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Abstract

Recreational fisheries contribute substantially to the sociocultural and economic well-
being of coastal and riparian regions worldwide, but climate change threatens their
sustainability. Fishery managers require information on how climate change will im-
pact key recreational species; however, the absence of a global assessment hinders
both directed and widespread conservation efforts. In this study, we present the first
global climate change vulnerability assessment of recreationally targeted fish species
from marine and freshwater environments (including diadromous fishes). We use cli-
mate change projections and data on species’ physiological and ecological traits to
quantify and map global climate vulnerability and analyze these patterns alongside the
indices of socioeconomic value and conservation effort to determine where efforts
are sufficient and where they might fall short. We found that over 20% of recreation-
ally targeted fishes are vulnerable to climate change under a high emission scenario.
Overall, marine fishes had the highest number of vulnerable species, concentrated
in regions with sensitive habitat types (e.g., coral reefs). However, freshwater fishes
had higher proportions of species at risk from climate change, with concentrations in
northern Europe, Australia, and southern Africa. Mismatches in conservation effort
and vulnerability were found within all regions and life-history groups. A key pat-
tern was that current conservation effort focused primarily on marine fishes of high
socioeconomic value rather than on the freshwater and diadromous fishes that were
predicted to be proportionately more vulnerable. While several marine regions were
notably lacking in protection (e.g., Caribbean Sea, Banda Sea), only 19% of vulner-
able marine species were without conservation effort. By contrast, 72% of freshwater
fishes and 33% of diadromous fishes had no measures in place, despite their high
vulnerability and cultural value. The spatial and taxonomic analyses presented here
provide guidance for the future conservation and management of recreational fisher-

ies as climate change progresses.
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1 | INTRODUCTION

Marine and freshwater recreational fisheries are important to the
sociocultural, ecological, and economic fabric of riparian and coastal
regions worldwide. Estimates suggest that ~220-700 million peo-
ple engage in recreational fishing globally (Arlinghaus et al., 2013),
catching as many as 40 billion fish per year (Cooke & Cowx, 2004),
and generating ~$190 billion US annually (Coleman et al., 2004; FAO,
2012; Hyder et al., 2018). Although most of this economic benefit is
realized in industrialized countries (Arlinghaus et al., 2015), recre-
ational fishing is of growing importance in developing nations, and
increasingly contributes to livelihoods in these regions (Arlinghaus &
Cooke, 2009; Barnett et al., 2016; Gupta et al., 2015). Recreational
fisheries hold great sociocultural value as a leisure activity that con-
nects people to the natural world (Tufts et al., 2015), and many of
the most popular recreational species hold significant traditional
and cultural value to Indigenous communities (e.g., Pacific salmon,
Arapaima, Murray cod, etc.; Noble et al., 2016). Although release
rates of angled fish can be high (Cooke & Cowx, 2004), some are
harvested and contribute to nutritional security (Cooke et al., 2018).

Climate change presents a serious threat to the productivity and
sustainability of recreational fisheries (Hunt et al., 2016; Paukert
et al., 2016; Townhill et al., 2019). Atmospheric temperatures have
increased by ~1°C over the past 50 years, and the global hydrologi-
cal cycle has shifted causing widespread unpredictability in rainfall
patterns (IPCC, 2013). These changes have led to several biophys-
ical alterations to marine and freshwater environments (Cohen
et al., 2016; IPCC, 2014; NOAA, 2018; Osman, 2018), creating un-
certainty and variability in water temperatures, nutrient cycling,
sea levels, ocean acidity/salinity, dissolved oxygen concentrations,
ice cover, and much more (IPCC, 2013). The cascading effects of
such changes have effects on fish recruitment, growth, and survival
(Dutil & Brander, 2003; Ratz & Lloret, 2003; Simpson et al., 2011),
along with changes to species distributions, community compo-
sition, and phenology (Ellis et al., 2019; Lynch et al., 2016). Other
anthropogenic stressors such as habitat modification, land-use
change, water pollution, and eutrophication can compound climatic
stressors (Holder et al., 2020; IPBES, 2019; Lynch et al., 2016), and
recent analyses have suggested that intensive recreational fishing
can exert pressures on stocks that are comparable to commercial
fisheries, or even precipitate fisheries collapse (Embke et al., 2019;
Lewin et al., 2006, 2019; Post et al., 2002). Fishery managers and
the recreational fishing industry are collectively interested in un-
derstanding how climate change will impact key fish species so that
effective adaptative governance strategies can be implemented
(Creighton et al., 2013; Hunt et al., 2016; Potts et al., 2020); how-
ever, the absence of a global assessment hinders widespread con-
servation efforts (Townhill et al., 2019).

The degree to which species are susceptible to climatic stressors
(i.e., their vulnerability) will depend on their exposure to environ-
mental changes, and on the biological, ecological, and genetic traits
that allow them to adjust to those changes (Nadeau et al., 2017).
Climate change vulnerability assessments (CCVAs) that integrate
climatic effects with species’ ecological and evolutionary charac-
teristics are known as “trait-based” assessments (Chessman, 2013;
Foden et al., 2018; Pacifici et al., 2015), and are powerful tools for
improving forecasts of species and regions that might be at risk.
Although trait-based CCVAs do not provide empirical predictions of
population range expansion, these studies can be performed rapidly,
tend to be robust to missing data or uncertainty in data sources, and
can cover large numbers of species to provide estimates of relative
vulnerabilities within taxonomic groups. Trait-based approaches are
thus important tools to lay the groundwork for future research and
conservation efforts (Foden et al., 2018; Pacifici et al., 2015).

Recreational fishes are highly diverse and comprise represen-
tatives from a variety of life-history types (Donaldson et al., 2011;
Sutton & Ditton, 2001). These include migratory and resident in-
land fishes, reef-dependent and pelagic marine species, and dia-
dromous fishes that use both marine and freshwater habitats. This
diversity makes a trait-based approach especially appropriate for
understanding the vulnerability of this group as it accounts for their
unique advantages and challenges for coping with climate change
(Lin et al., 2017). Marine fishes tend to have fewer dispersal restric-
tions, increasing the potential to find suitable habitats as climatic
changes occur (Comte & Olden, 2017). However, if changes occur
too quickly, both the species and the environments they inhabit may
be unable to adjust (Ruckelshaus et al., 2008), and large-bodied ma-
rine fishes (including many recreational species) tend to be under
greater threat of extinction due, in part, to overexploitation (Olden
et al., 2007). Freshwater fishes are generally restricted in their dis-
persal capacity relative to marine fish and inhabit ecosystems that
are heavily altered by humans (Murdoch et al., 2019; Reid et al.,
2018; Sousa et al., 2014). The effects of these habitat alterations
can be complex and difficult to predict (Olden et al., 2007), espe-
cially if they interact with climate change. Diadromous fishes ben-
efit from having access to a wide variety of habitat types (Gill et al.,
2012; Sharma et al., 2007); however, some elements of their life
history (e.g., upstream spawning migrations) present unique physi-
ological challenges that are likely to become more difficult as water
temperatures rise (Crossin et al., 2008). Most studies investigating
climate change effects on diadromous species have focused on im-
pacts in either freshwater or marine environments. However, both
the degree of threat and the capacity for fish to cope with those
threats can differ between the two habitat types. Integrating im-
pacts across habitats and life stages is key for understanding the
vulnerability of diadromous fishes (Lin et al., 2017).
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In this study, we determined the vulnerability of 415 recreational
fish species to climate change by performing a trait-based CCVA that
focused on three dimensions of vulnerability—sensitivity, adaptive
capacity, and exposure—and included representatives from marine,
freshwater, and diadromous life-history groups. To address the so-
cioecological context of recreational fisheries, we considered the
cultural and economic significance of species (i.e., socioeconomic
value), and determined the conservation actions or management
plans currently in place (i.e., conservation effort). The specific objec-
tives of this study were to (a) develop species-specific predictions
about vulnerability to climatic change; (b) identify geographic regions
of conservation priority by comparing the climate change vulnera-
bility of species with their socioeconomic value and conservation
efforts; and (c) compare differences among marine, freshwater, and
diadromous life-history groups in terms of their vulnerability, socio-
economic value, and conservation effort. We discuss our findings
in the context of the overall vulnerability of the recreational fishing
sector, as well as management needs to build resilience and enable
adaptation of the sector (as per Elmer et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Fish species selection

