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Automated Coastal Ice Mapping with SAR Can Inform Winter Fish Ecology in
the Laurentian Great Lakes

La cartographie RSO automatis�ee des glaces côti�eres peut �eclairer sur
l’�ecologie des poissons durant l’hiver dans les Grands Lacs du Saint-Laurent

James V. Marcaccioa , Jesse Gardner Costaa, Jill L. Brooksb, Christine M. Bostona, Steven J. Cookeb ,
and Jonathan D. Midwooda

aGreat Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario L7S 4K1, Canada;
bFish Ecology and Conservation Phsyiology Lab, Department of Biology and Institute of Environmental and Interdisciplinary Science,
Carleton University Ottawa, Ottawa, ON, Canada

ABSTRACT
Many freshwater lakes in the temperate zone undergo annual freeze-thaw cycles. Climate
change has disrupted these patterns and altered habitat for many species including eco-
logically, economically, and culturally valuable fish species. To understand the relationship
between ice cover and aquatic species, suitable data can be derived from remote sensing.
We developed a novel ice classification method with minimal user input using freely avail-
able Sentinel-1 data and an adjacent and time-coincident validation dataset. Using image
object segmentation and a random forest classifier, ice conditions were classified correctly
with >85% overall accuracy. Our ice mapping efforts coincided with a telemetry dataset of
tagged Walleye (Sander vitreus) and Northern Pike (Esox lucius) in Hamilton Harbor in west-
ern Lake Ontario. Between years with low and high ice covers (2017 and 2019, respectively),
we found Walleye appeared to reduce their area of movement when the harbor was cov-
ered in ice. Our ice mapping tool can provide a quick and consistent method for agencies
to adopt for freshwater resource management as well as provide ice cover information in
coastal areas that are important overwintering habitat for many fishes.

RÉSUMÉ

De nombreux lacs d’eau douce de la zone temp�er�ee subissent des cycles annuels de gel-
d�egel. Les changements climatiques ont perturb�e ces tendances et modifi�e l’habitat de
nombreuses esp�eces, y compris des esp�eces de poissons qui ont une valeur �ecologique,
�economique et culturelle. Pour comprendre la relation entre la couverture de glace et les
esp�eces aquatiques, des donn�ees appropri�ees peuvent être tir�ees de la t�el�ed�etection. Nous
avons mis au point une nouvelle m�ethode de classification des glaces avec une contribution
minimale de l’utilisateur �a l’aide des donn�ees Sentinel-1 disponibles gratuitement et d’un
ensemble de donn�ees de validation adjacent et coïncident dans le temps. �A l’aide d’une
segmentation objet et d’un classificateur de type forêt al�eatoire, les conditions de glace ont
�et�e class�ees correctement avec une pr�ecision globale >85%. Nos efforts de cartographie
des glaces ont coïncid�e avec un ensemble de donn�ees de t�el�em�etrie du dor�e jaune (Sander
vitreus) et du grand brochet (Esox lucius) marqu�es dans le port de Hamilton, �a l’ouest du lac
Ontario. Entre deux ann�ees o�u la couverture de glace �etait faible ou �elev�ee (2017 et 2019,
respectivement), nous avons constat�e que le dor�e jaune semblait r�eduire sa zone de mouve-
ment lorsque le port �etait recouvert de glace. Notre outil de cartographie des glaces peut
fournir une m�ethode rapide et uniforme que les organismes peuvent adopter pour la
gestion des ressources en eau douce et fournir de l’information sur la couverture de glace
dans les zones côti�eres qui constituent un important habitat d’hivernage pour de nom-
breux poissons.
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Introduction

Over half of the world’s lakes have a seasonal cycle of
surface water freezing that affects limnological and
biological processes (Brown and Duguay 2011;
Verpoorter et al. 2014). Variation in the duration and
extent of lake ice cover can have economic, biological,
and anthropogenic consequences and mapping inter-
annual changes in ice cover can help us measure and
better understand these consequences (Assel 2003;
Duguay et al. 2006; Brown and Duguay 2011; Yang
et al. 2020). Globally, the duration of winter ice cover
in lakes is declining due to anthropogenic climate
change (Magnuson et al. 2000; Lopez et al. 2019),
with largely unknown consequences on aquatic eco-
systems. Given human dependence on aquatic ecosys-
tems, even during winter (Knoll et al. 2019), changes
in ice cover may have broad reaching socio-economic
consequences.

Due to the importance of lake ice measurements
and the utility of more automated remote sensing
processes, many researchers have undertaken projects
to map ice cover with some level of automation. For
example, Surdu, Duguay, Pour, et al. (2015) developed
an approach for mapping thin ice cover in shallow
Alaskan lakes with VV-polarized (vertical send, verti-
cal receive) Synthetic Aperture RADAR (SAR) data
and validated the outputs with predictions based on
climatic variables. In the Great Lakes, Leigh et al.
(2014) created an automated ice classification system
dubbed “MAGIC” (MAp-Guided Ice Classification)
that uses Iterative Region Growing Semantics (IRGS)
to identify ice from HV-polarized (horizontal send,
vertical receive) data over large spatial scales. A sup-
port vector machine (SVM) tool was applied to the
image objects with expert input as training data to
classify ice types in the outputs. These types of single-
polarized data are susceptible to angle effects (Surdu,
Duguay, and Fern�andez Prieto 2015) and wave action
(Wang et al. 2018) so more studies are shifting to use
multi-polarized data. To show the utility of dual-
polarized HH/HV image data, Wang et al. (2018)
used MAGIC on reduced resolution (100m) Radarsat-
2 data to delineate ice type boundaries in Lake
Erie, which were then manually labeled/classified.
Applications with random forest (RF) labeling have
also been developed (Hoekstra et al. 2020) and use
supervised classification on the output polygons to
further reduce the requirement for user input and
overall workload while still retaining high accuracy
(>95%). Deep learning has become a popular tool
within the field of remote sensing in recent years, and
Tom et al. (2020) applied this technique to alpine

lakes in Switzerland. They trained a two-class model
(ice/water) from a large bank of existing Red-Green-
Blue imagery (collected for another ice cover study)
and observed high model accuracy (>84%) across all
their field sites. With the transferability of their
method as it exists in Google Earth Engine (GEE;
Gorelick et al. 2017), it is feasible that this technique
could also be applied across many locales, but such an
exercise has yet to be undertaken.

