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Abstract Human-induced climate change is already 
apparent through warming temperatures, altered 
precipitation, and greater prevalence of extreme 
weather events (e.g., droughts and floods) all of 
which are anticipated to be exacerbated in the fore-
seeable future. Meanwhile, demand for hydropower 
generation is expected to increase and future hydro-
power developments will be important for mitigating 
climate change. Yet, climate change will affect the 
natural flow regimes, which will undoubtedly impact 

hydropower operations (e.g., storages and releases), 
and in turn the impact of altered hydropower opera-
tions on the discharge and consequence to fish that 
live in these regulated systems. Here, we synthesize 
the current knowledge of climate-induced alterations 
to hydropower operations and the expected impacts 
of altered hydropower operations on riverine fishes. 
We also consider what is needed to adapt to the way 
environmental threats will change over the typical 
50–100 year lifespan of such facilities. Based on our 
synthesis, we anticipate the impact on native riverine 
fishes will increase in severity moving forward. For-
tunately, we can take proactive measures to mitigate 
the adverse, yet synergistic, impacts of hydropower 
and climate change on aquatic ecosystems. Doing so 
will require extensive foresight, planning, and incor-
porating novel mitigation strategies into hydropower 
development. We also call for greater involvement 
of fisheries professionals in such processes to ensure 
that fish are not an afterthought. Failure to better con-
sider how to future-proof hydropower in the context 
of climate change threatens not only fish populations 
but also the humans that depend on them for liveli-
hoods, nutrition, and socio-cultural benefits.
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Introduction

Climate change is increasingly altering air tempera-
ture and precipitation intensity and frequency (Li 
et  al. 2021). To date, human activities are estimated 
to have caused approximately 1.0 °C of global warm-
ing above pre-industrial levels, and this will almost 
certainly reach at least 1.5 °C in the next two decades 
(IPCC 2018). Climate change will also have dramatic 
impacts on the hydrological cycle and the distribution 
of water on Earth (Ma et al. 2020). It is predicted that 
the tendency will be for wet areas to become wetter 
and dry areas to become drier, though regional sub-
basin differences are expected (Donat et  al. 2017). 
Changes in temperature and precipitation levels may 
also increase the frequency and magnitude of natural 

disasters such as droughts and floods in the future 
(Garner et al. 2015). Moreover, changes are projected 
to continue (at potentially faster rates) during the next 
century (Bao et  al. 2017; Knouft and Ficklin 2017). 
Given previous reliance on coal and gas-fired genera-
tion and its contribution to climate change, “clean” 
energy sources are in increasing demand.

Hydroelectric dams are seen by governments as a 
method to mitigate climate change through the provi-
sion of “clean,” renewable energy, as well as a host 
of other benefits including floods control, economic 
growth and water supply for agriculture and indus-
try (ICOLD 2020). There are currently over 50,000 
large hydropower dams (> 15  m height) with thou-
sands of additional dams (> 1  MW installed capac-
ity) that are under construction or planned world-
wide (Zarfl et  al. 2015; ICOLD 2020). Hydropower 
energy, which accounts for 85% of global renewable 
electricity energy, is experiencing a boom fostered 
by international investment mainly in developing 
countries (Centre for Climate and Energy Solutions 
2018). In order to meet the goal of climate change 
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commitments set in the Paris Agreement in 2015, it 
seems likely hydropower will have a growing role 
in the global energy portfolio (Hermoso 2017). The 
International Renewable Energy Agency (IRENA)’s 
Global Renewables Outlook 2020 has highlighted 
that total installed capacity will need to reach 2,150 
GW by 2050, while around 850 GW of existing 
capacity will need to be upgraded to help limit the 
rise in global temperature to less than 2 °C.

However, climate change is affecting not only the 
demand (e.g., plant inflow) for hydropower genera-
tion but also the water supply and safety of facilities, 
by changing flow regimes (annual average flow, sea-
sonal flow and extreme flow events) in river systems 
(Tarroja et al. 2016; Chang et al. 2018). Around the 
world, faster glacier retreat and snowpack melt, shift-
ing annual and seasonal precipitation patterns, and 
increased frequency and severity of extreme events 
(IPCC 2018) will continue to dramatically alter the 
inflow of the dam, limit the capacity for energy gen-
eration and floods control in some regions, and con-
sequently, lead to fundamental changes in the way 
hydropower operations (López-Moreno et  al. 2014; 
Maran et al. 2014; Spalding-Fecher et al. 2016).

