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Abstract

Interspecific interactions can play an essential role in shaping wildlife
populations and communities. To date, assessments of interspecific interac-
tions, and more specifically predator—prey dynamics, in aquatic systems over
broad spatial and temporal scales (i.e., hundreds of kilometers and multiple
years) are rare due to constraints on our abilities to measure effectively at
those scales. We applied new methods to identify space-use overlap and poten-
tial predation risk to Atlantic tarpon (Megalops atlanticus) and permit
(Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna
mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using
acoustic telemetry in the coastal region of the Florida Keys (USA). By examin-
ing spatiotemporal overlap, as well as the timing and order of arrival at specific
locations compared to random chance, we show that potential predation risk
from great hammerhead and bull sharks to Atlantic tarpon and permit are het-
erogeneous across the Florida Keys. Additionally, we find that predator
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INTRODUCTION
Predator-prey interactions: background

Populations, communities, and ecosystems are shaped
largely by how species interact with one another (Berlow
et al., 2009; Poisot et al., 2015; Vandermeer, 1969; Werner &
Peacor, 2003; Wootton, 1994, 2002). Interactions involving
predators and their prey are an especially important driver
of population dynamics, animal behavior, and individual
space use through predation or nonlethal predator
effects (trait-mediated or risk effects) (Ives et al., 2005,
Preisser et al., 2005; Wirsing et al, 2007a; Creel &
Christianson, 2008; Heithaus, Wirsing, et al., 2008;
Jorgensen et al., 2019). Predation risk landscapes will influ-
ence the spatiotemporal patterns of both predators and prey,
with their overlap affecting encounter and predation rates
(Lima & Dill, 1990; Sabal et al., 2021; Sih, 2005). In turn,
these predation risk landscapes can have substantial
impacts within an ecosystem. For example, within the
marine environment, tiger shark (Galeocerdo cuvier) pres-
ence modifies space-use or foraging patterns of green turtles
(Chelonia mydas), bottlenose dolphins (Tursiops aduncus),
dugongs (Dugong dugong), and sea snakes (Disteria major,
Hydrophis elegans), mainly through nonlethal effects, poten-
tially altering seagrass communities (Heithaus & Dill, 2006;
Heithaus, Frid, et al., 2007; Kerford et al., 2008; Wirsing
et al., 2007a, 2007b; Wirsing & Heithaus, 2009). Similarly,
killer whale (Orcinus orca) presence alters space use of white
sharks (Carcharodon carcharias) at elephant seal (Mirounga
angustirostrous) haul-out sites, redistributing predation
pressure and risk on seal colonies (Jorgensen et al., 2019).
With many apex and mesopredator populations in decline,
their loss may result in long-lasting ecosystem-wide shifts,
including trophic cascades (Crooks & Soulé, 1999; Estes
et al., 2011; Estes et al., 2016; Ferretti et al., 2010; Heithaus,
Frid, et al., 2008; Heupel et al., 2014; Nowicki et al., 2021;
Ripple et al., 2016).

encounter rates with these game fishes are elevated at specific locations and
times, including a prespawning aggregation site in the case of Atlantic tarpon.
Further, using machine learning algorithms, we identify environmental vari-
ability in overlap between predators and their potential prey, including loca-
tion, habitat, time of year, lunar cycle, depth, and water temperature. These
predator-prey landscapes provide insights into fundamental ecosystem func-
tion and biological conservation, especially in the context of emerging fishery-
related depredation issues in coastal marine ecosystems.

acoustic telemetry, conservation, machine learning, predator-prey dynamics

Given the relevance of predator-prey relationships to
population stability and ecosystem function, it is impor-
tant to understand the environmental variability
(e.g., seasonality, temperature, time of day, habitat, lunar
cycle) that may influence the spatiotemporal overlap of
predators and their potential prey. However, monitoring
long-term predator-prey overlap is challenging since
many large predators, such as sharks, often have wide-
ranging movements and large home ranges and occur at
low densities (Heithaus & Vaudo, 2012; Simpfendorfer &
Heupel, 2012). With recent advances in electronic track-
ing technology (Hussey et al., 2015; Kays et al., 2015), it
is possible to examine the potential relationships between
predators and their prey at much finer scales. For exam-
ple, both active and passive acoustic telemetry show that
sharks select for habitats with higher prey abundance
and increased foraging success (Heithaus et al., 2002),
even when that prey source is seasonal (Meyer
et al., 2010). Further, tracking data have highlighted
predator-prey dynamics operate at multiple spatiotempo-
ral scales, including diel and tidal patterns as well as hor-
izontal and vertical habitat selection (Barnett et al., 2010;
Guttridge et al., 2012).

It becomes increasingly difficult to examine such rela-
tionships when both predators and prey are highly
mobile marine species because there is a need for high-
resolution multispecies data to assess potential encoun-
ters. For example, using satellite telemetry data collected
from bull sharks (Carcharhinus leucas) and their prey,
Atlantic tarpon (Megalops atlanticus; referred to hereafter
as tarpon), Hammerschlag et al. (2012) found that tarpon
modified their swimming behavior (location, speed, and
path tortuosity) in areas of high bull shark density,
suggesting potential avoidance behavior by tarpon from
predation risk. However, characteristic of satellite teleme-
try, this study was limited by sample size (including
shark size range), monitoring period, and geopositioning
error and, thus, did not assess whether shark migrations
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were driven by tarpon or vice versa. Ultimately, more
robust spatiotemporal data sources and methods are
needed to fill fundamental and applied knowledge gaps on
predator-prey interactions, particularly in marine systems
(Friess et al., 2021; Lowerre-Barbieri, Kays, et al., 2019).