The Laurentian Great Lakes constitute the largest
aggregation of freshwater resources on the planet and
are home to a wide diversity of aquatic organisms
(Vadeboncoeur et al. 2011; Gronewold et al. 2013).
Within the Great Lakes basin, ice mapping works
were undertaken in the late 1990s and early 2000s by
the Great Lakes Environmental Research Laboratory
(National Oceanic and Atmospheric Administration,
Ann Arbor, USA) and the Jet Propulsion Laboratory
(California Institute of Technology, Pasadena, USA)
(Bolsenga 1992). Data from ERS-1 (European Remote
Sensing Satellite 1) were able to map snow ice and
new lake ice in Lake Superior (Leshkevich et al. 1995).
To obtain high quality accuracy/validation data, the
Jet Propulsion Laboratory equipped a polarimetric
scatterometer (C-band, full HH/VV/HV polarization)
onboard U.S. Coast Guard vessels timed accordingly
with Radarsat-1 and ERS-2 passovers of the area as
part of the Great Lakes Winter Experiment 1997
(Nghiem and Leshkevich 2007). These data were used
as a training library in further image classifications
(Leshkevich and Nghiem 2007) and allowed for the
discrimination of ice types (including brash ice and
consolidated ice floes) within the Great Lakes, with
noted difficulties due to the single polarization of the
data. With the launch of Radarsat-2 quad pol and
dual-pol ENVISAT ASAR data, the authors used the
same reference library and found that multi-polarized
data were less affected by wind and wave action
(Leshkevich and Nghiem 2013). While the resulting
ice classification library is a unique and helpful
resource, the method has required a substantial
amount of field data and relies on unique classifica-
tion parameters for each polarization and inci-
dence angle.

Similar to global patterns, ice cover breakup in the
Great Lakes has been trending earlier in the year since
the early 1800s (Duguay et al. 2006) while freeze up
was stable for most of the 1900s (Assel et al. 1995).
On an interannual basis, ice cover is highly variable,
with some years seeing near complete ice cover and
the following years largely open water (Wang et al.
2017); lake ice cover is not inherently predictable
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based on Great Lakes’ climate models and therefore
needs to be tracked (Wang et al. 2012). Ice conditions
throughout the Great Lakes basin are determined by
Canada’s and the United States of America’s ice serv-
ices (Canadian Ice Service, CIS; U.S. National Ice
Center, NIC) who calculate Great Lakes ice cover with
several data sources including satellite data, weather
data, and visual observations (Assel et al. 2002).
Despite advances in automation, currently the meth-
ods these agencies employ require manual interpret-
ation of data by analysts and are produced mainly to
aid shipping. This time-consuming process produces
accurate results for the main basin of the lakes, but
often misses small embayments and coastal areas of
the Great Lakes with shapes and/or sizes that do not
meet the 1.275 km2 grid of the exported data. From a
biological perspective these small coastal areas are
important sources of productivity and likely areas of
aggregation for many freshwater fishes during the
winter (Danz et al. 2007; Vadeboncoeur et al. 2011).
Increasing the extent of these mapping initiatives to
cover smaller, nearshore areas is necessary to capture
the full extent of ice cover within the Great Lakes and
to better understand how these coastal areas and the
species that rely upon them are affected by changes in
the extent and duration of ice cover.

In temperate freshwater ecosystems, winter is a
critical time period that helps shape and structure
aquatic communities, influencing primary productivity
(Hampton et al. 2017) as well as higher trophic levels
including fish (Hokanson 1977; Cunjak 1996; Shuter
et al. 2012). For most fishes, decreased water tempera-
ture, ice cover, declining dissolved oxygen, and limited
foraging opportunities in the winter result in reduced
growth (Shuter and Post 1990; Cunjak 1996;
Br€onmark et al. 2008; Shuter et al. 2012) and
increased mortality (Keast and Fox 1990; Casselman
and Lewis 1996; Shuter et al. 2012). Despite the eco-
logical importance of winter, practical challenges asso-
ciated with sampling freshwater communities and
observing individual behaviors have resulted in a
knowledge deficit during this season (Salonen et al.
2009; Kirillin et al. 2012). Complicating our under-
standing of individual species, local variation in winter
conditions may result in behavioral differences among
populations of the same species (Shuter et al. 2012).
This is largely driven by the strong selective pressures
that occur during the winter since habitat selection
and winter survival are intimately linked to the need
for an individual to minimize energy expenditures
(Brown et al. 2011). Despite the critical nature of win-
ter biology and the need for proper year-round

management of fish habitat (Cunjak 1996), little work
has focused on the winter biology of fishes in large
freshwater systems due to the challenges of sampling
and tracking under ice (but see McMeans et al. 2020
and Marsden et al. 2021). While winter ecology is
under-represented in the literature, McMeans et al.
(2020) argue that the extent and duration of ice cover
alters interaction and competition among fishes as
well as biological activity compared to ice-off periods.
Yearly variation in the extent and duration of ice
cover can thus be an indirect source of stress for
fishes, with the potential for community-level changes
based on shifts in ice-cover. The techniques and
approaches commonly used in remote sensing studies
hold great promise in their application to the study of
fish ecology (Dauwalter et al. 2017), particularly when
used to map physical elements (such as ice cover) that
can influence how fish interact with their habitat. By
combining remote sensing approaches with techniques
like acoustic telemetry, which allows for near-continu-
ous positioning of fishes on stationary receivers
(Cooke et al. 2013), we can capture dynamic changes
in ice cover and the responses of fish to these habi-
tat changes.

