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Global warming is now predicted to exceed 1.5°C by 2033 and 2°C by the end of the 21st century. This level of warming and the
associated environmental variability are already increasing pressure on natural and human systems. Here we emphasize the
role of physiology in the light of the latest assessment of climate warming by the Intergovernmental Panel on Climate Change.
We describe how physiology can contribute to contemporary conservation programmes. We focus on thermal responses of
animals, but we acknowledge that the impacts of climate change are much broader phylogenetically and environmentally.
A physiological contribution would encompass environmental monitoring, coupled with measuring individual sensitivities
to temperature change and upscaling these to ecosystem level. The latest version of the widely accepted Conservation
Standards designed by the Conservation Measures Partnership includes several explicit climate change considerations. We
argue that physiology has a unique role to play in addressing these considerations. Moreover, physiology can be incorporated
by institutions and organizations that range from international bodies to national governments and to local communities, and
in doing so, it brings a mechanistic approach to conservation and the management of biological resources.

Key words: Conservation Standards, climate warming, environmental monitoring, thermal sensitivity, plasticity, species distribu-
tion models, food webs

Editor: Andrea Fuller

Received 28 September 2022; Revised 11 May 2023; Editorial Decision 11 May 2023; Accepted 26 May 2023

Cite as: Seebacher F, Narayan E, Rummer JL, Tomlinson S, Cooke SJ (2023) How can physiology best contribute to wildlife conservation in a warming

world?. Conserv Physiol 11(1): coad038; doi:10.1093/conphys/coad038.

into the atmosphere to cause warming well beyond 1.5°C
without any further emissions (Matthews and Wynes, 2022).

Introduction

It is now likely that global warming will exceed 2°C by the end

of the 21st century (Masson-Delmotte et al., 2021; Portner et
al., 2022). Increases in CO, emissions have slowed (LeQuéré
et al., 2019), but mitigation strategies are presently insuffi-
cient to limit global average temperature increases to 1.5°C
or even 2°C (Masson-Delmotte et al., 2021). Additionally,
human activity may have already emitted sufficient carbon

Anthropogenic climate change is having and will con-
tinue to have impacts on wildlife from individuals to ecosys-
tems (Moore and Schindler, 2022). Global mean increases
of 2°C or even 1.5°C are associated with much greater
variation at regional and local levels, as well as with increasing
frequencies of extreme events (Meehl and Tebaldi, 2004;
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Wedler et al., 2023). Hence, while increases of 2°C may sound
benign, this large-scale mean hides much greater variation
at smaller scales, which are potentially damaging to wildlife
(Kingsolver and Buckley, 2015). Indeed, distributions and
phenology of life-history events have already shifted in many
species (Chen er al., 2011; Bellard et al.,, 2012). Increas-
ing mean temperatures are also accompanied by an increas-
ing frequency of extreme events such as heat waves, which
can have pronounced effects on animal physiology, resulting
either from temperature increases directly or from changes
to other environmental factors such as rainfall and the hydric
environment (Meehl and Tebaldi, 2004; Conradie et al., 2020;
Schoen et al., 2021). For example, there is an increase in the
temperature of the hottest days of the year from ~2°C to
~4°C associated with mean global temperature increases of
1.5°C and 2°C, respectively (Lee et al., 2023). These increases
can have detrimental physiological effects particularly for
species with a low thermal safety margin (Sinclair et al.,
20165 Pollock et al., 2021). Changes in extreme temperatures
are paralleled by a predicted increase in species loss under
the 2°C warming scenario (Lee et al., 2023). Environmental
variability is characteristic of all habitats, and ecosystems typ-
ically undergo cycles of disturbance and recovery (Paine ez al.,
1998). As a result, environmental variability exerts a selection
pressure that can drive adaptation or plasticity so that distur-
bance-recovery cycles have little long-term effects (Paine er
al., 1998; Moore and Schindler, 2022). However, ecosystems
are resilient only up to a tipping point beyond which dynamics
change irreversibly and a new status quo emerges (Gaucherel
et al., 2017). Anthropogenic climate change and the conse-
quent global warming are now increasing the likelihood of
reaching tipping points as warming increases beyond a global
average of 1.5°C (Armstrong-McKay er al., 2022; Solé and
Levin, 2022).