Sharks and their prey in the Florida Keys

The coastal habitats surrounding the Florida Keys repre-
sent a complex patchwork of heterogeneous habitats for
marine fish of all life history stages (Acosta et al., 2007;
Burke et al., 2012). This area of >8000 km? encompasses
shallow mangrove forest islands and seagrass flats (<3 m
deep), a 580-km-long barrier reef (Florida Reef Tract),
and over 1000 known shipwrecks. While this area and its
surrounding habitats have received extended protection
through multiple sanctuary, national park, and wildlife ref-
uge designations (e.g., Florida Keys National Marine Sanctu-
ary, Biscayne National Park, Everglades National Park),
continued anthropogenic pressures, such as overfishing,
habitat degradation, and lack of freshwater flow through the
Everglades into Florida Bay, continue to alter the ecosystem
as a whole (Bartholomew et al., 2008; de Freese, 1991;
Jackson, 1997; Lapointe et al., 1994; Lapointe & Clark, 1992;
Maliao et al., 2008; Mclvor et al., 1994).

Of particular note, shark abundance and species com-
position in the Florida Keys has substantially declined
due to overexploitation since the 1920s (Heithaus,
Burkholder, et al., 2007, NOAA/NMFS Highly Migratory
Species Division, 2006). However, despite these changes,
recreational fishing guides and anglers throughout the
southeastern United States report frequent and increas-
ing issues with shark depredation (i.e., fish consumed by
sharks prior to landing). This growing unrest in the com-
munity over a perceived overabundance of sharks, which
can negatively affect fishing opportunities (Adams
et al., 2019), has been the focus of management meetings
at both the federal and state (Florida) levels (May 2020
and September 2020 Meetings of the NOAA Atlantic
Highly Migratory Species Advisory Panel, December 2020
Meeting of the Florida Fish and Wildlife Conservation
Commission). Depredation occurs in a number of coastal
fisheries, including those targeting two prized game fish,
tarpon and permit (Trachinotus falcatus). While
both tarpon and permit are considered natural prey for
these shark species (A. J. Adams, unpublished data;
Castro, 2010; Roemer et al., 2016), recreational angling
has exacerbated predation events when fish are exposed
to capture stress, including extended fight times (Ault
et al., 2007; Guindon, 2011). A common time for anglers
to target both tarpon and permit in the Florida Keys is
before and during spawning events when they aggregate

in large schools ranging from hundreds to thousands of
individuals in the spring and summer (tarpon: Luo
et al., 2020; Griffin et al., 2022; permit: Brownscombe,
Griffin, Morley, et al., 2019). Indeed, Holder et al. (2020)
documented that depredation rates of angled permit by
bull and great hammerhead (Sphyrna mokarran) sharks
exceeded 30%-50% of hooked fish at certain sites, and,
most troubling, depredation rates were particularly high
at permit spawning aggregation sites. Similarly, approxi-
mately 15% of all tarpon hooked within an aggregation at
one specific location during the spawning season resulted
in depredation by great hammerheads (G. A. Casselberry,
unpublished data). Considering both of these recreational
species, along with bonefish (Albula vulpes), have a $465
million annual economic impact in the Florida Keys
(Fedler, 2013), identifying high-risk areas for anglers to
potentially avoid or to enact protective measures, ranging
from heavier fishing tackle requirements to reduce fight
time to temporary fishing closures, is critical for effective
fisheries management.

Objectives

Given the importance of sharks as predators in coastal
marine ecosystems and growing conflicts with recrea-
tional fisheries, it is imperative to understand the ecology
of sharks and their prey within the Florida Keys in
greater detail. Using a 3-year acoustic telemetry data set,
we (1) tested whether great hammerheads and bull
sharks were nonrandomly arriving when potential prey
were present at specific sites and (2) used machine learn-
ing to examine the broad spatiotemporal patterns of
predator-prey relative overlap and their variability across
environmental predictors (e.g., time of year, location,
habitat type, lunar cycle, temperature). This approach,
using acoustic telemetry, represents an advance in char-
acterizing broad spatiotemporal patterns in predator-
prey dynamics. Further, the findings provide important
insights into predation risk landscapes and are relevant
for resolving the growing human-wildlife conflict over
recreational fishery depredation in the region.

METHODS

Data collection

Acoustic receivers

Between 2015 and 2019, nearly 300 autonomous fixed

acoustic receivers (VR2W, VR2Tx, and VR2AR models,
Vemco Inc., Halifax, NS, Canada) were deployed to
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support projects affiliated with the University of Massa-
chusetts Ambherst, Carleton University, Bonefish &
Tarpon Trust, University of Miami, University of Florida
(Gainesville), and Florida Fish and Wildlife Conservation
Commission (FWC, offices in St. Petersburg and Mara-
thon). In addition, the Ocean Tracking Network (OTN)
provided loaned receivers to support coverage across the
Florida Keys receiver locations, which spanned the Flor-
ida Keys (approximately 300 km in distance), ranging
from the northernmost portion of Biscayne Bay to the
Marquesas Keys. Receivers were affixed (transducer
upright) to 1 m rebar that was cemented within heavy
mooring stands (30-50 kg) placed on the seafloor. Owing
to the large study area and multiple project goals,
receivers were deployed using a point-of-interest arrange-
ment rather than a grid formation (Brownscombe, Lédée,
Raby, et al., 2019). Further, receivers were grouped into
nodes based on proximity to one another and habitat
classification (Figure 1, Appendix S1: Table S1). Acoustic
receiver performance (i.e., detection range and efficiency)
was assessed using reference tags at 9 different receivers
across several distinctive habitats within the flats and
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by using environmental noise data collected from
39 acoustic receivers (Vemco VR2Tx and VR2AR models)
at eight unique sites within the Florida Reef Tract
(Brownscombe, Griffin, Morley, et al., 2019).

Acoustic tagging

All animals were tagged internally with Vemco V13
(80-120 s delay), V13A (80-120 s delay), or V16 (delays
of 30-90s, 50-130s, 60-90s, 60-120 s, 90-150 s, 140-
220 s, 150-360 s) transmitters (InnovaSea Systems Inc.,
Halifax, NS, Canada), with the exception of some ham-
merheads that received external V16 tags at the base of
the dorsal fin to reduce handling times, since this species
exhibits high capture stress responses (Gulak et al., 2015,
Jerome et al., 2018). Sharks were captured and tagged in
the Florida Keys, Florida (FL), Biscayne Bay, FL, and
Bimini, The Bahamas (see Appendix S2 for further
details). Tarpon were primarily captured and tagged
within the Florida Keys, as well as waters surrounding
Apalachicola, FL, Tampa Bay, FL, Charlotte Harbor, FL,
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Amelia Island, FL, Cumberland Island, FL, and George-
town, South Carolina. Permit were captured and tagged
in proximity to the Florida Keys.