In this paper we detail a tool that is reproducible
and uses open-source data to streamline ice cover
mapping of the Great Lakes at medium resolutions
(20m), providing a quick and consistent method for
agencies to adopt as well as provide fine-scale, detailed
ice cover in coastal areas that are important overwin-
tering habitat for fish. This approach uses freely avail-
able SAR images (Sentinel-1) to ascertain if a model
can be developed that requires minimal user input
with accurate (>85%) results. These methods are
transferable to any other system where validation data
exist concurrent with Sentinel-1 image acquisitions.
To explore the needs for higher-resolution ice cover
maps we contrast our findings from the derived ice
cover maps in an embayment in western Lake Ontario
(Hamilton Harbor) with concurrent ice cover maps in
Lake Ontario. Finally, as a demonstration for how
these data can be used to support studies of fish win-
ter ecology, we have undertaken a preliminary investi-
gation of the space- and depth-use of two freshwater
fish species (Northern Pike [Esox lucius] and Walleye
[Sander vitreus]) during ice-on and ice-off periods.
These species were selected as they are ecologically
important top predators that are known to be active
during periods when ice is present (Northern Pike:
Cook & Bergersen 1988; Kobler et al. 2008; Walleye:
Hayden et al. 2014). Populations of both species are
below historic levels in our study area (Whillans 1979;
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COA 1992; Boston et al. 2016) and there is consider-
able effort currently underway to improve conditions
for these species. An exploration of their winter ecol-
ogy in ice-on and -off situations is therefore helpful in
describing their annual habitat requirements to inform
both these remediation efforts as well as our more
general understanding of their winter ecology.

Methods

Study site

Hamilton Harbor is a large (east-west axis ¼ 8 km,
north-south axis 5 km, surface area ¼ 22 km2) fresh-
water embayment (mean depth of 13m, max depth of
26m) situated at the western end of Lake Ontario
(COA 1992; Smokorowski et al. 1998). It is a high-
nutrient system (Charlton and Le Sage 1996) that his-
torically provided habitat for many species of fish;
however, years of industrial development and
anthropogenic degradation have impaired water qual-
ity and biota (Smokorowski et al. 1998). Hamilton
Harbor has been binationally designated for restor-
ation and government (all levels) and non-government
agencies have worked to describe ecosystem processes
and restore them (COA 1992). Efforts to restore the
harbor rely on knowledge of the ecology of inhabiting
aquatic organisms so understanding their response to
changing conditions, such as ice-cover, is essential.

Remote sensing of ice cover

Ice mapping was conducted using Sentinel-1 Level 1
Ground Range Detection (GRD) image data from the
Copernicus program (European Space Agency) and
processed in Google Earth Engine (GEE; Gorelick

et al. 2017). Images were only available in Ascending,
IW (Interferometric Wide Swath), 10m, VV/VH
polarized data for the dates used (see Table 1 for dates
and incidence angles). The Javascript code to conduct
these analyses can be found at the following
link: https://code.earthengine.google.com/a6621784fb7
ac9940f7cccbc253b18f0. The scenes were pre-proc-
essed on GEE, which used SNAP with thermal noise
removal, radiometric calibration, and terrain correc-
tion using SRTM (Shuttle Radar Topography Mission)
30m data and then finally converted to decibels via
log scaling; Sigma Nought incidence angle correction
was also applied throughout the images. The data
were then segmented into image objects using SNIC
(Simple Non-Iterative Clustering; Achanta and
Susstrunk 2017) using a compactness of 2, connectiv-
ity of 8, and cluster seeds at 9-pixel increments. These
inputs were chosen by comparing manual interpret-
ation of select scenes and comparing against the geog-
raphy of the image clusters. Each object included the
mean of the input pixels (per band) as well as stand-
ard deviation (per band) and object area.

The classification was conducted using a Random
Forest classifier within GEE with the maximum num-
ber of trees set to 500 and bag fraction set to 50%.
The optimal tree depth was derived by plotting overall
accuracy and observing a plateau therein up to the
GEE-defined tree depth limit of 2,500 (Figure 2).
To obtain training and validation data, ice coverage
data concurrent with image acquisition dates were
acquired from the National Ocean and Atmospheric
Association’s Great Lakes Environmental Research
Laboratory historic ice coverage data (available at
https://www.glerl.noaa.gov/data/ice/#historical). These
data are derived jointly from the Government of

Table 1. Date of image acquisition and associated start and end date for when telemetry-derived detections were associated
with each image.
Image period Image date Image incidence angle,� Start End Num. Northern Pike Num. Walleye