How human societies function is tightly coupled to eco-
logical systems (Haines-Young and Potschin, 2010), and eco-
logical changes resulting from climate warming impact the
services that ecosystems provide to support human life (Burke
et al., 2015). The nexus between human and ecological sys-
tems is particularly pronounced in food supply. On the one
hand, human food systems rely on suitable environmental
conditions to grow or locate food species for agriculture or
wild harvest (Ortiz et al., 2008; Nardone et al., 2010; Pecl
et al., 2017). Climate change has already affected global
food production negatively (Portner ef al., 2022), and the
impacts of changing climates may be more complex than
just volumes of production. Global fisheries, for example,
are vulnerable not just in the volume of fish caught but
also in the nutritional quality of the fish caught, with 40%
of fisheries displaying high vulnerability to climate-induced
nutritional decline (Maire et al., 2021). On the other hand,
agriculture and harvesting of natural populations alter the
physical environment and biodiversity (Tilman, 1999). Food
systems are now one of the most important contributors to
climate change and account for a third of anthropogenic
greenhouse gas emissions (Zurek et al., 2022).
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This Perspective is not the first to make the case that
physiology can direct conservation in the context of climate
change (Helmuth et al., 2005; Helmuth, 2009; Feder, 2010;
Burraco et al., 2020; Lefevre et al., 2021). However, our
purpose here is to emphasize the role of physiology in the
light of the latest assessment of climate warming by the Inter-
governmental Panel on Climate Change (Portner et al., 2022)
and to position physiology within contemporary conservation
programmes, particularly with respect to the Conservation
Standards (CS). We focus in particular on thermal responses
to climate warming; we acknowledge that climate change
is far more complex (Portner et al., 2022), but a detailed
review is beyond the scope of this article. Nonetheless, the
approach we describe here can be applied to different aspects
of climate change beyond warming. Physiology has a unique
role to play because it is at the interface between environment
and organisms. Any change in the environment will first and
foremost affect physiology, and the physiological responses
will then impact fitness and ecology (Ricklefs and Wikelski,
2002). We outline how physiology can be incorporated into
conservation programmes, and we provide examples of how
knowledge of thermal physiology can improve conservation
strategies. Our examples are from animals, but the principal
points we make can be applied to any organism.

How can physiology inform conserva-
tion?

Climate warming causes changes in mean temperatures and
in temperature variation, with an increased frequency of
extreme events (Vasseur et al., 2014). It is likely that there is a
gradient of responses for different species within ecosystems,
where those with greater resilience to temperature changes
persist better in the face of climate warming, thus altering
the species composition within ecosystems (Zoller ez al.,
2023). These high-level changes are underpinned by ther-
mal responses of individuals, which scale up to populations,
species and communities (Sentis et al., 2015). Understanding
and predicting the ecological impacts of climate warming
therefore requires resolution at different scales: from individ-
uals to communities, and from microhabitats to landscape
characteristics. A conservation physiology programme will
be invaluable by integrating different biological and geo-
graphical scales and by integrating with existing conservation
actions (Cooke et al., 2021).

Conservation can have multiple goals, such as predict-
ing threats and responses of conservation targets, removing
threats and protecting vulnerable populations, geographi-
cal areas and ecosystems. Conservation typically follows a
prescribed process: identification of challenges and goals,
defining the spatial scale and actions, implementing actions
and monitoring, and evaluation followed either by further
updated rounds of the conservation process or by comple-
tion if goals have been achieved (Tallis et al., 2021). This
process of conservation is formalized in the CS designed by
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Figure 1: Summary of the interaction between conservation and physiology. The conservation process (A) as outlined in the CS comprises the
sequential steps of assess, plan, implement, analyse, and share. Physiological research (B) can contribute to the assessment phase, and we
suggest that the physiological approach comprises environmental monitoring, measuring individual responses to environmental change, and
scaling these responses to ecosystem level to predict species distributions and changes to food web dynamics in response to climate warming,
for example (all images by FS except for the clipart tree, which was used under a Creative Commons licence).