A list of all recreationally harvested species was obtained from the
International Game Fish Association (IGFA), which is a globally rel-
evant, international organization providing support for recreational
fishery studies, practices, regulations, and legislation. The full IGFA list
is the most comprehensive listing of recreationally targeted species
in the world and comprises >1500 species with a recreational catch
record; however, a large proportion of these species are not common
targets of recreational fisheries. To pare down this list, we first se-
lected all fishes that are classified by IGFA as targets of angling (i.e.,
“line class and tackle” fishes; 226 species). However, to ensure that we
did not exclude recreational species targeted by other types of gears
(e.g., spears, bows, traps), five recreational fishing experts within and
external to the authorship team independently reviewed the extended
list of >1500 species and handpicked other common recreational
fishery targets that were not included in the “line class and tackle”
category, resulting in the addition of 189 species. Currently, the rec-
reational fishing industry is more prevalent in developed countries, so

a large proportion of species in this dataset are from these regions.

2.2 | Assessing vulnerability, socioeconomic
value, and conservation effort—A brief overview

Climate change vulnerability was assessed based on scores in three
broad dimensions, including exposure, sensitivity, and adaptive capac-
ity. Exposure was estimated from climate change projections across
a species’ range, derived from general circulation models (GCMs).
Sensitivity and adaptive capacity were estimated from species’ traits.
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In the context of this study, sensitivity refers to a species’ capacity to
cope with environmental changes in situ, and adaptive capacity refers
to a species' ability to escape unfavorable conditions (Foden et al.,
2013). Socioeconomic value was assessed based on cultural and eco-
nomic importance. Conservation effort was assessed by tallying the
number of conservation measures currently in place for each species
and by estimating the extent of a species’ range that overlapped with
a protected area (PA). Species were given binary scores of “high” or
“low” for each trait based on scoring regimes developed via literature
search. For sensitivity and exposure, a high score indicated high vul-
nerability to climate change, and for adaptive capacity, a low score
indicated high vulnerability to climate change. If a species scored high
(or low for adaptive capacity) for one trait within a dimension, it was
given a high score overall in that dimension. A species was considered
vulnerable to climate change if it was: (a) highly sensitive, (b) of low
adaptive capacity, and (c) highly exposed. If a species scored high for
one trait within socioeconomic value or conservation effort, it was
given a high score overall for that dimension. Continuous indices were
also calculated for vulnerability, socioeconomic value, and conserva-
tion effort (see Section 2.4). A flow chart is provided to outline all steps
in the CCVA, including a worked example of one species (Marbled

grouper, Epinephelus fuscoguttatus) from our dataset (Figure 1).

2.3 | Data collection

2.3.1 | Traitdata

Trait data were collected from the IUCN Red List species information
service (IUCN, 2019) and FishBase (Froese & Pauly, 2019) using R
packages rfishbase (Boettiger et al., 2019) and rredlist (Chamberlain,
2018) performed in R v. 3.4.1 (R Core Team, 2019).

2.3.2 | Distribution data

Distribution data were obtained from the IUCN Red List spatial data
service (IUCN, 2019) and AquaMaps (Kaschner et al., 2019; Figure 1).
AquaMaps data are formatted as point shapefiles, with each point
having an estimated probability of occurrence. Most studies using
AquaMaps data select probability thresholds that fall between 0%
and 50% (e.g., Davies et al., 2017; Hooker et al., 2011; Zhao et al.,
2020). We selected a 30% threshold as a middle ground based on the
analyses by O'Hara et al., (2017) who showed that 0% might overes-
timate and 50% might underestimate range size compared to IUCN
ranges. When maps were available from both sources for a given spe-
cies, we performed comparisons of range area and overlap between
AquaMaps and IUCN Red List distributions and compared the esti-
mates of climate change calculated from each range for a subset of
randomly selected species from both marine (n = 10) and freshwater
(n=10) environments. In brief, we found 71% alignment among ranges
(on the high end according to O’Hara et al., 2017; see Supplementary
Methods 1.4.1). Comparisons of climate change estimates revealed no
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FIGURE 1 Flow chart of the CCVA methodology using the brown-marbled grouper (Epinephelus fuscoguttatus) as a worked example.
(1) Compiled a species list from the International Game Fish Association (both angled and other recreational species); (2) Downloaded
distribution data from the IUCN Red List (RL) and AquaMaps (AM). This figure shows the united AM and RL range for E. fuscoguttatus.

See Section 2.3.2 and Supplementary Methods 1.4.1 for further details. (3) Calculated historical and projected climatic data using an
ensemble of all available models for marine and freshwater climate variables under two RCPs (4.5 and 8.5) and two future time periods
(2030 and 2075) from the NOAA climate portal. This figure shows global projected change in sea surface temperature for RCP8.5 in 2075.
Average and standard deviation of climatic change was calculated within each species range and used to estimate exposure. (4) IUCN

Red List and FishBase databases were accessed to extract data on traits relating to the dimensions of sensitivity (S), adaptive capacity
(AC), socioeconomic value (SEV), and conservation effort (CE) for all species; species that score high in S and E, and low in AC get a high
score in vulnerability (VUL). (5) Binary scoring methods were developed for each trait to assign each species a high or low score in each
dimension. Examples of traits that caused E. fuscoguttatus to score “high” (or “low” in the case of AC) under each dimension have been
provided. Because E. fuscoguttatus scored “high” for S and E, and “low” for AC, they were given a “high” score for vulnerability. (6) After all
species were scored for each trait and dimension, species distributions were stacked to create the univariate maps presented in Figure 3.
(7) The World Database on Protected Areas (WDPA) was accessed from Protected Planet. (8) Continuous indices were developed using
multi-criteria decision analysis (MCDA) for E, AC, S, and SEV from raw data from the IUCN Red List and FishBase. A continuous index of
VUL was developed by using indices of E, AC, and S as criteria in the MCDA. For CE, we used the raw conservation effort data from IUCN
Red List and united this (using MCDA) with estimates of the proportion of each species’ range that overlaps with a protected area (PA). (9)
Continuous indices were used to perform ANOVA and PCA (Figure 6). (10) Binary VUL and SEV scores were overlaid with the PA data to
highlight regions in need of spatial protection (Figure 5) [Colour figure can be viewed at wileyonlinelibrary.com]

differences for freshwater fish (Figures $11-S13). There were some
differences in dissolved oxygen concentration [DO] and pH variability
for marine fish (Figures S15-516); however, none of these changes re-
sulted in alterations to binary exposure scores. Nevertheless, we took
a precautionary approach by uniting the AquaMaps and IUCN Red List
distribution data when maps were available from both sources. Spatial
data were lacking for seven Australian species, so occurrence data
were accessed from the Atlas of Living Australia spatial portal (ALA,
2020). If a diadromous species had range data for both marine and
freshwater environments, ranges were separated for analysis within
each environment (Supplementary Methods 1.4.1). Freshwater ranges
were refined by creating a detailed global map of freshwater systems
and by clipping the ranges to remove terrestrial areas (Supplementary

Methods 1.4.1; Nyboer et al., 2019). Marine and refined freshwater
ranges were projected in the World Eckert IV equal area projection
to eliminate any latitude-based area distortions and used to calculate
the measures of distribution (e.g., extent of occurrence). These ranges
were also used as boundaries to estimate exposure to climatic change
(see Section 2.4.2).