Climate-induced alterations of hydropower 
operation may offset or exacerbate the effect on 
discharge and flow in associated structures such as 
fish passage facilities. Fish species are sensitive to 
changes in river flow regimes (i.e. Poff and Allan 

1995), and changed discharge may negatively affect 
the fish that live in or migrate through these regu-
lated systems (Kingsford 2000; Bunn and Arthing-
ton 2002). Thus far, however, most studies have 
focused on the direct effects of climate change or 
hydropower on riverine fishes separately (Ficke 
et  al. 2007). For example, researchers have evalu-
ated the potential impacts of global climate change 
on freshwater fish (Myers et al. 2017; Paukert et al. 
2017) and the implications of dam obstruction on 
global freshwater fish (Liermann et al. 2012; Zeng 
et  al. 2019). A gap in our knowledge remains as 
to how climate change will influence hydropower 
operations by altered natural inflow of dams and 
what the ultimate consequences of altered hydro-
power operations will be to riverine fishes that live 
in or migrate through these regulated systems by 
altered discharge (Fig. 1). 

We know that there is considerable variability 
among regions, depending largely on local hydro-
logical processes (Döll and Zhang  2010; Schnei-
der et al. 2013). Therefore, we mainly focus on the 
countries and regions where has largest number of 
hydropower or hydropower will be concentrated in 
the next few decades. Meanwhile, these regions are 
hotspots of fish biodiversity, including the upper 
Yangtze river basin, Amazon river basin, Mekong 
river basin, Mississippi river basin and Balkan 
region  (Fig.  2) (Lehner et  al. 2011; Schneider 

Fig. 1  Schematic diagram 
showing the relationships 
between climate change, 
hydropower operation 
and riverine fishes. Solid 
lines indicate the process 
effect of climate change on 
hydropower operation and 
subsequently riverine fishes; 
Dashed lines indicate direct 
effects of climate change or 
hydropower operation on 
riverine fishes



 Rev Fish Biol Fisheries

1 3
Vol:. (1234567890)

et  al. 2013; Winemiller et  al. 2016; Zarfl et  al. 
2019; Wchwarz 2022). Moreover, we acknowledge 
that there are other interactive factors (i.e. irriga-
tion expansion, inter-basin water transfers and so 
on) also impact on the hydrological alterations in 
those basins, but the climate change and hydro-
power operation are often seen as the most impor-
tant factors. The main objectives of this synthesis 
are to consider (1) the alterations of climate change 
to the natural flow regime; (2) the effect of altered 
natural flow regimes on hydropower operations and 
discharge; (3) the expected threats of hydropower 
operations and discharge to riverine fishes; and (4) 
proactive management actions for mitigating the 
impacts of flow regulation on riverine fishes. By 
forecasting potential impacts, mitigation measures 
can be incorporated into hydropower development. 
Such foresight is necessary to ensure that techno-
logical innovations (such as those that are inevita-
ble in the hydropower industry) are responsive to 
change (Martin 1995; including policy changes; 
Rapport 1999) and consider diverse outcomes 
including fish. The goal of this paper is to provide a 

proactive approach to improve the balance between 
power generation and the conservation of riverine 
fishes in a changing world. 

Overview of climate‑induced alterations 
to the natural flow regime

Currently, climate change is affecting the flow 
regimes, in part because of the variability in timing 
and magnitude of precipitation, accelerated evapora-
tion rates, and accelerated glacier and snow melting 
rates (i.e. Sorg et  al. 2012). Here, we briefly sum-
marize how climate change will influence the natural 
flow regime by focusing on three representative flow 
alteration metrics: annual average flow, seasonal flow 
and extreme flow events.