the Conservation Measures Partnership, which is composed
of government agencies and nongovernment organizations
from around the globe (https:/www.conservationmeasures.org/).
We focus on the CS here, which has been implemented in
the context of climate change in the past (Brown ef al.,
2022), but acknowledge that there are other conservation
frameworks such as the Cambridge Conservation Forum
(https://www.cambridgeconservationforum.org.uk/). The CS iden-
tifies and describes the steps that define the conservation
process: assess, plan, implement, analyse and adapt, and
share. The latest version of the CS includes several explicit
climate change considerations (below we refer to these as
Climate Change Considerations), to which the conservation
physiology toolbox (Madliger et al., 2018) can make impor-
tant contributions (Tudor et al., 2023). The assess step is the
most important for incorporation of physiological responses,
and the subsequent steps of planning and implementing will
be guided by the physiological data. Below, we outline a
conservation physiology approach that can contribute to
positive conservation outcomes under climate warming. We
divide the conservation physiology approach into three steps:
environmental monitoring, individual responses and upscal-
ing to ecological processes and ecosystems (Fig. 1). We point
out how this approach integrates with CS Climate Change
Considerations and provide brief examples where similar
measures have already been implemented.

Environmental monitoring

Identifying an appropriate geographical scale for conserva-
tion in the context of climate warming would almost always

require assessment of the biophysical environment and the
predicted shifts in the environment under different climate
change scenarios. Climate Change Consideration 1 empha-
sizes this need to define the scope of a conservation project
and recognizes the difficulty that changing climates may alter
the spatial extent of species ranges and ecosystems, thereby
altering the geographical scope. The definition of geographi-
cal scope may therefore require repeated rounds of the con-
servation process (Fig. 1) (Tallis et al., 2021). Geographical
scope may be defined by different factors. For example,
conservation of a defined area would set the geographical
scope, and environmental monitoring would characterize that
specific area. Conservation of particular species or ecosystems
would define geographical scope by the presence or absence
of those particular species or assemblages and would need to
be repeated in changing climates.

The resolution at which environments are measured is
crucial and must be biologically relevant (Helmuth ez al.,
2014). Standard equipment for measuring temperatures, wind
speed and solar radiation can be used to measure environ-
mental variability and describe operative temperatures in
local environments (Stupski and Schilder, 2021; Youngsteadt
et al., 2022) that influence individual and population level
responses. For example, such environmental information can
inform opportunities for behavioural thermoregulation in
lizards (Buckley ez al., 2015). Although recorded at a local
scale, these data can give valuable information about thermal
habitat needs of individual species (Sears et al., 2016; Basson
et al., 2017) that can be used in assessing the consequences of
habitat modifications resulting from degradation or restora-
tion. Using drones to map the physical environment of a rocky
shore at fine resolution (2 x2 cm) was the most effective scale
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to predict responses of intertidal organisms to climate change
(Choi et al., 2019). These microclimate data could then be
integrated with physiological responses (e.g. respiration rate
or heart rate) of resident organisms to thermal change to
produce ‘physiological landscapes’ that permit modelling of
species vulnerabilities to different scenarios of climate warm-
ing (Choi ef al., 2019). On the other hand, distributions
or movement across large geographical scales, such as bird
migration, requires modelling at a global level (Burnside
et al., 2021; Snell and Thorup, 2022)

Physiologically explicit modelling of different landscapes
or geographical areas integrates environmental data with
physiological responses to map fundamental niches of dif-
ferent species and at different scales (Kearney and Porter,
2016). ‘Niche Mapper’ is a tool developed for this purpose
(Kearney and Porter, 2016) and is freely available (http:/niche-
mapper.com/). This biophysical niche modelling approach has
been used very successfully to predict the efficacy of ther-
moregulation to buffer ectotherms from climate warming
(Kearney et al., 2009; Sunday et al., 2014), model behavioural
responses of a large mammal (moose, Alces alces shirasi) to
climate variation (Verzuh et al., 2023), assess heat stress in a
vervet monkey (Chlorocebus pygerythrus) (Mathewson et al.,
2020) and assess the overwintering energetics of wood frogs
(Lithobates sylvaticus) under climate warming (Fitzpatrick
et al., 2020), among many other applications. The strength
of this biophysical niche modelling lies in the incorporation
of specific physiological data, thereby linking environmental
conditions explicitly to physiological responses (Briscoe et al.,
2023).

