 
mM forward primer 515f (5′-TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG GTG YCAGCMGCC GCG GTAA-
3′), and 0.5 µL of 10 mM reverse primer 806Rb (5′-GTC 
TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGG 
ACTACNVGGG TWT CTAAT-3′) (Caporaso et al. 2011; 
Walters et al. 2016) in a total volume of 25 µL. Cycling 
conditions consisted of an initial denaturation step of 
15 min at 95 °C, followed by 35 cycles of 30 s at 94 °C, 
30 s at 60 °C and 1 min at 72 °C, and final extension of 
10 min at 72 °C. We then used the Nextera XT Index v2 
Kit (Illumina, San Diego, CA) to dual-index amplicons 
and electrophoresed them on 2% agarose gels with ethid-
ium bromide. We cut amplicons from gels under ultraviolet 
light and extracted them using the Zymoclean gel DNA 
recovery kit (Zymo Research, Irvine, CA), and prepared 
them for 600 cycles of paired-end sequencing (MiSeq Rea-
gent Kit v3) on an Illumina MiSeq instrument. To limit 
the potential for contamination, we included negative 
controls at all stages of our extraction and amplification 
procedures and used the resulting data to subtract poten-
tial contaminants in silico. Negative controls consisted of 
DNA extractions performed with no input swab and PCR 
amplifications with 2 µL of sterile molecular grade water 
substituted for DNA template.

Sequence processing

We used the R (R Core Team 2019) package DADA2 (Cal-
lahan et al. 2016) to quality-screen and trim sequence reads. 
We trimmed reads at the first appearance of a base with a 
quality score of two or lower. We then truncated forward 
reads at 240 bases in length and reverse reads at 160 bases 
in length to account for differences in the rate of per base 
quality degradation between forward and reverse reads. We 
also removed reads with non-assigned bases (N) and reads 
mapping to the PhiX sequencing standard. We then applied 
DADA2 to detect sequence variants (SVs) and merged 
paired reads into single consensus reads, after which we 
removed chimeric sequences and sequences from nega-
tive controls. We assigned SVs to taxonomic groupings at 
the genus level using the SILVA ribosomal RNA database 
(Quast et al. 2013). Following quality filtering and merging 
of overlapping reads, our final read data set consisted of 
272,675 consensus reads originating from 6029 SVs.

We conducted subsequent analyses using the R package 
phyloseq (McMurdie and Holmes 2013). We first identified 
bacterial genera present in negative controls (Acinetobac-
ter, Arcobacter, Brevundimonas, Kingella, Pelagibacterium, 
Polaromonas, Rhodococcus, Thermus, and Veillonella, 
together accounting for 11,770 reads) and removed them 
from the dataset. We also removed reads assigned as eukary-
otic in origin at this stage. To avoid biases associated with 
extremely rare SVs, we applied an abundance-based filter to 
our read dataset. Sequence variants accounting for less than 
100 total reads across all samples were removed from our 
dataset. Removal of potential contaminants and ultra-rare 
SVs yielded a dataset of 81,782 reads from 393 SVs.

To ensure a minimum number of reads per sample ade-
quate for characterizing gill bacterial communities in the 
final dataset, we omitted any sampled fish for which fewer 
than 1000 reads were generated (n=7). To account for biases 
introduced by differences in individual library sizes we ran-
domly subsampled (rarefied) all libraries to the size of the 
smallest set of reads in a sample (1200 reads) using the rar-
efy function in phyloseq. The rarefying procedure resulted 
in the removal of four additional SVs from the dataset. This 
resulted in a final dataset of 23 fish that accounted for 27,600 
reads from 389 sequence variants.