Annual average flow

There is considerable variability of annual aver-
age flow among regions by the middle of the 
twenty-first century, depending largely on local 

Fig. 2  Representative key regions or watersheds
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hydrological processes (Döll and Zhang  2010; Sch-
neider et  al.  2013). In Amazon and Mekong River 
Basins, all studies agree on the changes in the natural 
annual of flow regime, but the direction and magni-
tude of change is uncertain in some of the regions due 
to climate change (da Silva Soito and Freitas, 2011; 
Lauri et al. 2012). In Yangtze River basin, the results 
indicated that the streamflow volumes are projected to 
moderately increase in the upper reach (hydropower 
is mainly distributed areas) (Zhao et al. 2017). In Bal-
kan region and upper Mississippi River Basin, most 
climate model scenarios indicate that there will be 
substantial declines in runoff (Schneider et al. 2011).

Seasonal flow

A modified seasonal pattern of flow regime in rivers 
has been observed in these basins (Savelsberg et  al. 
2018), and its estimated the timing of flood peaks will 
be shifted more often towards earlier month (Döll and 
Zhang 2010; Arnell and Gosling 2013; Chalise et al. 
2021). The main reason is that, due to climate change, 
the peak spring snow and glacial melt are happening 
earlier in the year, and winter precipitation may be 
shifting from snow to rain. As such, augmented flows 
early in winter and spring will produce flow reduc-
tions in summer (i.e. Eum et  al. 2017). For exam-
ple, in the upper Yangtze rivers are characterized by 
minimum flow values in winter and maximum flows 
in spring and summer, with earlier glacial and snow 
melt, upper Yangtze rivers will show higher win-
ter low flow and earlier monthly peak flows and less 
streamflow during subsequent summer months (Eis-
ner et al. 2017). Projected changes in streamflow sea-
sonality in the upper Mississippi and upper Amazon 
basin are generally small based on the multi-model 
ensemble median. Unfortunately, the shifted magni-
tude still remain unknow (Eisner et al. 2017).

Extreme flow events

All the studies agree on the direction that climate-
induced extreme flow events (e.g., floods and 
droughts) have become more frequent and severe in 
the past century, and this trend is anticipated to con-
tinue to become more prevalent (IPCC 2018). Alfieri 
et al. (2015) indicated that on average, in Balkan area 
will be characterized by higher frequency and inten-
sity of droughts due to increased evapotranspiration 

(Bond et  al. 2008; Chessman 2015; Mosley 2015). 
While precipitation mainly occurs in the winter 
half-year, extensive low or even zero flow patterns 
can appear during the dry summer months. In addi-
tion, Guan et al. (2017) explored trends of extremes 
in the Yangtze River Basin and found extremely wet 
day precipitation, extremely heavy precipitation days, 
maximum 1-day precipitation, maximum 5-day pre-
cipitation and maximum consecutive dry days all 
increased significantly during 1960–2012. With simi-
larly situation was projected in Amazon and other 
basins (da Silva Soito and Freitas 2011).

Overview of the effect of altered natural flow 
regime on hydropower operations and discharge

Alterations to the natural flow regime will directly 
affect the available flows for power generation in 
hydroelectric plants, and therefore the way that facili-
ties are operated (Majone et  al. 2016; Savelsberg 
et al. 2018). Here, we consider the potential impacts 
of altered hydrological metrics on hydropower opera-
tions, focusing on generation, but recognize that 
there will also be operational changes required to 
ensure infrastructure safety. Given that most reser-
voirs (especially for run-of-river plants with limited 
reservoir capacity) will lack ample storage capac-
ity to accommodate high flows during floods, it is 
unlikely hydropower dams will restrict the increased 
frequency, longer durations, and severity of flood dis-
charges expected with climate change (Abera et  al. 
2018; Haun and Olsen 2012).

Hydropower generation

Some hydropower plants (61–74%) are currently 
situated in regions where there are expected declines 
in mean annual streamflow (van Vliet et  al. 2016a), 
declining streamflow could undermine hydro-
power productivity, estimated reductions in the 
global annual hydropower capacities are 0.4–6.1% 
(2080s) based on general circulation models (GCM) 
(van Vliet et  al. 2016a). This will lead to unavoid-
able tradeoffs between storing more water to cre-
ate a hydraulic “head” for hydropower generation 
and downstream flow releases (Payne et  al. 2004). 
This may be particularly problematic during dry 
years, when inflows may not be sufficient to meet 
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both power demands and ecological baselines. For 
instance, in the next 60 years, the Balkan River basin 
may experience a gradual reduction in hydropower 
production potential and the mean annual reservoir 
pool level will need to increase substantially to store 
enough water for hydropower generation (Schneider 
et al. 2011).