Data analysis
Data organization and filtering

This database builds on that used in Lowerre-Barbieri
et al. (2021). To examine species overlap between tarpon
and both shark species individually as well as the overlap
between permit and both shark species individually, data
were collected between 1 August 2016 and 25 June 2020
from all available receivers within the defined study area
for tarpon, permit, great hammerhead sharks, and bull
sharks. Because of mismatched download periods by
each institution, data were included from the Biscayne
Bay area for almost 1 year longer (August 2019-June
2020) than in the Florida Keys in the south. Data from
this extended period were included because permit were
not regularly detected within Biscayne Bay until later in
the study period due to later tagging efforts in that gen-
eral area. Because all models were based on presence/
absence at the receiver aggregate, that is, node level,
many of the issues related to imbalanced sampling times
were negated. Here, nodes are defined as aggregate
receiver groups (n = 48) based on both receiver geo-
graphic position (mean 2.85+ SD 4.28 km apart) and
habitat type, that is, receivers close to one another with
similar habitat types would be aggregated into the same
node (Figure 1, Appendix S1: Table S1).

To ensure that the sharks were large enough to pose a
predatory threat to both adult permit and tarpon via nat-
ural predation or depredation, we included all tagged
sharks greater than 2 m in total length (TL) at the time of
tagging (n = 28 bull sharks and n = 42 great hammer-
head sharks). A TL of 2 m has been identified as a signifi-
cant length threshold where sharks begin incorporating
larger prey items, like chondrichthyans, into their diets
(Lucifora et al., 2009). Further, evidence suggests that
sharks, regardless of size, are not gape limited, consum-
ing prey both in pieces and whole across a broad size
range (Lucifora et al., 2009). Additionally, three bull
sharks that were classified as mature based on published
size at maturity estimates (Natanson et al., 2014) (size
range: 188-196 cm TL) were included in the data set to
account for a lack of significant differences in diet and
trophic level between large subadult and mature bull
sharks based on previous stable isotope analyses
(Abrantes et al., 2018). These cutoffs removed six sharks
from the data set (bull shark n = 4, great hammerhead
n = 2). Further, tarpon with a tracking duration of fewer

than 14 days were removed in case postrelease mortality
occurred, a common caveat of tarpon angling
(Guindon, 2011) and tagging due to fish exhaustion or
shark predation. Subsequently, detection data were fil-
tered to remove false detections (Brownscombe, Griffin,
Chapman, et al., 2019; Simpfendorfer et al., 2015), includ-
ing (1) any detections occurring before the tag was
deployed; (2) duplicate detections (when identified, the
first detection of the duplicate pair was retained);
(3) detections that occurred within 60 s of each other for
a given individual; (4) unrealistic detections (move-
ments), here defined as movements (considering variable
detection ranges) greater than 3 m/s; and (5) singular
detections occurring within a given time frame, here
defined as 24 h.

Interspecific differences in space use

Descriptive plots were generated to examine interspecific
differences in space use at the array and node levels sepa-
rately. For each species and month, we calculated detec-
tion count, mean detection count, and mean residence
time (daily) in the study area (array level). Additionally,
spatial plots were generated to explore detection counts
of tarpon and permit relative to great hammerheads and
bull sharks at the node level.

Predator-prey hourly overlap events and
predator arrival times

To first compare areas of general space use to areas of
hourly predator-prey overlap, we constructed hourly
presences (defined as one or more detections in a binned
hour) for each species and each node. Nodes with over-
lapping hourly presences between a given prey and shark
species were also generated. The total number and pro-
portion of nodes detected/overlapped at the hourly level
were also derived.

To explore whether synchronous movements related
to predator-prey relationships existed between tarpon or
permit and sharks (i.e., if sharks were more likely to
arrive when tarpon or permit were already present), we
examined the arrival times of both shark species sepa-
rately at the node level compared to tarpon or permit
presence/absence (Appendix S1: Figure S1). First, hourly
presence and absence (here, defined as no detections)
data from tarpon and permit were assigned across all
study hours and at each node when receivers within
nodes were operational and detecting. Then the arrival
timing for great hammerheads and bull sharks were
subsequently compared to tarpon and permit presence
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or absence at the node and hourly level. Overlapping
events, or presences, and associated metrics, including
number of detections, total shark arrival count (num-
ber of times sharks arrived at a node), shark overlap
arrival count (number of times when sharks arrived
and tarpon or permit were already present), and shark
overlap arrival percentage (proportion of times when
sharks arrived and tarpon or permit were already pre-
sent), were then examined for only nodes where over-
lap occurred (i.e., relative rather than absolute)
(Appendix S1: Figure S1).

Finally, using the aforementioned metrics, we tested
whether shark overlap arrival counts were due to random
chance (randomly arriving at a given node regardless of
tarpon or permit presence). We resampled (i.e., randomly
generated) the observed shark arrival counts for a given
species at a given node 100 times and compared the mean
simulated shark overlap arrival counts to the observed
shark overlap arrival counts with a one-sample t-test
(using an o of 0.05 as the cutoff for significance) and
Cohen’s D test (with 95% confidence intervals) for effect
size. Shark tagging occurred nonrandomly before and
during the study period, resulting in more sharks being
available for detection at the end of the study period
(n = 73) than the beginning (n = 1), which in turn
resulted in an increased probability of shark detection
and arrival with time. We included a conditional proba-
bility statement within the resampling process to
account for this. First, we separately calculated the
cumulative number of great hammerhead and bull
shark tags that were available for detection based on
tagging dates. Subsequently, to account for unequal
probabilities of shark detection, the random draws of
zeros and ones were generated with the proportion of
observed shark arrivals (base probability) multiplied by
the proportion of sharks available for detection
(adjusted probability) (Appendix S1: Figure S1).