X2017_A 1/10/2017 30.873 1/8/2017 1/12/2017 7 12
X2017_B 1/15/2017 41.372 1/13/2017 1/17/2017 7 13
X2017_C 1/22/2017 30.877 1/20/2017 1/24/2017 7 13
X2017_D 2/3/2017 30.879 2/1/2017 2/5/2017 7 14
X2017_E 2/20/2017 41.362 2/18/2017 2/22/2017 7 14
X2017_F 3/4/2017 41.361 3/2/2017 3/6/2017 7 14
X2017_G 3/16/2017 41.363 3/14/2017 3/18/2017 7 14
X2019_A 1/12/2019 30.912 1/10/2019 1/14/2019 10 11
X2019_B 1/24/2019 30.910 1/22/2019 1/26/2019 9 12
X2019_C 1/29/2019 41.362 1/27/2019 1/31/2019 8 12
X2019_D 2/10/2019 41.362 2/8/2019 2/12/2019 9 13
X2019_E 2/17/2019 30.904 2/15/2019 2/19/2019 8 14
X2019_F 2/22/2019 41.362 2/20/2019 2/24/2019 8 14
X2019_G 3/1/2019 30.912 2/27/2019 3/3/2019 9 13
X2019_H 3/6/2019 40.362 3/4/2019 3/8/2019 10 13
X2019_I 3/13/2019 30.913 3/11/2019 3/15/2019 9 14
X2019_J 3/18/2019 41.359 3/16/2019 3/20/2019 7 14
X2019_K 3/25/2019 30.916 3/23/2019 3/27/2019 6 14

The total number of individual Northern Pike (Esox lucius) and Walleye (Sander vitreus) available during each image period is also shown.
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Canada (Canadian Ice Service) and the United States
Government (U.S. National Ice Center) and are pro-
duced daily at a nominal resolution of 1.275 km2. All
pixels that can be mapped are given an ice cover to
the closest 10% plus an additional 95% class. For our
analyses, we separated these values into four bins: no
ice (comprised of 0%, 10%, and 20%), low ice cover
(30%, 40%, and 50%), medium ice cover (60%, 70%,
and 80% ice cover) and high ice cover (90%, 95%,
100%). Each image was trained/validated with its own
concurrent training/validation data. The training/val-
idation data were spaced further apart than the classi-
fied data (1,250m vs 20m), which diminishes the
likelihood for spatial autocorrelation amongst the
sampled points. To further reduce this, the training
data were derived from a randomly sampled 70% of
the NOAA data within the Sentinel-1 image footprint
and the remaining 30% were used for validation and
accuracy assessment (overall, producer’s, and user’s
accuracy). As the footprint of the image changes with
acquisition date so does the total number of samples
available for accuracy assessment, ranging from
approximately 1,500–2,500 observations. In early and
late season low-ice cover periods, the majority of these
observations (�90%) were in the 0% class and there
were fewer ice cover classes. To combat the issue of
sampling bias due to the dominance of the 0% class, a
stratified random approach was applied that reduced
the number of training data points used in the RF
model. With this stratification, the model subsamples
a maximum of 500 points from the 0% or “no ice”
class and up to 200 points from all other bins to
reduce model bias toward the 0% class while main-
taining the structure of the underlying data.

Independent validation of ice cover within
Hamilton Harbor was conducted with coincident
Sentinel-2 image data from February 27, 2017 and
coincident Landsat 8 data from March 1, 2019. These
were the only data available coincidentally without
complete cloud coverage, which is a common problem
in winter imagery of the Great Lakes area. A remote
time-lapse camera that was directed at the mid-
western portion of the basin throughout 2019 pro-
vided concurrent time-lapse images and these were
compared manually to the mapping products (similar
data do not exist for 2017). The RF classifier was
applied to the image objects throughout the entire
scene (including other areas within the Great Lakes
covered by the input image data) to derive ice cover
maps and these were exported from GEE as .tif files
for further analyses.

Fish telemetry data collection/processing

An acoustic telemetry array has been deployed in
Hamilton Harbor (Lake Ontario) since August 2015
(Brooks et al. 2017). The placement of some receivers
has changed through time to adapt to dynamic under-
lying research questions; for the present works,
receivers (n¼ 22) that were deployed for two periods
of interest—January–March 2017 and January–March
2019 were selected (Figure 1). Fish capture (boat elec-
trofishing and trap netting) and tagging followed the
methods outlined in Brooks et al. (2019). Two types
of transmitter tags were surgically implanted into
adult Northern Pike and Walleye; tags either transmit-
ted an individual fish code (Vemco V13, 31mm
length, dry mass 9 g, battery life 1,825 days) that was
used to identify a fish’s location or had a pressure
sensor to provide an indication of depth (Vemco
V13P, 39mm length, dry mass 11 g, battery life
1,317 days) in addition to an individual’s unique code.
A typical implantation procedure lasted less than four
minutes and fish were released back into the harbor
at their point of capture once they responded to exter-
nal stimuli. Detection data from each receiver were
downloaded in the spring and fall of each year and
data were filtered using the nominal-delay method in
the Great Lakes Acoustic Telemetry Observation
System package (Holbrook et al. 2019); this approach
removes potentially erroneous detections when there
is a gap between detections of 30 times the nominal
delay of the transmitter. Data were further processed
to remove individuals that either displayed no change
in depth or no change in detection location for the
duration of the study, indicators that the individual
may have died or that their pressure sensor was mal-
functioning (Brownscombe et al. 2019).

Detection data were split into separate time periods
based on the date of acquisition for each image
(Table 1). Detections from two days before and after
the date of image acquisition were linked with that
image period—this was the maximum time period
that could be selected to yield distinct (i.e., non-over-
lapping) detection periods. Data were further ran-
domly sub-sampled without replacement so that there
were an equal number of detections (n¼ 40) for each
individual fish per image period. This value repre-
sented the minimum number of detections by an indi-
vidual for any image period.