It is clear from this synthesis (see Table  1) that 
climate change is already altering hydropower gen-
eration and increasing the uncertainties of opera-
tions (and are usually approached from an economic 
perspective; e.g., Gaudard and Romerio 2014), all 
of which point toward increased conflicts between 
sharing water for hydropower production and main-
tenance of functional aquatic ecosystems. Next, we 
consider what this means for riverine fishes.

Expected threats of future hydropower operations 
and discharge on to riverine fishes

The uncertainties of hydropower operations in 
response to hydroelectric production and climate 
change will further increase the uncertainties of dis-
charged flow which is regarded as the key driver of 
river ecosystem structure and function (Bunn and 
Arthington 2002). Accumulative alterations to flow 
regimes may offset or aggravate the effects on river-
ine fishes that live in regulated rivers or migrate in 
associated fish passage structures (Bunn and Arthing-
ton 2002; Poff and Zimmermann 2010), but conse-
quences ultimately depend on flow variability. Here, 
we anticipate that primary impacts will be related to 
species composition and diversity, life history pro-
cesses, (e.g. migration, reproduction, survival), and 

Table 1  Overview of climate-induced alteration to hydropower operations by altering natural flow regime

Climate changes Changes of dam infow Alterations of dam operations

Temperature rising Increased evaporation and other water 
extractions

Changed annual average inflow Reduced discharge and droughts for 
generation

Earlier glacial and snow melt Changed seasonal inflow Shifted flow regime
Winter snow shift to rain

Precipitation Changed frequency, magnitude and 
increased variability of precipitation

Increased extreme flow events 
(floods and droughts)

Reduced discharge and droughts
Increased discharge and floods for 

infrastructure safety

Table 2  Impacts of altered hydropower operations on inland fish populations by altering dam discharge flow

Alterations of dam operations Consequences to inland fish populations

Reduced discharge and droughts Increased discharge and floods Shifted 
flow regime

Species 
composi-
tion and 
diversity

Influenced species composition
Reduced abundance

Survival Decreased survival rates at all life stages
Migration Lost connectivity

Energy depletion within migration passage
Mistimed arrival in spawning sites

Spawning Mismatch between hydrodynamic condition 
and spawning time

Decreased spawning abundance
Accelerated 

rate of 
water qual-
ity issues

Increased toxicity of pollutants
Increased parasitism and disease
Decreased or supersaturated level of oxygen
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behaviour (Dudgeon et  al. 2006; Magalhães et  al. 
2007; Costa et al. 2017; Lennox et al. 2019) (Table 2).

Reduced discharge and droughts

In arid regions, reduced discharge and more frequent 
and severe streamflow droughts may compromise the 
provisioning of adequate downstream environmen-
tal flow (e-flow) (Hirji and Davis 2009), reducing 
fish habitat availability and connectivity (Matthews 
and Marsh-Matthews 2003; Webb et  al. 2013), and 
ultimately leading to population declines (e.g., Poff 
2018). For example, amphidromous species with 
semi-buoyant eggs must remain suspended in the 
water (via turbulence) until they hatch and develop 
the ability to swim. At low flows, velocities may 
not be high enough to suspend eggs and fry leading 
to mortality (Murphy and Jackson 2013). Addition-
ally, complete dewatering of waterbodies is possible, 
but restoration of connectivity is crucial to sustain 
diversity (Driver and Hoeinghaus 2016). Jaeger et al. 
(2014, 2016) predicted a higher frequency of zero-
flow days in an intermittent stream in Arizona, United 
States, which would inevitably reduce hydrologi-
cal connectivity and even endanger fish that require 
migratory conditions at a certain period (Larimore 
et al. 1959). Some global scenarios are catastrophic, 
proposing that 75% of global freshwater fish will 
become extinct before the end of the twenty-first cen-
tury due to a reduction in river discharge (Xenopoulos 
et al. 2005). Indeed, we are already seeing alarming 
declines in many of the world’s migratory freshwater 
fish species in large part due to dam construction and 
climate change (Deinet et al. 2020).