2.3.3 | Climate data

Marine and freshwater environmental variables that represent key
ecosystem drivers for fish species were downloaded from NOAA's
Climate Change Web Portal as raster grids (NOAA, 2019) (Figure 1).
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The same variables were used in considering both historical and fu-
ture climate parameters. For freshwater ecosystems, the variables
were air temperature (AT) and precipitation (PR). For marine eco-
systems, the variables were sea surface or bottom temperature (SST
or BT, depending on the species’ occurrence in the water column;
see Supplementary Methods 1.3), acidity (pH), and [DQO]. Means of
all available GCMs were used to estimate each environmental vari-
able (Supplementary Methods 1.4.2). All variables were measured
for one historical period (1980: mean of 1956-2005) and two pro-
jected periods (2030: mean of 2006—2055, 2075: mean of 2050-
2099) under the Representative Concentration Pathway (RCP) 4.5
and 8.5. RCP4.5 represents a scenario where global carbon emis-
sions stabilize (Thomson et al., 2011), while RCP8.5 represents a sce-
nario where emissions remain high without intervention (Riahi et al.,
2011). We downscaled these data to 10 x 10 arc minute grids using
the bilinear interpolation method.

2.3.4 | Protected area data

Spatial PA data were accessed from the World Database of Protected
Areas (WDPA) website, which contains the world's most complete
database of terrestrial and marine protected areas (MPAs) (Figure 1).
Protected area data are collected and vetted by the United Nations
Environmental Program (UNEP) and the IUCN, and are categorized
based on the type of protection they receive. Although there is likely
to be variation in effectiveness of management among the different
PAs, we opted to retain all categories given the global scale of the
analysis and potential variation in categorization among countries
(UNEP-WCMC, 2019). All PAs <5 km? were removed from the data-
set to minimize calculation errors (Jones, 2018). This resulted in the
removal of 65987 km?, representing a 0.15% decrease in total area
mostly from inland regions in Europe and North America. Protected
area data were converted from polygon shapefiles to a raster format
where all regions covered by a PA have a value of +1 and those with-
out have a value of -1 (+maps).

2.4 | Assigning binary scores for vulnerability,
socioeconomic value, and conservation effort

241 | Vulnerability: Sensitivity and
adaptive capacity

The sensitivity dimension is based on traits that affect a species’
capacity to cope with environmental changes in situ (Foden et al.,
2013). Sensitivity was split into the following five trait sets: (a) range
size (based on the area of occupancy and extent of occurrence); (b)
specialized habitat requirements (based on habitat specificity, mi-
crohabitat requirements, and depth range); (c) narrow environmen-
tal tolerances (based on historical variance in climatic conditions);
(d) specificity of ecological requirements (based on diet specificity
and reliance on environmental triggers); and (e) exposure to other

S i ey

disturbances (based on the number and intensity of anthropogenic
threats within a species’ range).

The adaptive capacity dimension aimed to quantify a species’
ability to cope with environmental change through dispersal or
micro-evolutionary change (Foden et al., 2013). Adaptive capacity
was split into the following three trait sets: (f) potential for dispersal
(based on species’ intrinsic capacity to disperse across all life-history
stages); (g) species abundance (based on rarity and population
growth estimates); and (h) reproductive capacity (based on r- vs. K-
selected life-history traits).

Species were assigned binary “high” or “low” scores for each trait
based on thresholds and scoring regimes that were determined via lit-
erature searches (described in detail in the Supplementary Methods
Section 1.3). If a species scored high for one sensitivity trait, it was
given a high overall score in that dimension. If a species scored low for
one trait in adaptive capacity, it was given a low overall score in that di-
mension (Figure 1). Scoring regimes varied among traits, but generally
indices and scoring thresholds were chosen based on the distribution
of trait values in our dataset (Supplementary Methods 1.3). For most
traits, we used the same thresholds for marine and freshwater fishes.
However, “depth range” (in trait set B) and “historical variance in cli-
matic conditions” (in trait set C) required different scoring regimes. For
depth range, different thresholds were used because of the greater
depth of most marine environments compared to freshwater environ-
ments (Supplementary Methods 1.3). For historical variance in climatic
conditions, we used different climatic measures for marine (SST/BT,
pH, [DO]) and freshwater (AT, PR) ecosystems necessitating different
thresholds. Environmental variables from both environments were
used for vulnerability of diadromous fishes. Thresholds used to score
traits are available in Table 1, and descriptions of trait scoring meth-
ods, the justification for inclusion of each trait in the study, and ad-

ditional considerations can be found in Supplementary Methods 1.3.

2.4.2 | Vulnerability: Exposure

The exposure dimension is based on the degree to which a species
is projected to be exposed to climate change and was encompassed
by one trait set called “predicted exposure to the effects of climate
change.” This was split into (l) freshwater and (J) marine environments.
For freshwater, four variables were used to assess exposure, including
changes in average AT and AT variability, and changes in average PR
and PR variability. For marine fishes, exposure was assessed based on
six variables, including changes in average SST/BT and SST/BT vari-
ability, changes in average pH and pH variability, and changes in aver-
age [DO] and [DO] variability. Zonal statistics were applied to find the
average change within each species’ range using range polygons as
zonal boundaries (Figure 1). These calculations were performed for
all year and RCP combinations. Justifications and further details can
be found in Supplementary Methods 1.3 and 1.4. A species within the
highest 25% of environmental change was classified as highly exposed
(Foden et al., 2013). We calculated overall exposure scores based on
the proportion of high scores out of the four variables for freshwater
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fish and the six variables for marine fish. If a species scored high in

>50% of exposure variables, they were given a high overall score.

2.4.3 | Overall climate change vulnerability

A species was given a high score for overall vulnerability if it had all
three of high sensitivity, low adaptive capacity, and high exposure
(Figure 1).

2.4.4 | Scenario analyses

We tested the degree to which different scenarios influenced our find-
ings by shifting the thresholds to different cutoff points with lenient
scenarios resulting in fewer species with high scores and strict scenar-
ios resulting in more species with high scores. We also calculated scores
based on the top 15% and 35% of climate change exposure. Certain
traits within the sensitivity and adaptive capacity dimensions had un-
known values for some species (Supplementary Methods 1.3). Thus,
we calculated indices with all unknowns coded as low for sensitivity
and high for adaptive capacity for the lenient scenario, and vice versa
for the strict scenario. For the main analysis, we present vulnerability
scores based on a lenient scoring regime, a 25% exposure threshold,
and the RCP8.5-2075 emission scenario. The comparisons of scenarios

can be found in Supplementary Results, Table S1, and Figures S3-S8.

245 | Socioeconomic value and
conservation effort

Socioeconomic value was split into the following two trait sets: (K)
importance for human use and (L) cultural significance (based on the
number of languages and common names associated with a species;
Garibaldi & Turner, 2004). Conservation effort has one trait set, namely
(M) based on the number of conservation measures currently in place
for each species. Data on conservation measures were obtained from
the IUCN Red List and include information on species-specific man-
agement or recovery plans, legislation on species protection, and har-
vest and trade regulations, among others. IUCN conservation measure
data were tested for accuracy and completeness by crosschecking
against species protection legislation for Canada (Species at Risk Act),
the USA (Endangered Species Act), and the European Union's Habitats
Directive. The IUCN data were found to capture 70% of species listed
in the abovementioned Acts.