Minimum convex polygons (MCP) set to encapsu-
late 95% of detections were calculated for each indi-
vidual for each image period using the mcp function
in the adehabitatHR package (Calenge 2006). MCPs
have been applied to estimate the area used by fishes
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(Ebner et al. 2010) and provide a simple measure of
the area used by an individual. MCPs can have errors
when ranges are irregularly shaped or sampling effort
is unequal, however, for the present study sampling
effort is constant in fixed locations and less likely to
be affected (Burgman and Fox 2003). The mean depth
(m) for each individual was calculated from pressure
sensor readings on the acoustic tag and linked to each
image period. Finally, for each image period, the pro-
portion of the harbor that was covered in ice was
determined based on the image-derived estimate of
ice cover for each image object. Ice cover is calculated

by taking the bin class per pixel multiplied by a per-
centage: no ice: 0, low: 40%, medium: 70%, high:
100%. These data were linked to the individual-level
MCP area and mean depth for each image period and
used in the statistical models.

To visualize areas occupied by Northern Pike and
Walleye during different image periods, a grid was
created in ArcMap (10.7.1, ESRI 2019, Redlands, CA)
with points spaced 75m apart and for each image
period, the total number of MCPs at each point was
counted and then divided by the number of individu-
als detected during that image period to yield the

Figure 1. Mean ice cover for 2017 and 2019 in Hamilton Harbor, Lake Ontario. Fish telemetry receivers (black circles) were
deployed to track tagged fish species. Mean ice cover is calculated by taking the bin class per pixel (no ice: 0, low: 40%, medium:
70%, high: 100%) and summing these over the duration of the datasets.
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proportion of MCPs that overlapped at that location.
These values were interpolated using the natural
neighbor method (ESRI 2016) and a subset are pre-
sented for select image periods.

Statistical analysis

All analyses were conducted using R statistical software
(R 3.6.1; R Development Core Team 2020). Linear
mixed-effect models with restricted maximum likelihood
estimates were used to explore the relationships between
Day of Year or proportion of ice cover in the harbor
and MCP area (ha) or mean depth (m) for both
Northern Pike and Walleye. These models were fit using
the lmer function in the lme4 package (Bates et al.
2015) with individual ID nested in year as a random
effect. This model structure was necessary to account

for individual differences in model intercept and the
fact that data were available for most individuals in only
one year. Both response variables (MCP area and mean
depth) were log transformed to meet the assumptions of
normality and heterogeneity in the residuals. Models
were validated by plotting the residuals against fitted
values. To determine whether harbor ice cover or Day
of Year was a better predictor in the models, Akaike
information criterion (AIC) values were used to com-
pare relative accuracy with generated models. Lower
AIC values indicate better fit (Akaike 1987) and the
model with the lower AIC was selected for plotting.

Results

Data from February 17, 2019 were used to determine
ideal tree depth as this date encompassed a variety of

Figure 2. Overall accuracy as defined from the held back 30% validation data at given tree depths using (top) all ice cover bins
and (bottom) the four bin (no ice, low, medium, high) ice cover model.
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ice cover percentages. Overall accuracy was maxi-
mized after a tree depth parameter of 250 when using
the full ice class data and 500 when using the binned
classification approach (Figure 2). For the rest of the
analyses, the tree depth was set to 500 as there was
minimal differences in processing time with a tree
depth of 250 vs 500.

Considering the metrics derived from the built-in
validation dataset, accuracies are very high throughout
the time periods analyzed (Table 2). The lowest mean
accuracy was found in the “low ice cover” bin (87%),
which had values from 74% to 99% for user’s accur-
acy. Overall accuracy within this dataset was consist-
ently high. Comparing the maps to optical datasets,
our technique gives overall accuracy >85% (Tables 3
and 4). The March 23, 2017 image had low producer’s
accuracy in the low ice cover bin and low user’s
accuracy in the high ice cover bin as these two classes
were the most confused in the dataset (no medium
class pixels existed in this image; Table 3). The
February 22, 2019 image had better overall accuracy
and less confusion between ice classes (Table 4); the
unobscured portions of the optical data were nearly
completely covered in ice in this image. When com-
paring our outputs with the time-lapse camera data,
the viewable area was mapped appropriately during all
coinciding dates with good images. The camera’s
viewable area includes a boundary between ice and
water identified in the western end of the harbor
throughout 2019, which further verifies our method-
ology (Appendix 1).

As is the case with whole-lake ice cover, there were
stark differences in ice cover in Hamilton Harbor
between 2017 and 2019 (Figure 1). While small, shal-
low sub-basins were frozen in both years (in the west-
ern and southeastern portions of the harbor) there
was a noticeable absence of ice cover in the core of
the harbor in 2017. The timing of peaks in ice cover
in Hamilton Harbor were similar between years
(January 15, 2017 and January 29, 2019 as well as
February 20, 2017 and February 22, 2019) but differ-
ent from peak Lake Ontario times (Figure 3).

Maximal ice cover throughout the lake was earlier in
2017 (7 February) and later in 2019 (2 March).
Hamilton Harbor was proportionally more frozen in
the early season as well as the latter portions than
Lake Ontario.

For both Northern Pike and Walleye, areas of high
use were generally concentrated in the western part of
the harbor (Figures 4 and 5). Specifically for Northern
Pike, MCP areas in both years were largest in January,
decreased in size in February, and remained small
into March. The main difference between 2017 and
2019 was that by February and March all Northern
Pike MCP areas were situated in the west end in 2019
whereas in 2017 some Northern Pike were detected in
the deeper areas of the central and eastern harbor that
were covered by ice in 2019 (Figure 4). For Walleye,
there was evidence for a shift in the size and location

Table 2. Accuracy assessment data for ice cover mapping using held-back validation data in the four bin class model.