Increased discharge and floods

Moderate increases in annual mean discharge and the 
frequency and magnitude of floods could improve 
access to downstream tributaries and effectively 
increase habitat availability on floodplains (Naus 
and Adams 2018), which tend to increase fish spe-
cies richness, abundance, biomass, recruitment, and 
productivity (Agostinho et  al. 2004). O’Keeffe et  al. 
(2018) reported a projected increase in high‐flow 
frequency in the Vistula and Odra basins in Poland, 
which could be beneficial for northern pike due to 
more frequent floodplain inundation and better river‐
floodplain connectivity. Bailly et  al. (2008) showed 

that floods were positively related with gonadal 
development of species that participate in long-dis-
tance migration and parental care in South America. 
However, increasing in severity of flood peaks often 
has negative consequences on fish. Spilling floods 
may undermine the morphology of banks and scour 
eggs from nests or wash away newly emerged fry and 
negatively impact egg-to-fry survival rates, which 
may lead to the failure of fish to establish and recruit 
populations (Grelsson 1985; Wenger et  al. 2011). 
Fish may also be stranded on shore when flood waters 
subside, leading to mass mortality events (Nagrodski 
et al. 2012). Moreover, the severe flood would expose 
migrants to high flows during migration, which may 
lead to energy depletion, physiological stress, loss of 
migratory motivation, lost feeding opportunities, mis-
timed migrations, and even migration failure (Rand 
et al. 2006; Nadeau et al. 2010; Whitney et al. 2016).

Shift in the timing of seasonal discharge

There is synchrony between flood pulses and the tim-
ing of spawning that may be altered by the combined 
effects of climate change and hydropower opera-
tion. For example, many upper Yangtze fish species 
are dependent on high-elevation snowmelt streams 
for spawning during a certain time. If flood pulses 
in these streams change significantly due to earlier 
snowmelt, the environmental cues to trigger life cycle 
events may not be present during normal migratory 
periods (Battin et al. 2007). This is likely to influence 
fish recruitment (Agostinho et al. 2004), particularly 
if fish lack the phenotypic plasticity to adjust migra-
tion timing (Crozier et al. 2008) or if there are mis-
matches in prey availability at key life stages.

Fish passage

Fish passage facilities are constructed to enable fish to 
pass anthropogenic barriers, and modified operation 
patterns may influence passage success. If the dis-
charge is below a minimum velocity (e.g., rheotactic 
speed), it may not provide the orientation cues nec-
essary for fluvial fish to find a fish passage entrance 
(Aldven et al. 2015; Xu et al. 2017). Further to this, 
increased water temperatures due to low flows during 
the migration are likely to influence fish physiology 
and condition during passage, making the impacts 
of migration delays more severe (Haraldstad et  al. 
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2019). Moreover, limited water availability may leave 
fishways disconnected, making passage impossible 
and injury/death likely (Bao et  al. 2019). However, 
increased discharge (and flood events) could cause 
flow within fishways to exceed the swimming abil-
ity of fish and form a velocity barrier or increase fish 
attraction to other structures (e.g., spillways) where 
passage is not possible (Godinho and Kynard 2009). 
Even if the fish pass the fish passage, the habitats 
quality located above the larger reservoirs is inferior, 
fish either cannot spawn or their young cannot reach 
adequate habitats for development, and the passages 
may work as ecological traps (Pelicice and Agostinho 
2008).