Individual responses

Climate Change Consideration 2 recommends an assessment
of the extent to which climate change can impact the viability
of conservation targets and of the efficacy with which conser-
vation can improve performance of individuals and thereby
population persistence of conservation targets. Environmen-
tal temperature changes impact physiological functions first
and foremost. There is a plethora of laboratory studies that
measured responses of many taxa to temperature variation
(e.g. see database in Seebacher ef al., 2015). The most com-
monly measured physiological traits include rates of oxygen
consumption as an indicator of energy use in ectotherms and
of heat production potential in endotherms (Rummer et al.,
2014; Chouchani et al., 2019; Norin and Metcalfe, 2019),
mitochondrial bioenergetics to reflect cellular energy produc-
tion (in the form of adenosine triphosphate) (Salin et al., 20135;
Treberg et al., 2018; Sokolova, 2021) and aspects of muscle
contractile function underpinning locomotor performance
(James and Tallis, 2019). These physiological traits often scale
up to influence energetics, growth and movement, which are
central components in the ecology and therefore conservation
of many species. Note, however, that not all individual traits
have the same thermal sensitivities (Bozinovic et al., 2020),
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and the choice of response measures is important. Whole-
animal traits such as locomotor performance may be more
suitable to assess thermal sensitivities than reductionist traits
(e.g. single enzyme activities), because they integrate across
physiological systems (e.g. cardiovascular system, metabolism
and muscle function in the case of locomotion).

Mean temperature shifts and variability can cause chronic
stress in wildlife that impacts performance and fitness
(Skomal and Mandelman, 2012). These glucocorticoid-
mediated stress responses support animals in coping with
acute stressors through physiological and behavioural adjust-
ments but may be detrimental in the long term (Schoenle
et al., 2021). Monitoring endocrine indicators of stress
(e.g. glucocorticoid levels) is a useful and readily applicable
tool to assess stress in wildlife that can be incorporated
into conservation assessments (Narayan and Hero, 2014a,
2014b; Zimmer et al., 2020; Schoen et al., 2021; Schoenle
et al., 2021). However, the validity of using glucocorticoid
concentrations as an indicator of stress, indicating decreased
performance and fitness, should be assessed on a case-by-case
basis because responses are not always consistent between
and even within taxa (Jimeno et al., 2018; Injaian ez al., 2020).

The impacts of increasing body temperatures range from
modifying biochemical reaction kinetics to breaking down
membranes and proteins, and different groups of organisms
have quite different responses to temperature (Tattersall
et al., 2012). In ectotherms, environmental temperature
can determine body temperature directly. In heterogeneous
environments, thermoregulation by habitat selection and
cardiovascular adjustments in ectotherms (e.g. in reptiles)
and endotherms (e.g. birds and mammals) buffers the
internal environment from external fluctuations (Angilletta,
2009), but only up to a point. Behavioural thermoregulation
requires sufficient environmental heterogeneity to permit
selection of favourable thermal habitats (Angilletta er al.,
2002). Endotherms can additionally thermoregulate by
changing metabolic heat production (Chouchani et al., 2019).
Most biological reaction rates are sensitive to changes in
temperature variation. Understanding the thermal sensitivity
of physiological processes on one hand, and the potential
for thermoregulation to maintain relatively stable body tem-
perature on the other, is therefore essential to assess habitat
quality for conservation. The range of temperatures at which
animals perform well is defined by the thermal performance
breadth in ectotherms (Sinclair et al., 2016), and the thermal
neutral zone in endotherms defines the range of temperatures
at which metabolic heat production is minimized (Chouchani
et al., 2019). The temperature extremes that organisms can
withstand before cellular integrity is compromised are defined
by their thermal tolerance range, which is bounded by critical
thermal limits in ectotherms (Gunderson and Stillman, 2015;
Tomlinson, 2019). The thermal sensitivity of physiological
rate functions is not fixed within organisms but can change
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with ontogeny or prior experience, for example (Sinclair ez al.,
2016). Nonetheless, physiological thermal tolerance can be
linked to patterns of endemism, and species or populations
with narrow tolerance bounds can be constrained to small
distributions that match these limits (Huey et al., 2009;
Rummer et al., 2014). With climate warming, these species
are expected to be most vulnerable to extinction as their
suitable habitat and distributions contract to higher altitudes
or latitudes, ultimately resulting in their being ‘pushed off the
top of the mountain’ (Elsen and Tingley, 20135).