Ice cover
2017 User’s
accuracy (%)

2019 User’s
accuracy (%)

All user’s
accuracy (%)

2017 Producer’s
accuracy (%)

2019 Producer’s
accuracy (%)

All producer’s
accuracy (%)

No Ice 99.5 99.4 99.4 99.9 99.9 99.9
Low 99.9 99.9 99.9 89.4 87.2 88.2
Medium 99.9 99.4 99.6 97.7 96.4 96.7
High 99.9 99.7 99.8 99.5 98.8 99.0
Overall accuracy 2017 99.7% Overall

accuracy 2019
99.5% All overall accuracy 99.6%

The data presented are mean accuracies of each category per bin, per year (2017/2019) and pooled (all data). With respect to the training and validation
ice cover, no ice represents the 0%, 10%, and 20% classes, low ice represents the 30%, 40%, and 50% classes, medium ice represents the 60%, 70%,
and 80% classes, and high ice represents the 90%, 95%, and 100% classes.

Table 4. Confusion matrix for random forest binned classifica-
tion output (20m resolution) against Sentinel-2 data (20m
resolution) on February 22, 2019.
Ice cover Medium High Total User’s accuracy (%)

Medium 8 2 10 80.0
High 4 37 41 90.2
Total 12 39 51
Producer’s accuracy 66.6% 94.9% Total accuracy 88.2%

This day had high overall ice cover in Hamilton Harbor and considerable
cloud cover masking the northern portion of the harbor. With respect
to the training and validation ice cover, medium ice represents the
60%, 70%, and 80% classes, and high ice represents the 90%, 95%, and
100% classes (the no ice and low ice classes were not represented in
this image).

Table 3. Confusion matrix for random forest binned classifica-
tion output (20m resolution) against Landsat 8 data (30m
resolution) on March 23, 2017.
Ice cover None Low High Total User’s accuracy (%)

None 90 1 0 91 98.9
Low 1 4 0 5 80.0
High 7 7 5 19 26.3
Total 98 12 5 115
Producer’s accuracy 91.8% 33.3% 100% Total accuracy 86.1%

This day had low overall ice cover in Hamilton Harbor and considerable
cloud cover distorting the center of the harbor. With respect to the
training and validation ice cover, no ice represents the 0%, 10%, and
20% classes, low ice represents the 30%, 40%, and 50% classes, and
high ice represents the 90%, 95%, and 100% classes (the medium class
was not represented in this image).
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of MCP areas from January, when they were larger
and focused in the center of the harbor, to February,
when their MCPs were slightly smaller and more
focused on the west end of the harbor (Figure 5).
Reductions in the spatial coverage of Walleye MCP
areas into March were more apparent in the
2019 dataset.

For Northern Pike, models using Day of Year had
lower AIC values for both area and mean depth
(Table 5). The Walleye depth model for Day of Year
similarly had lower AIC values, but the area model
with harbor ice cover had a slightly lower AIC. It
should be noted that fixed effects for both the harbor
ice cover and Day of Year models for Walleye area

were significant (Table 5). For both Northern Pike
and Walleye, all best fit models suggested that the
area of habitat used (derived from MCP) declined
through time or with increasing ice cover, and depth
use decreased (i.e., fish moved upwards in the water
column) through time (Figure 6).

Discussion

Ice mapping

The high accuracy of the method presented here
shows its potential for mapping smaller sub-basins
and coastal areas in the Laurentian Great Lakes. With

Figure 3. Lake Ontario (LkON) and Hamilton Harbor ice cover (%) and air temperature (�C) for 2017 and 2019 (air temperature
data were taken from Environment and Climate Change Canada 2020, climate station 27529). A line at 0� Celsius is shown to
more easily see the freeze/thaw boundary.
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near-global coverage of Sentinel-1, these methods
could be applied to other systems where validation
data exist at larger scales. When comparing against
the held-back validation data, the results are very
good across ice covers even when certain categories
have low input data. When compared against external
optical datasets, the binned classification performs
well under scenarios with high and low overall ice
cover in Hamilton Harbor. The low ice cover date
(February 27, 2017) saw a lower user’s accuracy for

high ice cover bins, which were predicted in small
patches within the study area. Given the lower reso-
lution of the optical dataset (Landsat 8, 30m) it is
possible that small ice floes exist in this area that can-
not be captured with the available reference data. A
preferable optical image on a date with a wide range
of predicted ice cover could not be found within the
Landsat and Sentinel-2 time series.

Comparing the time lapse camera in 2019 to the
mapped data showed good agreement in ice cover for

Figure 4. Minimum convex polygons (MCPs) of Northern Pike at labeled time points throughout 2017 and 2019. Greater propor-
tions of MCP suggest higher activity in those polygons. Northern Pike continued to use deeper portions of the central and eastern
harbor only in 2017 when ice cover was low, and both show a shift to using the western basin over time.
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the areas captured. As seen with the time lapse cam-
era, the nature of ice cover in the study area is very
dynamic (as seen with the time lapse camera). While
the western portion of the basin is somewhat pro-
tected from ice movement due to the dominant west
winds in the area, there are frequent changes in the
extent of ice cover in waters situated east of the previ-
ously noted ice-water boundary that is present in the
frame of the time-lapse images There was a noticeable
divide between an ice sheet in the western portion of

the basin and open water that is well captured in
imagery from the same date on February 17, 2019.
The preceding decrease in ice cover was not able to
be verified due to poor weather on the days surround-
ing image capture, though this decrease is likely par-
tially explained by warmer air temperatures (discussed
below). While these time lapse data were not intended
for scientific purposes they can be utilized as a
sufficient true-colour dataset for comparison
and validation.