Water quality issues

Water quality could be affected by altered hydropower 
operations, the most prominent effects of which 
include accumulated pollutants, changed dissolved 
oxygen levels, sediment trapping within the impound-
ment (van Cappellen and Maavara 2016), and high 
greenhouse gas (GHG) emissions from reservoirs 
(Räsänen et  al. 2018; Almeida et  al. 2019). Storage 
water and declining release flow may influence the 
transport and dilution capacity of pollutants, resulting 
in increased concentrations of pollutants in the res-
ervoir, including metals, pesticides, nutrients, endo-
crine disruptors, and atmospheric ozone, all of which 
have the potential to influence fish health (Staudt 
et  al. 2013). Although, the hydropower is regard 
as a “green” energy and could lessen the emission 
of carbon dioxide  (CO2), it may also release GHG, 
especially for new dams and placing dams in higher 
elevations, because the impoundment will make 
organic matter decomposition and produce GHG 
(Räsänen et  al. 2018; Almeida et  al. 2019). In addi-
tion, reduced flow has been linked to altered salin-
ity of freshwater ecosystems and increased disease 
in fish (Hiner and Moffitt 2001; Necker et al. 2019). 
Elevated magnitude and frequency of spill processes 
may enhance the chance of supersaturated total dis-
solved gas (TDG) surrounding hydropower facilities 
(Pleizier et al. 2020). Flood discharge through dams, 
especially high dams, results in large amounts of air 
and bubbles being entrained in the water and trans-
ported to deep parts of the water basin downstream 
of the dam (e.g., super-saturation), causing supersatu-
rated TDG (Weitkamp et  al. 1980; Ma et  al. 2018), 

which can persist throughout large areas of the reach 
downstream of the dam for a long period (Feng et al. 
2013; Witt et al. 2017). If fish stay at downstream of a 
dam with high TDG saturation levels for a long time, 
they are more likely to succumb to gas bubble disease 
and ultimately mortality (Witt et  al. 2017; Pleizier 
et al. 2020).

Above, we mainly document how the dams 
together with climate change may influence more 
severely downstream flow conditions for fish. Mean-
while, we understand that climate change and dam are 
great threats in their own way and we would like to 
have an overall review. For example, climate change 
is likely to increase the frequency and extent of nui-
sance algal blooms, thereby posing potential survival 
problems to fish (Bassar et al. 2016). In addition, cli-
mate change may alter species distribution (Parmesan 
2006), facilitate biological invasions (Azzurro et  al. 
2019) and disease outbreaks (Hermoso 2017), has 
an adverse effect on biological communities (Krab-
benhoft et  al. 2014). Fragmentation and modified 
flow regime both caused by hydropower dams. Dams 
create physical obstructions to fish migration routes, 
which result in the genetic isolation, fish impinge-
ment, injury or mortality and loss of biodiversity. 
Impoundments change water depths, currents, and 
deposition patterns, leading to decreasing of habitats 
number and size, and then has effects on fish growth 
and reproduction or promote the biological invasions. 
Discharge would lead to fluctuation downstream, 
desiccation of eggs, and stranding, spawning activity 
may been delayed and reduced due to changed water 
temperature downstream of the dams (Reid et  al. 
2019).

Proactive management actions for mitigating 
impacts of flow regulation on riverine fishes 
under future climates

An anticipatory approach is needed now to ensure 
we minimize impacts on riverine fishes. Maybe the 
industry itself may be designed to consider the cli-
mate-induced reduction of water availability (Majone 
et al. 2016; Anghileri et al. 2018). There is also need 
for ecological researchers to demand forward think-
ing so that hydropower plans do not just consider the 
climate change and hydropower plans but how this 
will consequence to fish populations. Therefore, we 
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highlight five positive steps that can be taken now to 
help minimize the impacts of future hydropower pro-
duction on riverine fishes.

Engage in basin-wide planning and siting

As outlined previously, it is anticipated that demand 
on hydropower production will increase in the future. 
Meanwhile, we may see the production potential of 
hydropower plants deteriorate over time with climate 
change, leading some dams to be considered ‘obso-
lete’ or ‘dead beat’ (Agoramoorthy 2015). What 
will clearly be important is the location where these 
dams are sited, especially in some alpine areas where 
hydropower production is more vulnerable to climate 
change (Winemiller et al. 2016). There are important 
questions to consider, such as whether rivers cur-
rently suitable for hydropower production will remain 
viable during the entirety of their lifecycle given pre-
dicted climate models (as was done on the Zambezi 
River; Spalding-Fecher et  al. 2016). Improper sit-
ing is a lose-lose scenario, and forethought will be 
needed to ensure hydropower locations remain viable 
over multiple decades in light of climate change. As 
such, if climate models indicate there is insufficient 
water in a system for energy demands and the ecosys-
tem, a hydropower facility should not be sited there. 
Basin-wide planning is needed that considers the cur-
rent location of hydropower facilities (Ziv et al. 2012) 
and the hydropower potential of various locations 
throughout a watershed.