2.5 | Calculating continuous indices for
vulnerability, socioeconomic value, and
conservation effort

Composite indices were calculated for sensitivity (S), adaptive ca-
pacity (AC), exposure (E), vulnerability (VUL), socioeconomic value

S i ey

(SEV), and conservation effort (CE) directly from the raw trait
data using multi-criteria decision analysis (MDCA) and the TOPSIS
method (Technique for Order Preference by Similarity to an Ideal
Solution) (Hwang & Yoon, 1981; Figure 1). Multi-criteria decision
analysis using TOPSIS ranks each component (in our case, spe-
cies) according to their relative geometric distance from the posi-
tive and negative ideal solution (EI Amine et al.,2014; Penadés-Pla
et al.,, 2016) with scales ranging from O (minimum VUL, SEV, CE) to 1
(maximum VUL, SEV, CE). This approach is used in many domains to
enhance the quality of decision-making procedures and can account
for both qualitative and quantitative variables (Mendoza & Martins,
2006). The VUL index was created using S, AC, and E as criteria in
the MCDA. For CE, we calculated the proportion of each species’
range covered by a PA by overlaying species range polygons with
the WDPA raster dataset (Davies et al., 2017; Zhao et al., 2020) and
included these proportions as a criterion in the MCDA alongside tal-
lies of conservation measures (Figure 1).

2.6 | Mapping concentrations of vulnerable species
The distributions of species that are highly vulnerable, of high socio-
economic value, and targets of conservation effort were mapped to
identify regions where they are concentrated. Each map is displayed
as both total count of all species, and as proportions of species within
each grid cell (Figure 1). Bivariate maps were used to determine the
regions of coincidence between climate change vulnerability and
PAs (Figure 1). These maps were created by summing the + WDPA
maps and the vulnerability and socioeconomic value maps creating
a new layer where regions with PAs are positive and regions without
PAs are negative. Fish that are vulnerable to climate change but are
not targets of conservation effort were summarized to complement

the spatial analysis (Table S2).

2.7 | Trait and life-history group analysis
We summarized trait data to determine which traits contributed
most to vulnerability, socioeconomic value, and conservation effort.
The analyses were conducted for all fish together, and for freshwa-
ter, marine, and diadromous fish separately. First, we calculated the
traits that had the most high scores in each category and ranked
them. Second, we examined the number of species that received
a high score within each dimension based exclusively on one trait.
This indicated the sensitivity of the analysis to the selected traits.
To assess differences among life-history groups in vulnerability,
socioeconomic value, and conservation effort, we used one-way
ANOVA with the continuous indices as the response variables and
life-history group as the fixed factor. Principal component analysis
(PCA) was used to reduce the continuous indices to major axes, and
a PCA biplot was used to visualize the associations among variables
and determine how species and groups relate to each axis. All analy-
ses were conducted in Rv. 3.4.1.
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3 | RESULTS

3.1 | Recreational species distributions and data
availability

We obtained range maps and trait data for 415 fish species from
marine (n = 245), freshwater (n = 123), and diadromous (n = 47)
life-history groups representing most recreational fish species
globally. Generally, marine areas contained a higher species rich-
ness of recreational fish than freshwater areas (Figure 2). In ma-
rine environments, recreational fish were concentrated in the
Caribbean Sea, the Gulf of Mexico, the East Pacific Ocean, the
eastern Indian Ocean, and the Timor Sea (Figure 2). Although
freshwaters contained only a fraction of the species richness
relative to marine, notable areas included the North American
Great Lakes, the Amazon basin, and the river systems in northern
Europe (Figure 2). Trait data were highly available with 100% rep-
resentation of all traits except for depth range (403 species; 97%
representation), diet (373 species; 90%), fishery value (370 spe-
cies; 89%), population growth trajectory (319 species; 77%), and
rarity (285 species, 69%).

3.2 | Climate change vulnerability

3.2.1 | Overall vulnerability

Of all species in our dataset, 21.9% (n = 91) were considered highly
vulnerable to climate change (Table 1). Marine fishes had the highest
total count qualifying as vulnerable (n = 42), followed by freshwa-
ter (n = 36) and diadromous fishes (n = 13; Table 1; Figure 3a,b).
Based on proportions, freshwater and diadromous groups were

higher at 29.3% and 27.7%, respectively, compared to their marine

Richness
(R

5

10
B s
[ 20
25
B 30
[0
B s0
I 60
Il 70
I 80
B o0
Bl 00
o
s

Arctic Ocean

counterparts at 17.1% (Table 1; Figure 3a,b). Analyses comparing
different combinations of RCP (4.5 vs. 8.5), year (2030 vs. 2075),
exposure threshold (15%, 25%, 35%), and scoring threshold (strict
vs. lenient) revealed that 18 scenarios (75% of all scenarios) found
similar patterns as described above (Table 1; Table S1; Figure S18).
However, there were six scenarios under the lenient scoring regime
where the proportion of vulnerable marine species outweighed the
proportion of vulnerable freshwater species (Figure 518). Detailed
results of the scenario analyses can be found in the Supplementary
Results, Table S1 and Figures S3-S8.

Out of the 415 species, 248 (60%) scored high for sensitivity
(Table 1; Figures S1, S2). For adaptive capacity, 156 species (38%)
were given a low score (Table 1; Figures S1, S2). Exposure in the
RCP8.5-2075 emission scenario resulted in 368 species (89%)
being highly exposed (Table 1; Figures S1, S2). For sensitivity and
adaptive capacity, the strict scenario resulted in a 48% and 99%
increase in high scores compared to the lenient scenario, respec-
tively. For exposure, the 15% threshold resulted in a 42% decrease
in high scores, while the 35% threshold resulted in a 33% increase
in high scores (Supplementary Results, Table S1; Figures S1 and
S2). Comparisons of the different emission scenarios (RCP4.5 vs
RCP8.5), years (2030 vs. 2078), and thresholds of exposure (15%,
25%, 35%) can be found in the Supplementary Results, Table S1,
and Figures S3-S8.

3.2.2 | Trait breakdowns: Family and life-history
group analysis

The most important traits within each vulnerability dimen-
sion are presented in Figure 4a-d, and examples of vulnerable
families within each life-history group are provided in Table 2.

Highly vulnerable marine families included the Epinephelidae

FIGURE 2 Map showing the global distribution of species richness of recreationally harvested fishes from marine and freshwater
environments, with labels for major oceans, seas, lakes, and rivers. Scale bar indicates the number of species [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 3 Univariate maps showing the global distributions of species that are highly vulnerable to climate change, of high
socioeconomic value, and that benefit from current conservation action (panel A). Maps are displayed by total count and by percent. Panel B
shows the number and proportion of species from each life-history group—marine (M), freshwater (FW), and diadromous (DI)—that had high
scores in each category [Colour figure can be viewed at wileyonlinelibrary.com]

(groupers), Lutjanidae (snappers), and Labridae (Wrasses).
Vulnerable freshwater families included the Cichlidae (cichlids),
Cyprinidae (carps and minnows), Percichthyidae (temperate
perches), and Pangasiidae (shark catfish). Vulnerable diadro-
mous families included the Salmonidae (salmonids), Anguillidae
(eels), Acipenseridae (sturgeon), and Clupeidae (shads and her-
rings; Table 2). Across all life-history groups, many other less
speciose families also had high vulnerability to climate change
(Supplementary Results, Table S2).