Analyses of microbial communities

To quantify microbial community alpha diversity, we used 
phyloseq to calculate the Shannon index of SVs in the rare-
fied sequence set for each sampled fish. We subsequently 
converted Shannon indices to an effective number of species 
score (ENS) via exponentiation, because this is considered 
a more interpretable representation of alpha diversity (Jost 
2006). We also considered the number of detected SVs per 
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sampled fish as a measure of the alpha diversity of each gill 
microbiome in terms of species richness alone (irrespective 
of species evenness). To investigate variation in both meas-
ures of alpha diversity among island locations, we conducted 
statistical hypotheses tests in R. We tested the normality of 
response variable distribution and the homogeneity of group 
variances for both diversity measures using Shapiro–Wilk 
and Bartlett’s tests. Both ENS and number of detected SVs 
data were approximately normally distributed, however ENS 
data violated the parametric assumption of homogeneous 
group variances. We therefore analyzed differences between 
island groups in ENS and number of detected SVs using a 
Kruskal–Wallis test and an analysis of variance test, respec-
tively. In both instances we fitted the alpha diversity met-
ric for each sample as the response variable and sampling 
location (island) as the sole explanatory variable. We then 
used post hoc Wilcoxon (Benjamini–Hochberg correction 
for multiple testing) and Tukey’s honest statistical differ-
ences (HSD) tests to assess pairwise differences in alpha 
diversity between locations for ENS and detected number 
of SVs, respectively.

To visualize differences among sampled fish based on the 
most abundant bacterial genera (across all detected sequence 
variants) and the most abundant bacterial sequence variants, 
we constructed a stacked bar graph of the rank abundance 
of the 20 most common bacterial genera per sampled fish 
(Fig. 4) and a heatmap of the relative abundance of the 50 
most common bacterial SVs using the heatmap.2 function 
within the R package gplots (Fig. 3). We produced an asso-
ciated dendrogram of the between-sample Bray–Curtis dis-
similarity scores based on the relative abundance profiles 
of the 50 displayed sequence variants, as computed by the 
vegdist function within the R package vegan and the hclust 
algorithm within the base R package (Fig. 3)

To quantify beta diversity, we used the R package vegan 
(Oksanen et al. 2018) to produce a non-metric multidimen-
sional scaling (NMDS) ordination using Bray–Curtis dis-
similarity of between-sample differences in bacterial com-
munities. We performed ordinations across two dimensions 
(k=2), yielding a stress of fit value of 0.12. We then tested 
for differences in community structure between sample 
groups using permutational analysis of variance tests (PER-
MANOVA) implemented using the adonis function in vegan. 
We modeled different geographic groupings separately and 
constructed individual PERMANOVAs using 1000 permuta-
tions for the Florida Keys versus The Bahamas (Eleuthera 
and Inagua combined) and to compare the Keys versus the 
two Bahamian islands separately. We constructed an addi-
tional PERMANOVA to compare gill bacterial communities 
between individual sampling sites across all three islands.

To detect differentially abundant SVs between the Flor-
ida Keys and The Bahamas, which might drive divergence 
between the gill bacterial communities from each island 

group we used the linear discriminant analysis effect size 
method (LEfSe; Segata et al. 2011), which is a two-stage 
process that first determines which SVs are differentially 
enriched between comparison groups and then determines 
which of those differentially enriched SVs are consistently 
represented among individuals within a group. To exam-
ine differentially abundant SVs between islands within The 
Bahamas, we also used LEfSE to compare Eleuthera and 
Inagua directly.

Results

Sampling and fish genetics

We captured, sampled and released bonefish from various 
sites in the Florida Keys, Eleuthera, and Inagua (Fig. 1; 
Table S1) and chose a subsample of 23 fish for microbi-
ome analysis, to roughly equalize geographic representa-
tion and to exclude samples with inadequate sequence data 
(see above). This final sample set included six fish from the 
Florida Keys, 12 fish from Eleuthera, and 5 fish from Inagua 
(Table S1). All 23 fish used in microbiome analyses were 
genetically confirmed to be A. vulpes.

Analyses of microbial communities

Shapiro–Wilk tests showed that neither ENS nor the number 
of detected SVs violated assumptions of normality (ENS; 
W= 0.93, p= 0.095, detected number of SVs; W= 0.94, p= 
0.203). Bartlett’s tests demonstrated that variation in ENS 
between islands did violate the assumption of normality (k2= 
6.32, p= 0.043), whereas variation in number of detected 
SVs between islands did not (k2= 4.86, p= 0.088).