Adopt operational and structural changes to provide 
adequate release flows

The management of downstream flows by adjust-
ing hydropower operations is a critical measure for 
mitigating the unpredictability and intensity of flow 
change on riverine fishes as a consequence of cli-
mate change and hydropower facilities. If inflows are 
no longer sufficient to meet power generation needs 
during dry seasons or years, water must first be pri-
oritized for e-flow and secondarily for power genera-
tion to ensure downstream reaches can support fish 
and other aquatic life (Zhang et  al. 2016). Introduc-
ing a constant base flow or re-operating dams for 
environmental flows (e.g., using transparency and 
translucency rules) may significantly increase habitat 
suitability for riverine fishes in climate-induced arid 

regions (Renofalt et  al. 2010; Owusu et  al. 2020). 
Furthermore, the major objective for improvements 
should be to make downstream releases similar to 
the variability of natural discharge patterns (Reno-
falt et  al. 2010). To meet energy demand, society 
can adopt other renewable energy sources (e.g., 
solar and wind energy) that can compensate for 
reduced hydropower production during some periods 
or years. It will be critical to think about how these 
energy sources impact the environment and what 
energy source may be most suitable at a given loca-
tion. Alternatively, there may be opportunities for 
improving hydropower generation efficiencies from a 
technical perspective to compensate for reduced gen-
eration. Some previous analyses showed that a 10% 
increase in the efficiency of hydropower plants was 
able to completely offset the mean annual impacts of 
decreased water availability under a changing climate 
for most regions (North America, Europe, Africa and 
Asia) (van Vliet et al. 2016a).

As for fish passage, sufficient flow at dams should 
be allocated to fish passage facilities to ensure they 
remain functional. Harris (2000) identified a general 
guideline whereby 10% of dry season flow should 
be allocated to fish passage facilities. It will be pru-
dent to design fishways that can be quickly adapted 
to changing river conditions on a seasonal or yearly 
basis, such as designing fishways with multiple exits 
and entrances at different water levels that can be 
adjusted season to season as conditions change. For 
an already built fishway, minimum flow releases are 
often combined with weirs and pools as a means of 
wetting the channel at low discharge (Fjellheim and 
Raddum 1996; Rørslett and Johansen 1996), prevent-
ing migrating fish from being stranded and dried up 
due to a lack of connectivity within the fishway. In 
some cases, it may be best to prevent entry into the 
fishway during low flow, or to provide high flow 
provisions to the fishway over short periods to trig-
ger migration in a large proportion of fish aggregated 
below the fishway (Lopes et al. 2018).

Similarly, management strategies are needed to 
reduce the risks of extremely high flow events posed 
to fish habitats. The creation of off-channel storage 
basins or wetlands may be a way to absorb water 
during high flows (Poff et  al. 2002) and provide for 
e-flow provisions during the dry season. Structural 
measures (e.g., compensation basins and caverns) can 
be constructed at the outlet of a hydropower dam to 
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retain water after passing through the turbines (Prem-
staller et  al. 2017). Water flow can then be released 
from these basins to attenuate ramping rates associ-
ated with hydropeaking such that impacts on the 
aquatic ecosystem are minimized (Person et al. 2014; 
Tonolla et al. 2017). Hydropeaking can be mitigated 
through operational or structural measures (Bruder 
et al. 2016). An appropriate and effective operational 
measure is modifying the downstream flow regime, 
by increasing the base flow in the river, either by 
increasing residual flow releases from the reservoir 
or by releasing water through the power plant (Person 
et al. 2014).

Develop parallel conservation and restoration projects

Implementing conservation and restoration projects 
now to protect existing resources and recover close-
to-natural ecosystems will be key to building eco-
logical resilience in the face of future change. Current 
efforts should focus on assessing species and habitats 
most vulnerable to future threats and establishment 
of protected areas. For example, some recent studies 
have shown the importance of tailrace areas down-
stream of dams as well as downstream tributaries for 
fish reproduction (Antonio et  al. 2007; Weber et  al. 
2013). Therefore, protection of tributaries and other 
existing habitats should be prioritized while also con-
sidering how habitats created by the dam (e.g., unique 
tailrace habitats can be enhanced for fish). Predicting 
shifts in the distribution of freshwater species will be 
critical to ensuring both current and future habitats 
are protected (i.e. Bond et  al. 2011). Finally, habitat 
restoration measures (e.g., placing gravel in channels 
where it has previously been scoured or construct-
ing artificial fish habitat) can be useful (Taylor et al. 
2019).