Figure 5. Minimum convex polygons (MCPs) of Walleye at labeled time points throughout 2017 and 2019. Greater proportions of
MCP suggest higher activity in those polygons. Walleye had more reduced MCPs during the higher ice cover year (2019) shifting
to increased use of the central and western portion of the harbor.
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Table 5. Importance of the fixed terms, the variance of the random intercepts (Var.), and residual error of the random intercept
(Resid. Err.) for the linear mixed-effects models exploring Northern Pike and Walleye mean depth and MCP area based on the
proportion of Hamilton Harbor that was covered in ice (Prop. Ice Cover) and the Day of Year. Models with lower Akaike informa-
tion criterion (AIC) scores were used for visualizing predicted trends (see Figure 6).
Species Response Model term Year: ID Var. Year Var. Resid. Err. DF p-Values AIC

Northern Pike MCP Area Prop. Ice Cover 0.577 0.000 3.068 1 0.089 585.1
MCP Area Day of Year 0.579 0.000 2.951 1 0.008 580.9
Depth Prop. Ice Cover 0.368 0.113 0.287 1 0.055 277.4
Depth Day of Year 0.375 0.126 0.252 1 <0.0001 261.1

Walleye MCP Area Prop. Ice Cover 0.075 0.000 0.426 1 0.0005 505.8
MCP Area Day of Year 0.082 0.000 0.434 1 0.009 511.4
Depth Prop. Ice Cover 0.016 0.005 0.043 1 0.017 �20.1
Depth Day of Year 0.017 0.000 0.021 1 <0.0001 �148.7

Figure 6. The predicted effects of day of year or proportion of the harbor covered in ice on mean depth (m) and the area of the
95% minimum convex polygons (ha) derived from their respective top models (see Table 5). Circles display observed data points
and lines display predicted linear mixed-effects model trends with 95% confidence intervals.
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A common source of error in remote sensing of ice
with SAR data comes from wind roughening (i.e.,
waves) of the water’s surface resulting in changes to
backscatter values that appear as ice. Since the train-
ing and validation data are coincident with the input
Sentinel-1 data, this problem is reduced as wavy water
will still be fed into the model as water and not mis-
interpreted as ice. Furthermore, our tool is designed
for nearshore areas where wind action can be less
prevalent due to shoreline buffering. The impact of
wind must still be considered as a potential source of
error as those areas that experience high wave action
(e.g., leading edges of barrier beaches, breakwalls)
could see reduced model performance that would not
be reflected in the accuracy assessments.

In a study by Singha et al. (2020), non-coincident
training data were used to determine the applicability
of an artificial neural network over a range of dates
and incidence angles. Throughout a season ice can
change its backscatter response due to properties of
the ice and associated water/snow cover (Leigh et al.
2014; Surdu, Duguay, and Fern�andez Prieto 2015);
changes in incidence angle can similarly affect back-
scatter and interpreted ice cover (Leshkevich &
Nghiem 2013; Wang et al. 2018). Due to low total ice
cover over western Lake Ontario throughout the study
period, it was not possible to find a single date that
covered all ice cover classes within the training data-
set. We did attempt to use the closest available non-
coincident imagery (i.e., <2 weeks difference between
image acquisition) for training data, but obtained
lower overall and within-class accuracy than when
using coincident imagery (data not shown). Since ice
cover charts are produced daily for the Great Lakes,
we intend for this tool to only be used with coinci-
dent training data.

Lake Ontario has typically experienced ice onset
just prior to January since the 1800s and ice cover
ends by April and most often has its peak in mid-
February (Duguay et al. 2006). Our mapped ice cover
datasets in 2019 show a decrease in ice cover partway
through the winter months before a rebound there-
after, which is also seen in analyses of more recent
Great Lakes ice cover (Wang et al. 2017). A cause of
this in Hamilton Harbor may be gleaned from con-
current air temperature data that show daily mean
temperatures above 0 degrees Celsius for prolonged
periods in late February 2019 (Environment and
Climate Change Canada Climate Station 27529;
Figure 3). Our data in Hamilton Harbor do not show
a consistent agreement with larger Lake Ontario pat-
terns, which stresses the need for regular fine-scale ice

cover mapping. Our mapped maximal ice cover dates
may not agree with maximal whole-lake ice cover due
to regional variations and the much smaller size of
the Harbor. In theory, the thermal mass of this water
body would be much less than the entire Lake and
thus more susceptible to weather conditions and tem-
perature changes.

The ice mapping process derived here is easily
accessible via a GEE script (source link in methods).
All of the data and techniques are contained within
the script except for the training ice cover maps,
which were manually uploaded to GEE by the
authors. The script has been written in such a way to
be user accessible with the only required inputs being
the area to be mapped (which is a modifiable poly-
gon), date of the Sentinel-1 image required, and the
relevant ice cover training file (uploaded by date).
This does require the user to know the dates that
imagery is available, but a print-out in the code lists
all image dates available for the year in question. The
code also provides a download option for the resultant
image file and confusion matrices of the accuracy and
validation datasets. With the script written in this
way, we hope that others can take advantage of this
mapping tool within GEE and outside in the program
of their choice.

Embayments like Hamilton Harbor are ecologically
important for fishes and other aquatic organisms and
these areas have not previously been mapped at an
appropriate resolution to study their residents’ winter
ecology. Although the primary focus of ice cover map-
ping is to support navigation, the present study dem-
onstrates how shipping-focused mapping initiatives
can be leveraged to support finer scale ice cover map-
ping. While the data presented here are for Hamilton
Harbor, these techniques can be readily applied to
other unmapped areas that have comparable ice cover
maps in adjacent areas that can be used to train the
model. For the Laurentian Great Lakes, this can
include other areas known to support important fish-
eries and this approach can be used by regulatory
agencies to support the management of fish and
fish habitat.