Drivers and environmental variability of
predator-prey relative daily overlap events

To explore the environmental variability and potential
drivers of tarpon and permit daily overlaps with great
hammerheads and bull sharks, we first constructed a
presence/absence data frame containing all the dates
when receivers were operational at each specific node. If
at least one individual of a given shark or prey species
was detected at a given node, then that node-date combi-
nation was marked as present. When completed for each
species, we were able to identify those date-node combi-
nations that contained daily overlaps between tarpon and
each shark species and between permit and each shark

species separately. To improve model performance and to
reduce zero inflation, we removed dates when both spe-
cies of the predator-prey pairing of interest were not
detected somewhere within the array and removed nodes
where no overlap between sharks and the given species
of interest occurred. Thus, by removing locations and cer-
tain dates with no registered overlap events, these ana-
lyses examined the relative daily overlap between sharks
and tarpon and permit.

We used random forest (RF) models to assess the
potential drivers of daily overlaps for each predator-prey
species combination. RF, a popular machine learning algo-
rithm, minimizes variance and overfitting while maximiz-
ing accuracy (Breiman, 2001). Compared to frequently
employed analytical methods, such as generalized linear
models, RFs are able to overcome common challenges
associated with data sets with unbalanced data, correlated
predictors, and complicated predictor interactions
(Breiman, 2001; Cutler et al., 2007; Liaw & Wiener, 2002).
Based on binary recursive partitioning, these models fit
multiple data trees with randomly selected predictor sub-
sets to find the best fitting model.

Daily species overlap (i.e., absence vs. presence at a
given node), regardless of number of unique individuals,
was the response variable and node, habitat type, month,
lunar cycle, depth, and temperature were included as pre-
dictors. Habitat type was categorized with a generalized
habitat classification surrounding a given node, which
included artificial reef (sunken and wrecked ships), flats
(shallow <3 m habitats), reef tract, or seamount. The
lunar cycle of each date was computed using a lunar
package (Lazaridis, 2014). Temperature data from over
50 loggers (Onset HOBO Water Temperature-v2; Bourne,
Massachusetts) and VR2Tx receivers (Vemco Inc., Hali-
fax, NS, Canada) that were deployed across the study area
were used to derive the average daily water temperature
at the node level. When temperature data were absent for
a node, those collected at the nearest node with a similar
depth and habitat structure were used.

All RF models were implemented in the randomForest
package (Liaw & Wiener, 2002) using an 8-fold cross-
validation procedure and by constructing 1000 trees per
fold. Each fold used a random subset of seven eighths of
the data to train the model, while the holdout data set, the
one eighth not used, was used to evaluate and test model
performance using a wide range of metrics. Performance
metrics included classification accuracies (i.e., positive and
negative prediction values) and overall model accuracy,
sensitivity to indicate the true positive classification rate,
specificity to indicate the true negative classification rate,
and the kappa statistic to compare the observed accuracy
with expected accuracy (random chance). Further, an F1-
score was generated to indicate the weighted average
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between precision (ratio of correctly predicted positive
class observations to the total predicted positive class
observations) and balanced accuracy was generated to
indicate the average proportion of correct classifications.

Since many absences existed within each prey-
predator daily overlap data frame, RF models designed
to optimize overall model accuracy were biased to
predicting absences over presences. To overcome the
tendency for RF models to weight the importance of
predicting absences over presences, owing to the imbal-
anced structure of the data, we manually assigned
model weights to each category/class to penalize mis-
classification of the minority class (presences) (Chen
et al., 2004). The assignment of model weights was
accomplished by trial and error until satisfactory accura-
cies, meaning relatively balanced error rates between
classes, were achieved for both response categories
(absences and presences). Feature importance
(i.e., predictor importance) was assessed using mean
decrease accuracy, which is the loss in model accuracy
in trees where the predictor was not included. Partial
dependency plots (PDPs) were constructed using the
pdp package in R (Greenwell, 2017) for each variable to
evaluate their marginal effect on the predicted outcome
(). Further, we evaluated all spatiotemporal two-way
interactions (excluding correlated interactions between
depth and temperature, depth and node habitat type,
and temperature and node habitat type). Relative PDPs
were generated for the top five interactions, as indicated
by the H-statistic value (Friedman & Popescu, 2008) and
was calculated wusing the iml package (Molnar
et al., 2018).

RESULTS
Interspecific differences in space use

Detections were collected and analyzed for 68 tarpon
(59 adult, 9 juvenile), 116 permit (105 adult, 11 juvenile),
42 adult great hammerheads, and 31 bull sharks
(Appendix S1: Figure S2, Table 1, Appendix S1: Table S2).
Detection count, mean detection count per species, and
residence time varied considerably among species, individ-
uals, and life stages (Figure 2). Generally, detections were
greatest in the spring for mature tarpon, winter for juve-
nile tarpon, fall-winter for bull sharks, late summer-early
winter for great hammerhead sharks, and spring—early
summer for both mature and juvenile permit. There was a
high level of space-use overlap at sites within the Florida
Keys when comparing tarpon and permit to great ham-
merheads and bull sharks (Figure 3), and residence varied
both in space and time for all species. Tarpon had the
highest residence levels in shallow water habitats with the
most extensive space use occurring between April and
June and least extensive between August and November
(Appendix S1: Figure S3). Permit appeared to use both
deep and shallow water habitats across all months, with
highest residence values occurring along the reef tract
between March and July (Appendix S1: Figure S4). Bull
sharks resided largely in deep water habitats (i.e., natural
reef and artificial reef), particularly north of the Florida
Keys within the Gulf of Mexico between June and August,
but also appeared to have the highest residence periods in
specific shallow water locations, including the Bahia
Honda and North Biscayne nodes (Appendix SI:

TABLE 1 Tagging and tracking descriptive information for Atlantic tarpon, bull sharks, great hammerheads, and permit. Number

tagged, tracking duration, animal size, number of detections, and station count (number of receivers detected on) are shown across columns.