Engage in efforts to improve water quality

Greater consideration should be given to addressing 
water quality issues both in the reservoir and down-
stream of barriers. Reducing river pollution now by 
preventing domestic water pollution and agricul-
tural pollution is probably the most viable approach 
to maintaining water quality in the future. In addi-
tion, reservoirs should be flushed intermittently to 
reduce the accumulation of pollutants (e.g., through 
sediment bypass tunnels or flushing). To address 

supersaturated TDG, Politano et al. (2012) suggested 
the installation of spillway flow deflectors that redi-
rect spilt water horizontally and form a surface jet 
that prevents bubbles from plunging to depth in the 
stilling basin. It was also found that adoption of bot-
tom orifices could decrease the TDG oversaturation 
level (Ma et al. 2019). Moreover, a discontinuous dis-
charge pattern instead of a continuous pattern mini-
mized the maximum duration of the high TDG level 
(Ma et  al. 2019). For cascaded dams of rivers, it is 
worth noting that single operation mode is better for 
fish than joint operation of both stations as super-
saturated TDG generated at the upstream cascade can 
carry over to the downstream power station and result 
in cumulative TDG supersaturation (Ma et al. 2018). 
Finally, we advocate for long-term monitoring of 
flow, water quality, and responses of vulnerable fish 
species, combined with developing models that quan-
tify and predict future conditions at a watershed scale 
to help support decision-making.

Revise hydropower policy and governance processes 
to prioritize fish

Many of the approaches outlined above require a 
combination of relevant legal and funding structures 
to coordinate water rights allocations and ensure 
the implementation of conservation measures at the 
local scale (Twardek et  al. 2021). First, all stake-
holders and rightsholders, ecosystem managers, 
policymakers, resource users, indigenous commu-
nities and citizens should collaborate to prioritize 
trade-offs between hydropower generation and 
effects on aquatic systems (Li et  al. 2018). E-flow 
provisions will need to be mandated where they are 
not through legislative changes that are resilient to 
changes in political leadership, such as how e-flow 
has been incorporated into high-level policies for 
river management in accordance with the European 
Water Framework Directive (European Commission 
2015). Many countries now formally protect and 
manage environmental water through national laws 
and regulations, as well as at the basin scale. In 
some cases, costs associated with greater flow pro-
visions to support fish habitat and fish migrations 
may be compensated through government funding 
and optimizing revenue for future climate scenarios. 
Alternatively, state ownership of hydropower facili-
ties can help to ensure the many ecosystem services 



Rev Fish Biol Fisheries 

1 3
Vol.: (0123456789)

provided by the river for the general public are 
taken into account.

Conclusions

Climate-induced changes to precipitation, evapora-
tion, and ice (including glaciers) and snow melting 
has and will continue to drastically alter the natu-
ral flow regime in rivers worldwide. These changes 
include variation in annual average flow, shift in the 
timing of seasonal flow, and increased intensity of 
extreme flow, which will modify hydropower opera-
tions and consequences to fish populations in these 
regulated systems. We need to think proactively to 
optimize hydropower site selection, design sites to be 
flexible and adaptive, restore natural flow regime, to 
implement conservation and restoration projects, and 
to improve water quality to support the resiliency of 
riverine fishes that face synergistic effects. Environ-
mental assessments and other important processes in 
hydropower planning and licensing must transition 
towards a long-term view and explicitly consider how 
altered hydropower operations due to climate change 
will modify environmental impacts in the future. We 
are hopeful this synthesis piece will provoke greater 
thought into hydropower development in the many 
regions of the world where it is rapidly expanding 
(Zarfl et al. 2015). Doing so will be critical if we are 
to meet the call to action to save riverine fishes (Tick-
ner et al. 2020).
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