Fish under ice

Quantifying winter severity remotely using measures
of ice cover is an established method in the Great
Lakes region that can be linked to regional climates
(Assel 1980; Hewitt et al. 2018). Assumptions around
fish responses to cold duration are not intuitive and
depend on the species’ life histories. Shortened winters
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under a warmer climate change scenario are beneficial
to the growth of some fish species, as has been dem-
onstrated in Smallmouth Bass (Micropterus dolomieu;
Casselman 2002). In contrast, some commercially and
recreationally important species require a minimum
length of winter for their life history strategies. For
example, Yellow Perch (Perca flavenscens) in Lake
Erie have lower recruitment success after short, warm
winters. Females of this species spawning in warmer
water temperatures produce smaller eggs that hatch at
lower rates and subsequently produce smaller larval
fish than females spawning from colder (longer) win-
ters (Farmer et al. 2015). For Northern Pike and
Walleye winter is an important season, particularly for
females since egg development occurs in preparation
for spring spawning (Murry et al. 2008; Pierce et al.
2013; Zhao et al. 2008). As a result, both species
actively forage in the winter months, which increases
the potential for inter- or intraspecific competition for
limited resources (as noted for Northern Pike; Knight
et al. 2008). McMeans et al. (2020) demonstrated spa-
tial segregation of two top predators (Lake Trout
[Salvelinus namaycush] and Smallmouth Bass) during
the winter. Although species distributions based on
life histories were not the intent of the present works,
our results suggest that while there is overlap in the
core areas used by Northern Pike and Walleye (i.e.,
western Hamilton Harbor) during the winter, there is
separation in the depth strata they occupy.
Additionally, despite this overlap, core areas for
Walleye were considerably larger than Northern Pike,
suggesting they may be more active or wide-ranging
during the winter. This type of habitat partitioning is
important to document since it can help define how
these two top predators are able to co-exist while also
providing habitat managers with an indication of the
types of overwintering habitat that are important for
each species.

For both species, results suggest the area used by
an individual decreases throughout the winter and, at
least for Walleye, this reduction is better explained by
the extent of ice cover than timing. As ectotherms,
reductions in activity as temperatures decline and
remain cold throughout the winter likely explain these
reductions in area use, particularly for these two study
species that are considered cool rather than cold-water
specialists. The formation of ice during the winter fur-
ther alters aquatic habitat for fishes beyond declines
in temperature by reducing light intensity and pre-
venting inputs of atmospheric oxygen (Shuter et al.
2012). For Walleye, it is possible that these additional
habitat changes (e.g., declining oxygen) act to reduce

their area of use during periods of ice-on. The already
more restricted MCP of Northern Pike may be less
affected by the presence of ice cover than Walleye,
alternately there may not be sufficiently high reso-
lution of telemetry positioning to detect a change in
Northern Pike MCP during ice-on and off. For the
present study, however, we are unable to determine
the specific ecological drivers behind differences in
space use between species or between periods of ice-
on or ice-off. In other words, space use of fish was
consistent with differences in ice cover but the specific
drivers of that association are unclear. Moreover, we
only have two years for comparison so some caution
must be applied when interpreting this pattern. The
shifts to shallower depths as the winter progressed
observed for both species are similarly challenging to
explain with the available data, however, both
Northern Pike and Walleye spawn in the spring, so
toward the end of the winter it is likely that shallow
waters are occupied as they stage or begin to spawn
in nearshore areas.

Acoustic telemetry has been used for decades to
study fish under ice (e.g., Johnsen and Hasler 1977;
Blanchfield et al. 2009; Hasler et al. 2009) and has
been gaining in popularity to characterize the winter
ecology of freshwater fishes (reviewed in McMeans
et al. 2020; Marsden et al. 2021). The novel addition
of RS-derived ice cover maps to such studies provides
for continuous measure of winter conditions in the
form of the location and duration of ice cover
through a study system. The presence of ice cover can
influence light penetration and oxygen availability in
the water column, which influences fish behavior and
ecology (Brown et al. 2011; Hampton et al. 2017).
While these and other habitat variables can be moni-
tored directly, they require in-person site visits or
careful placement of instrumentation and would not
cover the same spatial extent as RS without significant
cost. As noted by Dauwalter et al. (2017), access to RS
imagery with higher spatial and temporal resolution is
increasing, making this imagery and derived products
more readily available for inclusion in the develop-
ment and implementation of fisheries research. The
methods outlined herein take advantage of new RS
products, software, and existing data to enhance the
potential analyses of ice cover in the Great Lakes. The
present study demonstrates a simple link between
winter ice cover and the area and depth used by two
freshwater piscivores. More in-depth explorations
combining these two remote-based approaches,
remote sensing and acoustic telemetry, can provide
relatively fast, cost-effective methods to help fisheries
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scientists and managers better understand the behav-
ior of fish under ice.

Conclusion

We have shown a promising remote sensing-based
method for the analysis of ice cover in unmapped
portions of the Laurentian Great Lakes that produces
accurate results (>85%) with freely available Sentinel-
1 data. By utilizing cloud computing and shareable
code, this technique can be easily applied to other
regions within the Laurentian Great Lakes or any-
where accurate validation data exist and there is suffi-
cient spatial coverage by Sentinel-1. The resulting
maps will provide previously unavailable information
on ice cover dynamics in small, nearshore areas that
are important overwintering habitat for many fishes.
These maps can be combined with fish telemetry
information from collaborative research networks
such as the Great Lakes Acoustic Telemetry System
(https://glatos.glos.us/) to further our understanding
of winter fish ecology. This season poses many chal-
lenges for fishes, yet it is often understudied, therefore
the integration of remote sensing and acoustic telem-
etry hold great promise for supporting future studies
of fish ecology and ultimately more effective fish and
fish habitat management.
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Appendix

Appendix 1. Time lapse camera image (top) from February 17, 2019 matches ice/water boundary present in mapped
ice (bottom; red rectangle).
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