Key traits that made recreational fish sensitive to climate change
included dependence on environmental triggers, small range sizes,
and microhabitat specificity (Figure 4a). Each life-history group also
possessed unique traits that made them sensitive. Marine species
frequently received high scores from having highly specialized hab-
itats and diets, especially those that rely on sensitive habitats such
as coral reefs, seagrass beds, mangroves, or estuaries (Table 2).
Freshwater fish were sensitive primarily due to the relatively small

size of their habitable zones and because they are highly exposed
to anthropogenic threats (Table 2). Diadromous fish were sensitive
because of their dependence on environmental triggers (e.g., tem-
peratures to cue spawning), their reliance on microhabitats (e.g.,
spawning grounds), and threats in their freshwater habitats and
along migration routes (Table 2).

Key traits that caused low adaptive capacity in recreational
species included low population growth rates and small population
sizes. Decreasing population sizes were equally common in all three
life-history groups (by proportion; Figure 5b). Marine fish generally
tended to have higher adaptive capacity than the other groups due
to higher dispersal capacity; however, several groups had lower re-
productive rates (13 species in the Carcharhinus and Epinephelus
genera). Freshwater fish had the lowest adaptive capacity pri-
marily because of low dispersal capacities relative to marine fish
(Table 2). Diadromous fish faced barriers to adaptation due to low
dispersal capacity (e.g., Salmonids that spawn in natal streams) and
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[Colour figure can be viewed at wileyonlinelibrary.com]

low reproductive capacity (e.g., Sturgeon; Table 2). The most im-
portant climatic changes to species’ environments (exposure) in-
cluded changes in mean SST/BT, [DO], and pH for marine fishes,
and changes in mean AT and variability of PR for freshwater fishes.
Diadromous species were affected by these same five physical
changes in their marine and freshwater environments (Figure 4).
Most species that scored high for sensitivity and low for adap-
tive capacity were given these overall scores due to just one or
two traits, with fewer species scoring high (or low for adaptive ca-
pacity) in three or more traits (Figure 4e). However, most species
scored high in 50%-75% of climate change parameters (Figure 4e).

3.3 | Socioeconomic value

3.3.1 | Overall socioeconomic value

Of all species, 30% (n = 124) were of high socioeconomic value
(Table 1; Figure 2). Marine fishes had the most species of high socio-
economic value based on total count (n = 76), followed by freshwater
(n = 30) and diadromous fish (n = 18; Table 1; Figure 3a,b). However,
diadromous fish had the greatest proportion of socioeconomically
valuable species at 39%, followed by marine (31%) and freshwater
(24%; Table 1; Figure 2a,b; Figures S1, S2).
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(Continued)

TABLE 2

Conservation effort

Socioeconomic value
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3.3.2 | Trait breakdowns: Family and life-history
group analysis

Marine families that were of high socioeconomic value included
the groupers, snappers, and wrasses (as with vulnerability;
Table 2), but also included the Scombridae (tunas, mackerels;
12 species), Gadidae (cods; three species), Carcharhinidae (reqg-
uiem sharks; three species), and Carangidae (jacks, pompanos;
11 species). High scores for these species were largely because
of their great monetary value in commercial fisheries. Over half
(n = 161) of the marine species in our dataset are targeted com-
mercially as well as recreationally (Figure 4d; Table 2). Freshwater
families of high socioeconomic value included the Cichlidae and
Cyprinidae (as with vulnerability; Table 2) but also included the
Percidae (four species). Freshwater fish had high scores for so-
cioeconomic value because they are often targets of artisanal
and commercial fisheries (Figure 4d; Table 2). Diadromous fami-
lies that scored high for socioeconomic value were the same as
those that scored high for vulnerability (Table 2), because they
were targets of artisanal and commercial fisheries and because
several species are of cultural significance (Figure 4d; Table 2).
Most species scored high for socioeconomic value due to one or
two traits (Figure 4e).

3.4 | Conservation effort

3.4.1 | Overall conservation effort

Of all species, 35% (n = 147) were shown to be benefitting from at
least two conservation initiatives (Table 1; Figure 2). Marine fishes
had the highest number and proportion of species with conservation
efforts (n = 120, 49%), followed by diadromous fishes (n = 16, 34%)
and freshwater species (n = 11, 9%; Table 1; Figure 3a,b; Figures.
S1, S2).

3.4.2 | Trait breakdowns: Family and life-history
group analysis

Marine families with some form of conservation effort included the
groupers, snappers, and wrasses (as with vulnerability and socioeco-
nomic value; Table 2; Figure 4d), but also included the Scombridae
(tunas, mackerels; 13 species), Carangidae (jacks, pompanos; eight
species), and Sparidae (porgies, seven species). The Carcarhinidae
and Gadidae were not recorded by IUCN to have received conser-
vation effort despite being of high socioeconomic value; however,
for the Gadidae, this may be inaccurate given several known fish-
eries management measures that are in place. The Gadidae thus
represent one group with regional protective legislation that might
not have been recorded in the IUCN database (see Section 2.4.5).
Conservation efforts directed toward marine species included re-
strictions on commercial fisheries (i.e., size and harvest limits; 32%,
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FIGURE 5 Bivariate maps showing total counts and percent of vulnerable species that are covered by protected areas. Regions with protected
areas are positive (blue) and regions without protected areas are negative (red), with increasing intensity of color for increasing concentrations of
species vulnerability. Dark red areas represent regions of conservation concern [Colour figure can be viewed at wileyonlinelibrary.com]

n = 77) and species-specific initiatives (16%, n = 39). Freshwater spe-
cies that benefit from conservation efforts included the cyprinids,
shark catfish, and temperate perch (Table 2; Figure 4d). However,
conservation efforts for freshwater fish were quite low. For exam-
ple, the Cichlidae had few conservation efforts in place despite being
both highly vulnerable and of high socioeconomic value. In addition,
27% of recreational freshwater fish were labeled “not of concern” in
the IUCN conservation effort data. Of all freshwater fish, five spe-
cies (4%) had breeding programs and four (3%) had harvest or catch
restrictions. Diadromous families that benefit from conservation ef-
fort included the Anguillid eels, sturgeon (Table 2; Figure 4d), and the
Mugilidae (mullet, two species). Conservation efforts for diadromous
fishes included harvest and size limits for commercial fisheries (17%,
n = 8), construction of fish passages on dams (11%, n = 5), and breed-
ing programs (11%, n = 5).

3.5 | Regions of vulnerability, socioeconomic
value, and conservation effort
3.5.1 | Climate change vulnerability
Based on total counts, vulnerable recreational fish species were con-
centrated in marine areas with coral reefs and mangroves (Figure 3a),
such as the Gulf of Mexico, the Caribbean Sea, and the northern and
eastern coasts of South America. Other regions of concern included
the Coral Sea (i.e., the Australian Great Barrier reef), the Philippine
Sea, and the Banda Sea (Indonesia). Freshwaters contained a lower
density of vulnerable recreational fish by total count, with the only
notable regions of concern being the northern European river drain-
ages (the Danube, Rhine, Seine, Elbe, and Volga).

These patterns shifted when examined by percentage
(Figure 3a). Vulnerable marine areas included the polar regions, and

the Labrador and Norwegian Seas. Freshwaters (and inland seas)
with high proportions of vulnerable species included the major
Russian river basins (the Ob, Yenisei, and Lena), the Black and Aral
Seas, the Tigris/Euphrates basin, inland water bodies across Spain,
the Murray-Darling River basin in Australia, and the Orange and
Zambezi drainages in Africa. Rivers in northern Europe also con-
tained high proportions of vulnerable freshwater fish (Figure 3a).