Alpha diversity varied significantly among locations 
based on both ENS (Kruskal–Wallis X2=8.55, p=0.014; 
Fig. 2) and number of detected sequence variants (F=6.726, 
p=0.005; Fig. 2). Post hoc analysis using a Wilcoxon test 
and a Tukey’s HSD test, respectively, revealed this variation 
to have resulted from reduced alpha diversity in Inagua com-
pared to both Eleuthera (ENS; p=0.045, number of detected 
SVs; p=0.03) and the Florida Keys (ENS; p= 0.018, detected 
number of SVs; p = 0.004; Fig. 2). Visual appraisal of abun-
dance patterns of the top 50 most abundant SVs (Fig. 3) and 
the 20 most abundant bacterial genera (Fig. 4) suggested 
no clear location-level patterns in bacterial assemblages 
based on the most abundant genera and sequence variants. 
However, when the whole bacterial microbiome was con-
sidered Bray–Curtis ordination revealed strong separation 
of Florida Keys gill bacterial communities from those in 
The Bahamas (Fig. 4), which PERMANOVA showed to be 
highly statistically significant (F=2.14, p=0.001, R2=0.17). 
PERMANOVA also showed that differences among all three 
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island locations (Florida Keys vs Eleuthera vs Inagua) were 
highly statistically significant (F=2.66, p=0.001, R2=0.11). 
The site at which a fish was sampled within each island 
was also an important predictor of bacterial community 
structure, accounting for the most variance in the model of 
any geographical scale analyzed (PERMANOVA F=1.49, 
p=0.005, R2=0.51) (Fig. 5).   

LEfSe analysis revealed a marked difference between 
the Florida Keys and The Bahamas, with 70 SVs over-
represented in the Florida Keys, but only four SVs over-
represented in The Bahamas (Fig. 6). Despite evidence 
of significant divergence in gill microbial communities 
between the Bahamian islands, only two SVs were differen-
tially abundant between Eleuthera and Inagua. Both of these 
SVs (one belonging to the genus Alteromonas and the other 
unidentified at the genus level, but belonging to the family 

Burkholderiaceae) were enriched in the gill bacterial com-
munities of fish sampled from Inagua. 

Discussion

Our analyses show that bacterial communities on the 
gills of bonefish vary among geographic locations and, 
on a finer scale, among local sites within those locations. 
Gill microbiomes of Florida Keys bonefish clustered dis-
tinctly from gill microbiomes of Bahamian bonefish. Gill 
microbiomes from the two Bahamian islands (Eleuthera 
and Inagua) overlapped to a greater extent, but were still 
divergent. The Florida Keys and The Bahamas are sepa-
rated by the Gulf Stream current, which exerts a major 
biogeographic influence on the distribution of nearshore 
fishes (Robertson and Cramer 2014). Indeed, estimates of 
connectivity of bonefish populations by larval transport 
have shown no detectable connection between the Florida 
Keys and The Bahamas (Zeng et al. 2019). Strong separa-
tion of bonefish gill microbiomes to the east and west of 
the Gulf Stream may reflect barriers to population con-
nectivity, ecological differentiation, exposure to different 
sources of environmental microbes, or all three. We sus-
pect that similar patterns will be evident for other species 
occurring on either side of this oceanic feature.