Climate warming may compromise thermoregulation by
reducing the availability of suitable (cool) microhabitats for
behavioural thermoregulation (Kearney ef al., 2009) and by
increasing the need for evaporative cooling in endotherms
(McKechnie et al., 2016). Evaporative heat loss requires
access to water, and as temperatures increase and available
surface water decreases with climate warming, thermoregula-
tion can become unattainable, ultimately leading to mortality
of birds and mammals (McKechnie ez al., 2021). Effective bio-
diversity conservation for many birds and mammals therefore
requires knowledge of the relationship between metabolic
heat production and thermal tolerance on the one hand, and
the efficacy of evaporative heat loss in the context of habitat
features such as available surface water on the other (Mitchell
et al., 2018; Conradie et al., 2020). This codependence of
physiology and ecology is not restricted to conservation prob-
lems in hot arid areas. In the snow bunting (Plectrophenax
nivalis), an Arctic songbird, metabolic and evaporative heat
loss data indicate that global warming has already reached
levels where the species must limit its activity levels to reduce
metabolic heat production, which in turn is associated with
reduced reproductive success (O’Connor et al., 2022). Indeed,
this is another example where effective conservation is con-
tingent on detailed physiological knowledge to identify upper
temperature thresholds and habitat requirements for different
species and populations.

Adaptation by natural selection is fundamental to how
organisms evolve in response to environmental change.
However phenotypic variation is more complex than just
intergenerational change in response to selection pressures
or genetic drift, and plasticity of physiological traits is a
widespread response to environmental variability (Guderley,
2004; Schulte et al., 2011). Plasticity may be induced
by parental effects on their gametes (transgenerational
plasticity), conditions experienced during early development
(developmental plasticity), or in response to environmental
changes at the scale of weeks or longer in adult organisms
(reversible acclimation) (Shama et al., 2014; Burggren, 2018;
Loughland et al., 2021). Plastic responses to temperature
change are much quicker than genetic adaptation, and
developmental plasticity, for example, can be mediated by
epigenetic changes such as DNA methylation (Loughland
et al., 2021). Different forms of plasticity can thereby alter
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how well animals perform in different and changing environ-
ments and may buffer organisms from the impacts of climate
warming to a certain extent (Gunderson and Stillman, 20135;
Seebacher er al., 2015; Fox et al., 2019). It is therefore impor-
tant to incorporate plastic responses and adaptation into pre-
dictive models such as species distribution models (see below).

Upscaling to ecology and ecosystem
function

Climate Change Consideration 3 recommends the need for
vulnerability assessments to determine the extent to which
climate change can cause new threats or interact and exacer-
bate existing threats. Physiological knowledge of individual
responses and upscaling these to ecosystem-level analyses
and predictions can quantify how closely species operate
to their optimal performance breadth currently and under
future climates, and how higher-level interactions are likely
to change (Seebacher and Franklin, 2012). Analysing climate
predictions in the context of this physiological knowledge
provides a data-driven assessment of the threats that climate
change poses, particularly for ecosystems that are already
under threat from overexploitation (Gaines et al., 2018).
Species distribution models are an essential tool for extinc-
tion risk analysis, and incorporating physiological data into
models generally improves the accuracy of predictions of
current and future suitable ranges of individual species or
ecosystems (Evans et al., 2015; Mathewson et al., 2017;
Tomlinson e al., 2018). We have already described how
physiological data can be incorporated into predictive models
such as biophysical models [e.g. Niche Mapper (Kearney
and Porter, 2016)]. These models can be used to predict
species distributions based on their fundamental (physio-
logical) niches. A future challenge will be to incorporate
plastic responses into mechanistic species distribution models.
Phenotypic plasticity and adaptation can broaden the range
of suitable environments, and plasticity may buffer organisms
from environmental variation up to a point (Seebacher ez al.,
20135). The relatively rapid plastic responses to environmental
variation and, in specific cases, of genetic adaptation (Lescak
etal.,2015) may render populations less vulnerable to climate
warming (Seebacher et al., 2015; Bush ez al., 2016). A recent
species distribution modelling approach (ATraitSDM) incor-
porates adaptation and plasticity (Garzon et al., 2019) and
confirms that these evolutionary responses to environmental
change can have beneficial effects on species distributions. It
is therefore desirable to incorporate physiological plasticity
and adaptation into species distribution models to improve
the accuracy of conservation assessments.