Atlantic tarpon and permit were measured at the fork length, and shark species were measured at their total lengths

Mean SD
No. tracking tracking
Species Maturity tagged duration duration
Atlantic tarpon Mature 59 398.08 404.51
Atlantic tarpon Subadult 9 204.67 213.45
Bull shark Mature 30 685.92 44513
Bull shark Subadult 1 904.00 NA
Great Mature 40 262.58 363.09
hammerhead
Great Subadult 2 1.85 1.62
hammerhead
Permit Mature 105 274.04 167.62
Permit Subadult 11 214.77 191.87

Mean SD

Mean SD Mean SD station  station
size size detection detection count count
143.25 18.92 727.08 1036.74 21.00 18.83

80.43 11.85 2600.00 6147.40 9.78 13.51
239.37 21.64 2472.57 6373.72 23.50 23.40
215.00 NA 71.00 NA 25.00 NA
296.65 36.90 225.30 366.93 15.85 15.59
210.50 10.61 7.50 0.71 1.50 0.71

70.14 8.56  12,598.80 23,217.11 15.12 17.89

52.02 3.58 4906.27 5541.04 5.82 6.62

Abbreviation: NA, not available.
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FIGURE 2 (a)Sum detention count, (b) mean detection count, and (c) daily mean residence time at array level for adult and juvenile
Atlantic tarpon, bull sharks, great hammerheads, and adult and juvenile permit. Standard deviation for mean detection and residence time
are indicated by error bars
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Figure S5). At Bahia Honda, residence was highest
between April and June, while residence was highest at
the North Biscayne node between November and
February (Figure 1, Appendix S1: Figure S5). Great ham-
merheads were also located most often in deep water habi-
tats, natural reef, and artificial reef. While hammerheads
were detected across shallow water habitats year round in
Biscayne Bay, south of Biscayne Bay they were primarily
detected in shallower habitats only between April and
June (Appendix S1: Figure S6). Further, great hammer-
head residence was largely restricted to the Miami and
Biscayne Bay areas during December.

Predator-prey hourly overlap events and
predator arrival times

Of the total 48 nodes within the study area, tarpon were
detected at 33 (69%), permit at 41 (85%), hammerheads at

41 (85%), and bull sharks at 42 (88%) (Appendix S1:
Figure S7). For tarpon and permit, hourly overlaps with
hammerheads occurred at 7 (15%) and 11 (23%) nodes
and with bull sharks at 3 (6%) and 16 (33%) nodes,
respectively (Appendix S1: Figure S7). After constructing
hourly presence and absence bins for tarpon and permit
at the node level and comparing those with shark arrival
events, we found hammerheads arrived when prey were
already present at 6 nodes for tarpon and at 11 nodes
for permit (Appendix S1: Table S3). Bull sharks arrived
when tarpon were already present at 3 nodes and when
permit were already present at 16 nodes (Appendix S1:
Table S3). Great hammerheads arrived when tarpon were
already present on 56 (shark overlap arrival count) per
793 arrivals (total shark arrival count) (7.1%, shark over-
lap arrival percentage) (Figure 4a), bull sharks arrived
when tarpon were already present on 154 per 2729
arrivals (5.6%) (Figure 4b), great hammerheads arrived
when permit were already present on 44 per 476 arrivals
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examined for locations where overlap events occurred; these overlap locations were also grouped together to examine overall overlap
metrics. To test whether shark overlap arrival counts were due to random chance, we resampled the observed shark arrival counts (using a
conditional probability statement for shark availability) for a given species and location 100 times and compared the mean simulated shark
overlap arrival counts to the observed shark overlap arrival counts with a one-sample t-test; p-values are defined as follows: 0-0.001 = ***,
0.001-0.01 = **, 0.01-0.05 = *, >0.05 = no symbol. The circle size represents the shark overlap arrival count (log) (i.e., shark arrival when

prey were already present), and the color indicates the shark overlap arrival percentage (i.e., the proportion between total shark arrival

counts and shark overlap arrival counts). Each node is annotated with calculated p-value and effect size (via Cohen’s D). Overall shark
overlap arrival count, shark overlap arrival percent, p-value, and effect size are also displayed in upper left of each panel

(9.2%) (Figure 4c), and bull sharks arrived when permit
were already present on 47 per 1037 arrivals (4.5%)
(Figure 4d).

When grouping all nodes that had at least one over-
lapping event for the species of interest, great hammer-
heads arrived at locations when tarpon were present
significantly more often than randomly (one-sample t-
test). However, we found that bull sharks did not arrive
when tarpon were present significantly more often than
randomly across all nodes. Neither shark species was

found to arrive when permit were present significantly
more often than randomly (Appendix S1: Table S3). How-
ever, at the node level, numerous locations had sharks
arriving when prey species were present significantly
more often than randomly. For great hammerheads and
tarpon, four of the six overlapping nodes were significant,
while for bull sharks and tarpon, one of the three nodes
was significant. For great hammerheads and permit, 5 of
the 16 nodes were significant, and 12 of 16 nodes were
significant for bull sharks and permit.
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Drivers of predator-prey daily overlap
events

The top three node locations where tarpon and great
hammerheads overlapped daily were Bahia Honda
(n = 35), North Biscayne Bay (n = 21), and Lower Keys
Atlantic Flats (n = 18), while permit and great hammer-
heads overlapped at Eyeglass Bar (n = 16), Key West
Inside Reef (n = 15), and Western Dry Rocks (n = 15)
(Appendix S1: Table S4). The top three locations where
tarpon and bull sharks overlapped were North Biscayne
Bay (n = 80), Bahia Honda (n = 78), and Lower Keys
Atlantic Flats (n = 12), and permit and bull sharks over-
lapped in Bahia Honda (n = 17), Key West Inside Reef
(n = 17), and Eyeglass Bar (n = 16) (Appendix S1:
Table S4).