LeFSe analysis identified 17 times more over-repre-
sented SVs in the Florida Keys than in The Bahamas (70 
SVs over-represented in the Florida Keys versus 4 SVs 
over-represented in The Bahamas). The majority of these 
SVs belong to genera Litoricola and Catenococcus, but 
several SVs that were more abundant in the Florida Keys 
are associated with disease, including Corynebacterium 
(Baya et  al. 1992) and Acholeplasma (Francis-Floyd 
et al. 1997). We also detected SVs belonging to the gen-
era Staphylococcus and Streptococcus, which are mark-
ers of environmental contamination (Lleò et al. 2005), 
cause disease in fish (Musharrafieh et al. 2014; Mishra 
et al. 2018), and are the most common causes of marine-
associated skin and soft tissue infections in humans (Diaz 
2014; Vasagar et al. 2018). Although the abundance of 
these genera did not differ significantly among loca-
tions, data from other systems suggest that such bacteria 
are useful indicators of exposure to sewage and waste-
water, for example from sugar production (Popović et al. 
2019), which has  increased in the Caribbean in recent 
decades (Cramer et al. 2020). We caution that our micro-
bial data are resolved mainly to the genus level, such that 
more specific inferences would require bacterial isolation 
(where possible), microbiological assessment of isolates, 
and more specific genetic markers.
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Bonefish can migrate long distances, as shown using 
mark–recapture methods (Boucek et al. 2019; Perez et al. 
2019). In this light, we note that gill microbiome data pro-
vide different information than genetics, which has been 
used to infer reproductive connectivity among bonefish 
populations (Wallace and Tringali 2016). Bonefish larvae 
(leptocephali) do not have gills; rather, gills develop as 
bonefish leptocephali exit their extended planktonic phase 
and metamorphose (Miller and Tsukamoto 2004; Diaz-
Viloria et al. 2017). As a result, bonefish must acquire their 
gill microbiomes in the environments where they spend 
their post-metamorphic life stages (Zeng et  al. 2019). 
Although fish gill microbiome composition depends on 
many factors, some of which are host-specific (Merrifield 
and Rodiles 2015; Pratte et al. 2018), local acquisition of 
bacteria also plays a role (Reverter et al. 2017). Pairing 
bonefish samples with water samples and physiochemical 
data from the same environments would clearly be useful 
for determining which bonefish gill microbes are acquired 
locally and possibly associated with disease. Furthermore, 
our observation that bacterial community composition 

varied significantly among sites within island locations 
suggests that microbes could potentially serve as markers 
for bonefish movement (i.e., a form of “microbial telem-
etry”), which could be a useful alternative to more invasive 
methods (e.g., surgical implantation of electronic devices 
or analysis of otolith microchemistry; Murchie et al. 2013; 
Murchie et al. 2015; Santos et al. 2019).

The patterns documented herein may have differed had 
we analyzed other body compartments, such as the gastroin-
testinal tract (Pratte et al. 2018). We specifically chose gills 
because of the unusual bonefish life cycle and the delayed 
development of gills until the post-metamorphic life stage 
(Miller and Tsukamoto 2004; Diaz-Viloria et al. 2017), and 
because the gill is a highly susceptible anatomic site for the 
adherence of pathogenic bacteria in teleost fishes (Secombes 
and Wang 2012). Moreover, fish gills are neither a sterile 
nor an enclosed anatomic site, but rather are exposed to the 
water (Reverter et al. 2017). Indeed, our data show a mix of 
both environmental and animal-associated microbial SVs on 
bonefish gills. As mentioned above, paired data on microbial 
communities of seawater would help shed light on this issue.
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Overall, our findings provide proof of concept that assem-
blages of bacterial SVs differ among bonefish populations, 
especially between the declining population of the Florida 
Keys and the stable populations on the Bahamian islands of 
Eleuthera and Inagua. Additionally, we have identified bac-
terial SVs which are overly abundant in the declining popu-
lation and that have previously been associated with disease. 
Further studies using expanded sample sets should provide 
a more complete picture of variation in the geographic 
occurrence and abundance of disease-associated bacteria 
on the gills of bonefish. Ultimately, experimental studies 
using bonefish or a suitable surrogate species will likely be 
necessary to assess the impact of any particular microbial 
taxon on bonefish health. Future studies may also clarify 
the usefulness of bonefish bacterial communities for infer-
ring migration and movement patterns. The advantages of 
microbial community analysis over other methods for such 
purposes include non-invasiveness, non-lethality, specificity 
for the post-metamorphic life stages, and, perhaps, higher 
discriminatory power due to the inherent taxonomic rich-
ness of microbial communities. We advocate for additional 
exploration of this and related methods as tools for popula-
tion health assessment and spatial ecology in bonefish and 
other species with similar life histories.
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