Patterns for total counts of vulnerability intensified with year
(2030, 2075), RCP (4.5, 8.5), threshold (15%, 25%, 35%), and scenario
(lenient, strict), but regional patterns were not drastically altered
(Supplementary Results, Table S1; Figures S3-58). When examined
by percentage, the year, RCP, and threshold did not change vulner-
ability patterns; however, under the strict scenario, new vulnerable
regions were highlighted, including freshwater bodies throughout
India, Southeast Asia, South America, and Canada (Supplementary
Results, Figure S8).

3.5.2 | Socioeconomic value

Recreational fishes with high socioeconomic value were concen-
trated primarily in marine regions (Figure 2a). Key regions included the
Philippine Sea, the Banda, Timor, and Coral Seas, coastal regions of the
South Pacific Ocean, the East African and Malagasy coasts, the Gulf
of Mexico, and the Caribbean Sea. Patterns shifted when based upon
percentages (Figure 3a), with high concentrations of socioeconomi-
cally valuable species in the Labrador and Norwegian seas, the Bay
of Biscay, and the Mediterranean Sea. For freshwaters, regions with
high proportions included the Caspian Sea, northern Scandinavia, the
Tigris/Euphrates basin, inland water bodies across Spain, the Yangtze
River, and the Ganges/Brahmaputra and Indus Rivers in India. Inland
water bodies in northern Canada and Alaska (USA) also had notable
proportions of high socioeconomic value species.
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3.5.3 | Conservation effort

Regions that benefit from conservation effort included the Gulf of
Mexico, the Caribbean Sea, and the northern and eastern coasts
of South America. Other regions included the Philippine Sea, the
Banda, Timor, and Coral Seas, coastal regions of the South Pacific
Ocean, and coastal northwestern Africa. By percentage, regions
with high concentrations of species with conservation effort in-
cluded the North and South Atlantic Oceans, the polar regions,
the Labrador and Norwegian Seas, and the North Pacific Ocean.
For inland waters, regions included the Murray-Darling River, in-
land waters of New Zealand and Japan, and rivers in northern

Europe.

3.6 | Protected areas and climate change
vulnerability

Regions with PAs that also contain high numbers of species vul-
nerable to climate change included the inland waters of northern
Europe, many of the small island developing states (SIDS) in the
South Pacific and Indian Oceans, and the Australian Great Barrier
Reef (GBR). Areas with many vulnerable species in need of PAs
included the Gulf of Mexico, the Caribbean Sea, the Philippine
seas, and the Banda Sea. Regions with PAs and high proportions
of vulnerable species included northern Europe. Inland zones that
require additional protection due to a high proportion of vulner-
able species included the Russian river basins, the Aral and Black
seas, the Ganges River, and some African river basins (Figure 5).
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For socioeconomic value, total counts of species showed similar pat-
terns to vulnerability. In terms of the proportion of vulnerable species,
additional protection is needed in the Bay of Biscay, the Mediterranean
and Caspian seas, and the major southern and eastern Asian rivers
(Indus, Ganges, Brahmaputra, Yangtze). Regions where many species of
high socioeconomic value received conservation effort included inland
zones of North America, the Amazon basin, northern Europe, and Japan

(Figure 5), along with several marine regions (i.e., SIDS, GBR).

3.7 | Patterns among life-history groups
in vulnerability, socioeconomic value, and
conservation effort

The analysis of variance of climate change vulnerability, socioeco-
nomic value, and conservation effort among life-history groups
showed that marine fishes had lower vulnerability than freshwa-
ter and diadromous fishes (ANOVA: F(df) = 99.5(27412), p < 0.0001;
Figure 6a; Table 3), that freshwater fishes had lower socioeconomic
value than marine and diadromous species (ANOVA: F(df) = 19.9(2412),
p < 0.0001; Figure 6a; Table 3), and that diadromous fish had the
highest conservation effort followed by marine and freshwater spe-
cies (ANOVA: Fan= 35.2(2’412), p < 0.0001; Figure 6a; Table 3). These
findings were similar to the proportional trait analysis (Figure 3b).
The PCA analysis extracted two components with eigenvalues
>1 (Table 4), which explained 37.2% and 33.3% of the variance in
vulnerability, socioeconomic value, and conservation effort, respec-
tively. Socioeconomic value and conservation effort loaded onto PC1
and vulnerability loaded onto PC2 (Table 4; Figure 3b). Scatterplots

.M
© FW
Dt

-0.10 -0.05 0.00 0.05 0.10 0.15

PC1 (37.3%)

FIGURE 6 Continuous index analyses. (a) Results of ANOVAS exploring differences in climate change vulnerability, socioeconomic value,
and conservation effort among marine (M), freshwater (FW), and diadromous (DI) fish. Box plots show the 25th, 50th, and 75th quantiles,
and bars represent standard errors. Raw species scores are overlaid with each box. Letters indicate significant differences among groups at
p < 0.01. (b) PCA biplot showing associations among eigenvectors of vulnerability (VUL), socioeconomic value (SEV), and conservation effort
(CE). Each dot represents a species within our dataset. Shaded areas are minimum convex polygons surrounding all data points for marine
(M), freshwater (FW), and diadromous (DI) species [Colour figure can be viewed at wileyonlinelibrary.com]
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Socioeconomic

TABLE 3 Sample sizes (n), means, and
standard errors (sem) for continuous

value Vulnerability Conservation Effort . L
indices calculated from multi-criteria
Group n mean sem mean sem mean sem decision analySiS. Indices range from O
(minimum value) to 1 (maximum value)
Marine 245 0.308 0.009 0.395 0.007 0.273  0.008
Freshwater 123 0.228 0.011 0.540 0.006 0.180  0.007
Diadromous 47 0.346 0.018 0.486  0.017 0.320 0.020

TABLE 4 PCA-results. Eigenvalues, percent variance explained,
and correlation of each index on the components extracted in

the PCA analysis. Indices are socioeconomic value (SEV), climate
change vulnerability (VUL), and conservation effort (CE)

PC1 PC2
Eigenvalue 1.057 1.020
% Variance 37.2 33.3
SEV 0.691 -0.206
VUL 0.146 0.976
CE 0.707 -0.0001

revealed that marine and diadromous species tend to be associated
with socioeconomic value and conservation effort, whereas fresh-
water and diadromous species extend along the vulnerability axis.

For marine fishes, only eight species that were considered cli-
mate change vulnerable were without any form of conservation ef-
fort (19% of all vulnerable marine species). Freshwater fishes had 26
vulnerable species with no conservation effort (72% of all vulnera-
ble freshwater species), and six of these species were also of high
socioeconomic importance. For diadromous fish, six vulnerable spe-
cies had no conservation effort (50% of all vulnerable diadromous
species), four of which are of high socioeconomic importance. A
complete list of species included in this assessment along with their
overall scores for vulnerability, socioeconomic value, and conserva-
tion effort is presented in Table S2.