In predicting spatiotemporal drivers of overlap, over-
all RF model accuracy varied (0.61-0.85, Appendix S1:
Table S5) with the model involving tarpon and bull
sharks having the highest overall accuracy value (0.85).
Examining the factors that influenced species overlaps,
RF found spatial and temporal patterns, with spatial
characteristics (i.e., location, habitat type, and depth) as
consistently important predictors among all species
(Figure 5). Month also had an important impact on all
species overlaps except for permit and bull sharks
(Figure 5). PDPs highlighted varying relative two-way
interaction ¥ values for daily overlaps between species. In
relative terms, tarpon and great hammerheads
(Figure 6a) overlapped more often in spring (April-June)
and during November at specific nodes. Specifically, in
May, Bahia Honda followed by North Biscayne had the
highest interaction § value. August and September pro-
duced minimal § values across all locations. Further,
interactions including lunar cycles were in the top five
interacting variables for each species, specifically, days
within the waning crescent lunar phase (excluding tar-
pon and bull shark PDP) produced relatively high §
values. Tarpon and bull sharks (Figure 6b) had little to
no likelihood of overlap at any depth or any location in
February, July, August, and September. Bahia Honda
and North Biscayne Bay in the spring and late fall/early
winter produced high § values, specifically at water tem-
peratures between 22°C and 31°C. Permit and great ham-
merheads (Figure 7a) overlapped more often in the
spring and summer and at both shallow locations
(e.g., Bahia Honda, South Biscayne Bay), shipwrecks
(e.g., Adolphus Wreck), and natural reef (e.g., Eyeglass
Bar, Key West Inside Reef, Western Dry Rocks) locations.
Permit and bull sharks (Figure 7b) overlapped more often
at Bahia Honda and across multiple wrecks and reef loca-
tions during the spring and summer. Relative to locations
where overlap occurred, both shark species were more

likely to overlap with permit during the waning crescent
lunar phase in the spring and summer and at deeper
depths.

DISCUSSION

While general space use by species was widespread across
a diversity of habitats in coastal regions in the Florida
Keys, overlap between predators and prey were highly
specific in both location and time. A subset of these sites
was significant with respect to nonrandom and synchro-
nous overlap of sharks and game fish, suggesting these
sites are likely places where predation risk may be higher
for tarpon and permit if sharks are returning to these
sites to actively pursue them. In addition to these non-
random locations, other sites were high in overlap but
not significant, suggesting that sharks may be generally
overlapping with permit and tarpon in highly productive
areas, potentially with a large and more diverse prey
base. While co-occurrence does not equate to foraging
success, it does highlight increased chances of predation
risk for both tarpon and permit in areas of high overlap
with sharks. With the extensive spatiotemporal data
available, we were able to explore the aspects of the envi-
ronmental variability that influence the overlap of these
species. Here, we discuss the relevance of these findings
and considerations for applying this type of approach to
understanding predation landscapes, with a variety of
potential applications.

Ecological implications

Our findings suggest co-occurrence and predation risk for
tarpon and permit from great hammerhead and bull
sharks occurs heterogeneously across the Florida Keys.
Additionally, predation risk for tarpon and permit was
elevated at known aggregation sites related to pre-
spawning and spawning behaviors. For example, both
shark species arrived significantly more often than by
random chance, and with large effect sizes, when tagged
tarpon were present at Bahia Honda, a well-known tar-
pon prespawning aggregation site. In contrast, neither
shark species deviated from the random use of North
Biscayne Bay, a location with high individual tarpon resi-
dence, but a site not believed to be a prespawning
aggregation site.

Surprisingly, for permit, although we did observe var-
iable levels of overlap across locations, we did not detect
nonrandom synchronous overlap for shark species or per-
mit at Western Dry Rocks, a known permit spawning
ground (Brownscombe et al, 2020; Brownscombe,
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Griffin, Morley, et al., 2019). Specifically, while high over-
lap at Western Dry Rocks did occur for permit with both
great hammerhead and bull sharks (24.2% and 18.8%,
respectively), nonrandom overlap was not detected at this

location, potentially because of the numerous species that
are also believed to form spawning aggregations here,
including mutton (Lutjanus analis) and gray snapper
(Lutjanus griseus; Lindeman et al., 2000), as well as black
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(Mycteroperca bonaci), Nassau (Epinephelus striatus), gag
(Mycteroperca microlepis), and yellowfin (Mycteroperca
venenosa; Keller et al., 2020) groupers. For some, these
spawning aggregations occur outside the spring and sum-
mer permit spawning months, with grouper in particular
believed to spawn there in the winter months (Keller
et al., 2020). Since Western Dry Rocks attracts multiple
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spawning aggregations, sharks may be generally targeting
this area as a location of potentially high foraging success
regardless of when permit spawn. Additionally, non-
random predator arrivals were spread more broadly
throughout the study area in locations specific to permit
compared to tarpon because they likely have numerous
spawning/prespawning aggregation sites in the Florida
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Keys other than Western Dry Rocks (Brownscombe
et al., 2020).

The repeated return of sharks to areas where poten-
tial prey are present and where foraging could be more
successful thanks to a large aggregated prey base suggests
these sharks may be relying on a memory of successful
foraging attempts at specific locations in the Florida
Keys. Indeed, models of foraging behavior across hetero-
geneous landscape scales show that, in heterogeneous
landscape models, the inclusion of memory of successful
foraging events and locations improves foraging success
(Bracis et al., 2015). While the precise mechanisms con-
necting shark memory to successful foraging behavior in
the wild remains difficult to unravel, spatial learning,
memory retention, and response to classical conditioning
have been documented in sharks across taxa (Guttridge
et al., 2009; Schluessel & Bleckmann, 2012). Individuals
from multiple reef-associated shark species reliably arrive
at and prey upon fish spawning aggregations elsewhere
in tropical marine environments (Mourier et al., 2016;
Olsen & LaPlace, 1979; Pickard et al.,, 2016; Rhodes
et al., 2019). Further, the repeated return of highly migra-
tory sharks to prey aggregations has been documented
globally (Guttridge et al, 2017; Hacohen-Domené
et al.,, 2015; Jorgensen et al., 2010; Schilds et al., 2019;
Skomal et al., 2017), suggesting a potential link between
memory and successful foraging events. Within the study
site and across consecutive years, individual great ham-
merheads, identified by external tags or unique fin mor-
phologies, have been observed feeding on tarpon or
recaptured at known tarpon prespawning aggregation
sites (G. A. Casselberry, unpublished data; K. Grubb,
B. Spano, and N. Wheeler, personal communication).
Diet studies for both shark species throughout the study
area, through direct stomach content or stable isotope
analyses, would improve our understanding of these
sharks’ seasonal reliance on game fish aggregations.