4 | DISCUSSION

4.1 | Summary, caveats, and considerations

This analysis revealed that marine fishes had the highest total
number of species that are vulnerable to climate change, but that
freshwater fishes had higher proportions of threatened species. A
key pattern was that current conservation effort focused primar-
ily on fishes of high socioeconomic value and tended to overlook
freshwater fishes that were predicted to be the most vulnerable.
However, there are several key considerations and caveats that
must be mentioned to guide interpretation of these findings. First,
given that this study covers a large number of species at a global
scale, our scoring method (i.e., binary scores with thresholds) is
necessarily coarse compared to techniques that can be applied
at finer scales (Foden et al.,, 2018). Although steps were taken
to mitigate sources of uncertainty (i.e., GCM averaging, scenario

analyses for binary scores, comparison of binary scores with con-
tinuous indices), it is important to recognize that the findings
presented are forecasts of plausible future vulnerability patterns
rather than precise predictions of outcomes. The binary scoring
system generates relative vulnerability, conservation effort, and
socioeconomic scores that can be used to highlight regions and
species of concern, and to compare marine, freshwater, and diadr-
omous fishes. However, the conclusion that some regions or life-
history groups are more threatened or more vulnerable or require
more conservation attention is not to suggest that the other areas
or groups are not vulnerable or do not require conservation atten-
tion. It simply provides a system of comparison among the groups.
Second, although we had high data availability (69-100%), there
are likely to be regional or taxonomic biases in reporting toward
well-studied species from developed countries. This is particularly
true for traits with larger data gaps such as rarity and popula-
tion trajectory and could lead to overestimation of high scores
for taxa from these regions. Third, the different climate change
thresholds (i.e., 15, 25, 35%), RCPs (4.5, 8.5), and scoring scenar-
ios (strict vs. lenient) generated varying evaluations of species of
concern. Although 75% of scenarios showed similar vulnerability
patterns in when comparing marine, freshwater, and diadromous
species (Figure S18), several of the scenarios based on RCP4.5
projected marine fishes to have higher proportions of vulner-
able fish than freshwater and diadromous. This suggests that by
adhering to policies that reduce emissions, we might lessen the
relative vulnerability of freshwater fish and should concentrate
effort on protection of vulnerable marine regions. Environmental
managers and decision-makers are encouraged to consider the
variations that arise from these analyses instead of only focusing
on the scenario presented in the main text. This can be done by
examining the figures in the supplementary results to compare
vulnerable regions across scenarios. In addition, the raw species
data and spatial vulnerability data for this study are available on-
line (Nyboer, 2021) and can be consulted for such comparisons
and for local or regional decision-making (see further details in
Section 4.4, below). Fourth, data on conservation effort from the
IUCN Red List included detailed descriptions of various conserva-
tion practices implemented for each species. Although we found
70% agreement between the IUCN data and fish listed in inter-
national species protection acts, we did note that some species
with fisheries management measures (e.g., Atlantic cod, Gadus
morhua, and Pacific salmon, Oncorhynchus spp.) were not recorded
by the IUCN assessment. This indicates that there may be some
inconsistency between the conservation efforts listed by IUCN
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and conservation efforts that have been implemented. These dis-
crepancies were most prevalent for diadromous species (primarily
salmonids) and were otherwise equally distributed among marine
and freshwater fishes. Although we accounted for this uncer-
tainty by using an area-based approach (i.e., with WDPA data), it
is important to recognize that MPAs do not necessarily equate to
protection for marine fish given that regulations and enforcement
of MPAs are not always effective. We encourage managers and
decision-makers to consult local or regional databases to account
for any conservation measures that may have been overlooked,
and to check local MPA guidelines and enforcement. Despite
these considerations, the results of this global assessment offer a
big-picture examination of vulnerability patterns of an extremely
valuable resource base, highlight the need for conservation ef-
fort on freshwater and diadromous fishes, and provide insight into

where protection should occur on a global scale to guide future

efforts.
4.2 | Vulnerability patterns among life-
history groups

Our results revealed proportionately higher vulnerability among
freshwater and diadromous species compared to marine fish.
Freshwater fish have smaller ranges and restricted dispersal ca-
pacity, and distribution shifts are not always possible. Climate
change can lead to alterations in community composition as some
species fare better under novel environmental conditions than
others (Lynch et al., 2016). Such shifts can destabilize the eco-
logical balance in systems and threaten the long-term resilience
of stocks (Winfield, 2016). If climatic changes are more extreme,
a singular catastrophic event can drive land-locked freshwater
populations to extinction (Leitdo et al., 2016). Freshwater fishes
were also shown to have disproportionately high exposure to an-
thropogenic threats, which can negatively affect their ability to
adjust to additional stressors (Xenopoulos et al., 2005). Important
stressors for freshwater recreational fishes that interact with
climate change include invasive species, water pollution, overex-
ploitation (Lynch et al., 2016), and altered flow regimes (Comte
& Grenouillet, 2015), and this complexity makes extinction risk
of freshwater fishes difficult to predict or quantify (Olden et al.,
2007). The cumulative effects of climate change and other stress-
ors may lead to the decline in or extinction of freshwater species
(Heino et al., 2009).

Diadromous fish are highly vulnerable to climate change be-
cause they must cope with climate-related stressors in both ma-
rine and freshwater locations (McDowall, 1992). This group has
highly varied and specialized life-history patterns, often complet-
ing difficult migrations and relying upon specific microhabitats
and environmental triggers. Coping with climatic stressors during
these periods can increase their vulnerability (Lin et al., 2017,
Runge et al., 2014). Shifts in the timing of seasonal migrations
or spawning events have been documented in several species
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(Crozier & Hutchings, 2014; Kovach et al., 2015). Unfortunately,
altered behaviors to accommodate temperature shifts can be
maladaptive (Crozier & Hutchings, 2014); for example, if species’
phenological shifts put them out of sync with the rhythms of their
primary food sources (Kharouba et al., 2018).

Marine species were proportionally the least vulnerable due
to their large range sizes and high dispersal capacity. Poleward
range shifts of several marine recreational fishes have been docu-
mented with changing environmental conditions (Hollowed et al.,
2013; Pecl et al., 2017; Poloczanska et al., 2013). For example,
North Sea plaice and whiting have shifted their distributions
northward by ~5-15 m per decade since 1980 to escape warm-
ing ocean temperatures (Dulvy et al., 2008). However, there will
be limits to this expansion and different subpopulations of the
same species may not have the same capacity to disperse (Pinsky
et al., 2020). In addition, several marine recreational species are
tightly linked to climate-sensitive habitats (e.g., coral reefs) for at
least a portion of their life cycle. Such species will be at high risk
because of temperature-induced physiological effects (Pratchett
et al., 2017) and because the habitats are themselves vulnerable
to climate change (Hoegh-Guldberg et al., 2017). In many coastal
regions, the growing impacts of anthropogenic stressors (e.g., hy-
poxia, habitat loss, pollution, overharvesting) can result in multi-
ple pressures on fish species, particularly for those that occupy
heavily impacted ecosystems (Arthington et al., 2016) and for
larger bodied fish (Olden et al., 2007). In addition, marine species
face high mortality due to bycatch and high levels of illegal, un-
reported, and unregulated (IUU) fishing in the commercial sector
(FAO, 2016).

4.3 | Regional patterns of vulnerability to
climate change

Our analysis revealed higher proportional concentrations of vulnerable
species in polar marine and freshwater regions. Polar regions have high
proportions of vulnerable fish because of faster rates of warming in
these zones (Masson-Delmotte et al., 2006), and because stenother-
mal polar fishes are more sensitive to temperature change than their
temperate counterparts (Peck et al., 2014; Sandersfield et al., 2017).
Vulnerable freshwater regions (e.g., northern European rivers, Murray-
Darling River, Orange and Zambezi Rivers) are all heavily impacted sys-
tems that have been altered by dams, exposed to invasive species, and
impacted by urban, agricultural, and forestry effluent (Balcombe et al.,
2011; Grafton et al., 2013; Schmutz et al., 2016; Tumbare, 2004).
Total counts of vulnerable fish were highest in coastal en-
vironments in the tropics, primarily because these regions are
dominated by climate change-sensitive habitats such as coral
reefs, mangroves, and estuaries (Adams & Murchie, 2015; Hoegh-
Guldberg et al., 2017; Robins et al., 2016). Coral bleaching and
declines in structural complexity can reduce fish abundance and
alter reef fish assemblages (Pratchett et al., 2018). Such changes
were traditionally thought to have the largest effect on localized,
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small-bodied fish; however, recent evidence has shown that larger
bodied species can be equally threatened (Pratchett et al., 2017).
Coral-dependent species are likely to experience range contrac-
tions as ocean temperatures rise (Hoey et al.,, 2016). Similarly,
40% of species in this study rely on estuaries during juvenile or
reproductive stages during which vulnerability to climate change
is thought to be highest (Pértner & Farrell, 2008; Rijnsdorp et al.,
2009). While the geographic location of coral reefs is predicted
to be static (Hoegh-Guldberg et al., 2017), mangrove forests have
been shown to opportunistically expand and contract range lim-
its in response to temperature changes (Cavanaugh et al., 2018).
Understanding such shifts (or lack thereof) can be used to antici-
pate how changing climatic conditions will impact fish movement
and distribution (Osland et al., 2017). Changes to habitat availabil-
ity and shifting species distributions are projected to reduce com-
mercial fishery productivity in tropical regions by ~10%-30% by
2050 (Cheung et al., 2016); these patterns will likely be mirrored
in the availability of recreational fish.