Examining predator-prey overlap at the broader daily
level revealed more frequent cases of overlap spanning
additional locations across the study area, including
movement corridors and foraging grounds for tarpon and
permit, in addition to spawning and prespawning aggre-
gations. There was a strong seasonal component to daily
overlap for both prey species, in combination with other
environmental parameters (habitat type, lunar cycle,
depth, and temperature) coinciding with tarpon and per-
mit spawning seasons, as well as tarpon and bull sharks
overwintering in the Florida Keys. Specifically, the inter-
action between lunar phase and other environmental var-
iables was important in explaining predator-prey daily
overlap. Interestingly, great hammerheads with tarpon
and permit, and bull sharks with permit, were more
likely to overlap during the waning crescent lunar phase

when combined with certain locations or specific times
of year. Considering spawning periods occur a few days
to a week surrounding a new or full moon for tarpon
(Crabtree, 1995; Crabtree et al., 1997; Luo & Ault, 2012)
and permit (Bryan et al., 2015; Graham & Castellanos,
2005), we hypothesized that predators would overlap dur-
ing or just prior to when aggregations were most abun-
dant and vulnerable. However, given that both tarpon
and permit likely rely heavily on vision to avoid potential
predators (Miyazaki et al., 2000; Schweikert & Grace,
2018), the waning crescent lunar phase may provide an
optimal tradeoff for predators between prey presence and
vulnerability, if foraging at night.

Management implications

A key component of the successful conservation and
management of any species is a fundamental understand-
ing of its spatial ecology, which includes identifying for-
aging grounds (Anadén et al., 2011; Barnett et al., 2012;
Hays et al., 2019). Quantifying the movement dynamics
of sharks and their teleost prey can improve decision-
making in the context of potential seasonal harvest clo-
sures or the establishment of protected areas to preserve
ecologically important habitats (Daly et al., 2018; Gilman
et al.,, 2019; Lowerre-Barbieri, Catalan, et al.,, 2019;
Micheli et al., 2004). The potential shark foraging gro-
unds identified herein are located primarily within the
Florida Keys National Marine Sanctuary boundaries,
which relies heavily on spatial ecosystem-based manage-
ment (Office of National Marine Sanctuaries, 2019). Fur-
ther fine-scale investigation (e.g., minimum convex-
polygons, kernel density estimates, Brownian bridge
movement models) may be specifically warranted to
quantify the ecological importance of these sites, includ-
ing how spawning seasons and related aggregations of
tarpon or permit (or other spawning species) are spatially
and temporally linked with predator presence/abun-
dance. Pending the results of future studies, these areas
should likely be considered in management plans for the
sanctuary. Further, identifying and examining foraging
locations related to other prey species is recommended
since both sharks prey upon a wide range of species in
addition to tarpon and permit (Gallagher &
Klimley, 2018; Snelson Jr. et al., 1984).

The severity of shark population declines within the
Northwest Atlantic and Gulf of Mexico has been debated
(Baum et al., 2005; Burgess, Beerkircher, Cailliet, Car-
Ison, Cortes, et al., 2005b; Burgess, Beerkircher, Cailliet,
Carlson, Cortés, et al., 2005a; Jiao et al., 2009); however,
in some regions, conservation practices are succeeding
and coastal shark populations are increasing (Carlson
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et al.,, 2012; Curtis et al., 2014; Peterson et al., 2017;
Pondella & Allen, 2008). Though populations have likely
not returned to historic abundance levels in the Florida
Keys (Froeschke et al., 2012; Heithaus, Burkholder,
et al., 2007; Tinari & Hammerschlag, 2021; Ward-Paige
et al., 2010), increasing shark populations in conjunction
with increased human use of the ocean has the potential
to lead to increased human-wildlife conflict and high-
lights the need to proactively manage human behavior to
account for larger predator populations (Carlson
et al., 2019). Indeed, within our study area and through-
out the state of Florida, some fishing boat captains,
guides, and anglers have noted increased conflict with
sharks and believe that they are a threat to their catch
(Drymon & Scyphers, 2017, Casselberry et al. 2022). To
reduce predation events of prized game fish, some are
calling for altering existing shark species protections and
increasing shark bag limits.

Considering sharks actively pursue potential foraging
opportunities, as this study supports, sharks may also be
able to identify advantageous foraging grounds that also
overlap with areas of high recreational fishing pressure,
leading to successful prey capture before landing (depreda-
tion) or postrelease. While shark conditioning to angler
activities is widely believed to exist among angler groups,
the degree to which it occurs remains uncertain (Mitchell,
McLean, Collin, & Langlois, 2018). Associative learning by
sharks to angling activities is largely undocumented
(Mitchell et al., 2020); however, such behaviors have been
observed in some shark-related ecotourism ventures
(Bruce & Bradford, 2013; Brunnschweiler & Barnett, 2013;
Fitzpatrick et al., 2011; Johnson & Kock, 2006). Because
anglers and sharks co-occur at the same fish aggregations,
conditioned or not, localized depredation and postrelease
mortality events are likely a function of opportunistic for-
aging strategies that occur when sharks become attracted
to angling activity through auditory (e.g., boat noise,
injured fish), olfactory (e.g., bait chum, physiological dis-
tress signals), visual, or electrical cues (Mitchell, McLean,
Collin, & Langlois, 2018).

Our results show high overlap for sharks and their prey
in two regions known to have high recreational fishing
pressure and to suffer from depredation and postrelease
mortality: Bahia Honda for tarpon (G. A. Casselberry,
unpublished data) and Western Dry Rocks for permit
(Holder et al., 2020). These aggregations—associated with
prespawning/spawning behaviors—are often heavily fished
owing to the high likelihood of successfully hooking one of
these prized game fish. Following optimal foraging theory,
that is, the energetic tradeoff between energy gained or
expended by foraging behaviors (Pyke et al., 1977), it would
be expected that sharks would engage in depredation or
postrelease predation opportunities since they provide a

means of high energy gains while minimizing energy
expenditure by capitalizing on distressed or exhausted prey
(Madigan et al, 2015; Mitchell, McLean, Collin, &
Langlois, 2018). Thus, anglers that target tarpon and permit
spawning migrations likely alter natural predation
landscapes by increasing mortality risk and decreasing
antipredator responses, which ultimately has large
implications for management and conservation efforts
(Sabal et al., 2021).