4.4 | Relating vulnerability and socioeconomic
value to conservation effort

441 | Life-history groups

Conservation effort often coincided with socioeconomic value,
leaving some vulnerable species omitted from conservation plans.
Such biases are common in conservation. For example, from 1998
to 2012, most spending in the US Endangered Species Act went
to only 15 economically important fish species (Evans et al., 2016).
Conservation effort also tends to focus on well-studied species
(Trimble & VanAarde, 2010), and research efforts are generally
higher for marine fish compared to freshwater fish (Allen et al,,
2005). Exemplifying these trends, nearly 25% of freshwater species
in this study (n = 30) were classified as being of “low concern” in the
IUCN conservation assessments, despite projections for high expo-
sure to climate change. In contrast, nearly 35% of marine species
(n =72) not classified as vulnerable had high scores for conservation
effort. Thus, species in need of conservation may be overlooked
simply because there is too little information to formulate conser-
vation plans.

Both marine and diadromous fishes had high scores in socio-
economic value and conservation effort. Many of the marine and
diadromous species in this study are targets of valuable commer-
cial fisheries (i.e., high socioeconomic value), and the conservation
measures in place are often commercial harvest restrictions. MPAs
are well-established and effective in increasing biodiversity and
population sizes (Edgar et al., 2007; Topor et al., 2019) even though
differences in management effectiveness and degree of fishing re-
striction are likely cause variation in their capacity to protect eco-
systems (Edgar et al., 2014). Freshwater protected areas (FPAs) are
less common (Suski & Cooke, 2007) and have had mixed success
(Hermoso et al., 2016). The lack of effectiveness of FPAs has been

attributed to insufficient resources directed to freshwater conser-
vation (Thieme et al., 2012), supporting the trends found here. In
addition, the results of the PCA showed that conservation effort and
socioeconomic value loaded on the same axis, indicating correlation
between these two indices. Surprisingly, the family-level analysis re-
vealed that some freshwater (e.g., Cichlidae, Cyprinidae) and diadro-
mous (e.g., Salmonidae) families have limited conservation measures
in place (as recorded by IUCN) even though several species within
these families are vulnerable to climate change and have high socio-
economic value. However, it should be noted that several species of
Salmonid are recorded as having population-level protections in by
Canada's SARA that were not noted in the [IUCN database.

4.4.2 | Geographic regions

Of greatest conservation concern are regions that have high concentra-
tions of vulnerable and socioeconomically valuable species that do not
currently have PAs or other conservation measures in place. There is a
need for increased protection of valuable recreational marine fisher-
ies in the Gulf of Mexico, the Caribbean Sea, and the Banda Sea. The
lack of protection in these regions as well as in several East Asian and
African river basins is troubling given the highly valuable and climate
change vulnerable species concentrated in these regions. Governance
of recreational fisheries is poor in many parts of the world (Potts et al.,
2020), and many of the countries overseeing these marine and fresh-
water systems are unable to devote sufficient financial resources to
conservation (Lindsey et al., 2017). However, this problem persists
elsewhere. For example, despite the high economic value of Canadian
inland recreational fisheries (DFO, 2019) with established legislation
for identifying species at risk (e.g., SARA), several “at-risk” species do
not have conservation measures in place due in part to inadequate al-
location of resources (Raymond et al., 2018). Effective management of

recreational fisheries at a global scale is needed to reduce vulnerability.

4.5 | Management and conservation
recommendations

Managing complex social-ecological systems such as recreational
fisheries under climate change requires an adaptive approach to
protect against predicted climatic changes and to account for un-
expected shifts in the social or ecological landscape being managed
(Arlinghaus et al., 2017; Laurenco et al., 2015; Paukert et al., 2016).
Broad-scale CCVAs that combine climate change forecasts with pre-
dictions of fishes’ responses can help to pinpoint where and why
species are vulnerable, providing valuable information for guiding
conservation interventions (Foden et al., 2013). Efforts should be
focused on regions where there are the most or the highest propor-
tion of vulnerable species, taking into consideration the locations of
species or families with no protections in place.

Recreational fisheries require monitoring to determine stock sta-
tus and to track the success of current conservation efforts (Paukert
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et al., 2016). Except the strictest no-take zones, the management
of several PA types like National Parks may allow different levels
of recreational fishing (Alic et al., 2021). Nevertheless, allowing
recreational fishing activities without monitoring stock dynamics
over time could neglect the effects of fishing and other stressors
such as climate change. This study helps managers and stakeholders
identify vulnerable species and areas that may require monitoring
studies across waters within and beyond existing PAs. This is partic-
ularly important for the nascent recreational fisheries in developing
countries where projected impacts are highly uncertain (Jimenez-
Cisneros et al., 2014). Recreational fishing is emerging as an import-
ant industry in the inland waters across Africa (Weyl et al., 2007),
Brazil (Freire et al., 2012), India (Gupta et al., 2015), and Southeast
Asia (Coates et al., 2002), and this analysis showed that target spe-
cies in these regions may be at risk from climate change. As the rec-
reational fishing industry develops, it will be essential to ensure that
monitoring and other adaptive management protocols are in place.
Next steps for local-scale analyses would involve paring down the
data to just those species that are relevant to a given region, updat-
ing trait information (e.g., population trajectory) as it applies to the
local population, and selecting species to prioritize for protection or
management from that pared-down list. Likewise, the spatial data
from this study (Nyboer, 2021) can be used to compare vulnerabil-
ity patterns among emission scenarios for a given region of interest.
Specific conservation or protection plans can consider the climate
change impacts likely to emerge for the most vulnerable species.

Understanding how recreational fish and fisheries are likely to be
impacted by climate change can mean reinventing current manage-
ment approaches for both freshwater and marine habitats (reviewed
in Paukert et al.,, 2016) and there are growing examples of cases
where management actions do account for climate change (Jeanson
et al., 2021). Instead of practices that focus on one population in a
specific location, the goal should be to maintain a diversity of species
and a heterogeneous age structure that can improve resilience under
various climate scenarios (Cowx et al., 2010; Hansen et al., 2015).
Making decisions about protecting recreational fisheries under cli-
mate change requires a strong emphasis on the social aspect of rec-
reational fisheries (Arlinghaus et al., 2017; Camp et al., 2020; Hunt
et al., 2016). Climate change can alter fishers’ behavior and exploita-
tion patterns, which can in turn affect fish populations and fisheries
management decisions (Lewin et al., 2006). Applied research should
focus on understanding the highly varied motivations of recreational
fishers, and how fishers adapt to climate-related changes to recre-
ational fisheries (Mackay et al., 2018; Townhill et al., 2019).
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