As with many recreationally important game fish, tar-
pon and permit lack adequate stock assessments, perhaps
under the false assumption that catch-and-release fishing
mortality is minimal. The Florida permit stock has not been
assessed in over two decades (Addis et al., 2019; Armstrong
et al., 1996), and tarpon lack assessment despite being highly
migratory, crossing state and, likely, international borders,
where they are less regulated (Griffin et al, 2018; Luo
et al., 2020). Further, while depredation mortality is infre-
quently accounted for in stock assessments (Kneebone
et al., 2021; Peterson & Hanselman, 2017; Sippel et al., 2017;
Tixier et al., 2020), it may be essential to incorporate for the
management of recreationally important fish stocks. Indeed,
quantifiable  hook-and-line  recreational depredation
rates have been difficult to acquire (Mitchell, McLean,
Collin, Taylor, et al., 2018). Within the Florida Keys, in some
areas depredation rates as high as 15% for tarpon
(G. A. Casselberry, unpublished data) and up to 90% for per-
mit (Holder et al., 2020) have been estimated. While post-
release mortality (due to stress or predators) is believed to be
low for permit (Holder et al., 2020), tarpon postrelease mor-
tality estimates range from 13% to 27% throughout the
Atlantic, Gulf of Mexico, and Caribbean (Guindon, 2011;
Luo et al., 2020). Regardless of current estimates, depreda-
tion and postrelease mortality rates should continue to be
monitored since they may increase, especially if sharks non-
randomly pursue/co-occur with these game fish aggrega-
tions, as this study suggests. Ultimately, such data combined
with these findings are critical to ensuring that effective
management measures are enacted in areas of increased
predation risk such as spatial, temporal, or species-specific
fishing closures, species-specific tackle requirements (heavier
and stronger rods) to reduce fight time, or the application of
emerging shark deterrent technologies.

The approach and considerations

Although we could not quantify predation risk directly,
nor infer predation events from the analyses presented in
this study, we do highlight locations with nonrandom
overlap of predators and their prey and, thus, elevated
levels of potential predation risk. While this has been
explored in the marine environment to some degree, it is
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typically limited to seabirds and other much larger pred-
ators (e.g., marine mammals, basking sharks) that feed
on much smaller fish and plankton (Benoit-Bird
et al., 2013; Davoren, 2013; Sims et al., 2006). Within
marine systems, studies that involve the monitoring of
free-ranging predator and prey movements are often
hindered by small spatial scales or short-term, asynchro-
nous temporal scales relative to the species of focus
(Hammerschlag et al., 2012, 2015; McMahan
et al., 2013). Our application of acoustic telemetry and
combining tag data from multiple simultaneous
research projects (via Integrated Tracking of Aquatic
Animals in the Gulf of Mexico [iTAG], The Florida
Atlantic Coast Telemetry [FACT] networks) allowed us
to overcome such hurdles and ultimately provide
insights into the nonrandom and heterogeneous preda-
tion risk of two shark species and their prey across the
broader Florida Keys landscape.

We also implemented machine learning algorithms,
that is, RF, to examine potential environmental variabil-
ity in daily predator-prey overlap. When compared to fre-
quently employed statistical inferences (e.g., generalized
linear models), this approach overcame common chal-
lenges associated with data sets with zero-inflated data,
correlated predictors, and complicated predictor interac-
tions (Breiman, 2001; Cutler et al., 2007; Liaw &
Wiener, 2002). However, in this case, as is common with
severely unbalanced data sets (i.e., few presences, many
absences), our models and their performance metrics still
indicated overall relatively poor accuracy in the non-
training data. Here, we utilized class weighting (Chen
et al., 2004) to help balance the data set and to dramati-
cally reduce the misclassification of true positives
(i.e., proportion of predator-prey overlaps correctly clas-
sified). This conservative approach increased true posi-
tive classification error rates (also known as sensitivity;
see Molnar, 2019) and, in turn, worsened false positive
classification rates (also known as specificity; see
Molnar, 2019) that is, incorrectly predicted false
predator-prey overlaps. The use of class weighting will
directly affect the tradeoff between sensitivity and speci-
ficity model fit metrics, and the choice between which
metric to prioritize in relation to overall accuracy will
depend on the context of the question. For example,
Brownscombe et al. (2020) prioritized sensitivity (pro-
portion of presences accurately classified) over specific-
ity (proportion of absences accurately classified) to
search for all potential permit spawning locations in the
Florida Keys. This precautionary approach (i.e., lower
true positive error at a cost of higher false positive error)
was also the most appropriate and applicable method to
inform conservation strategies surrounding depredation
concerns.

Conclusion

Spatiotemporal patterns in species interactions, such as
predator-prey dynamics, have important implications for
ecosystem function and biological management decisions
(Hunsicker et al., 2011). This is particularly the case in
the Florida Keys because of the high fish species diversity
(Jeffrey, 2001), including predatory sharks (Heithaus,
Burkholder, et al., 2007) and the growing conflicts with
recreational fishery mortality. Because co-occurrence and
predator-prey landscapes may be disproportionate at cer-
tain times and locations, the predator-prey daily overlaps
projected by our models may help to guide management
efforts focused on megafauna conservation and the sus-
tainability of recreational fisheries. We suggest that
marine ecologists should find an increasing utility of
acoustic telemetry and machine learning techniques to
overcome analytical challenges associated with monitor-
ing mobile species across multiple spatial and temporal
scales. Ultimately, this study and its methods extend the
field of predator—prey dynamics and provide important
insights on the landscape of megafauna occupying apex
and mesopredator roles in the ecosystem.
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