In addition to altering suitable habitat availability, climate
warming can also disrupt interactions between species via
differential effects on their physiology (Van der Putten et al.,
2010). For example, different responses to warming changed
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the relative swimming performance of predator and prey
species and thereby reduced the likelihood of prey being
captured at higher temperatures (Grigaltchik ef al., 2012).
Such temperature-induced mismatches in physiological rates
between species can fundamentally change food web dynam-
ics (Bideault et al., 2020; van Moorsel et al., 2023). Addi-
tionally, trophic transfer efficiency is projected to decrease
with climate warming (Pontavice et al., 2021). For exam-
ple, in zebrafish, the food-derived energy used to produce
a given amount of new biomass (energetic cost of growth)
rose sharply with an increase in temperature from 25°C to
32°C (Barneche ef al., 2019). Using nitrogen transfer as an
indicator of energy transfer, an increase of 4°C in water
temperature reduced growth efficiency by 56 % in a long-term
mesocosm experiment with plankton communities (Barneche
et al., 2021). These temperature effects on interacting species
within food webs are driven by the thermal sensitivity of
underlying physiological rates (Sokolova, 2021; van Moorsel
etal.,2023; Wootton et al., 2023), and physiological data (e.g.
metabolic rates and growth rates) can complement ecological
analyses to lead to more accurate assessments of changes
in food web dynamics and trophic cascades (Galiana et al.,
2021).

Ecosystem level responses to climate warming and
associated extreme events can have pronounced impacts
on human societies. Disruption of food web structures and
trophic interactions affect the relative abundance of different
species within ecosystems with potentially negative impacts
on food security (Beas-Luna et al., 2020). Changes in species
distribution can alter availability of food species directly
(Yang et al., 2022), or they can alter the availability of
ecological services such as pollination (Pyke et al., 2016;
Tomlinson et al., 2018), both of which can affect food
security. Additionally, the physiological effects of warming
on individuals can negatively impact the sustainability of
wild harvests. For example, recreational fishing with rod
and reel is a popular activity around the globe, and even
though it is not ‘essential’ for food supply, it nonetheless
has major impacts on target species. Although a portion
of fish caught by recreational anglers are harvested, even
more (~70%) are released, equating to billions of fish each
year (Cooke and Cowx, 2004). The premise of catch-and-
release fishing is that most fish survive, although that is not
always the case. Water temperature is a key factor influencing
the fate of fish that are caught and released (Gale ez al.,
2013). When fish are caught at ‘high’ (relative for a given
population) temperatures, physiological stress responses and
exhaustion are likely and may lead to unintended mortality
(Holder et al., 2022). Recreational fishing mortality has
increased with climate warming, which has elicited a range
of management responses that restrict fishing (Jeanson et al.,
2021). Already there are water temperature thresholds that
if exceeded lead to the closure of some high-value fisheries
as a result of physiological dysfunction (Wilkie ez al., 1997;
Lennox et al., 2017; Van Leeuwen et al., 2020). Knowledge
of these physiological sensitivities has guided conservation
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interventions, and different jurisdictions have enacted various
triggers to close rivers for fishing that reflect population-level
thermal thresholds (Van Leeuwen et al., 2020).

A synthesis between physiology, distribution models and
climate predictions can feed into the conservation planning
process to attain conservation goals in the context of current
and future climate warming (Climate Change Considera-
tion 4). Ultimately, assessment and planning must lead to
conservation interventions to achieve the conservation goal.
Detailed physiological knowledge of sensitivities to tempera-
ture change will benefit climate-related conservation strate-
gies provided that such information is shared with conserva-
tion managers in relevant formats (Laubenstein and Rummer,
2021). Identifying climate refugia, creating artificial habi-
tat, or enhancing the viability of a conservation target are
suggested in Climate Change Consideration 5 as potentially
effective conservation strategies. Knowledge of physiological
sensitivities to temperature change can be invaluable to test
the efficacy of these interventions. For example, the effects of
habitat restoration or creation of new habitat features to pro-
vide suitable thermal habitats can be assessed directly from
laboratory studies testing thermal responses of target species.
Climate warming may alter environments in protected areas
so that their habitat characteristics no longer match the
requirements of conservation targets (Araujo et al., 2011;
Basen et al., 2022). While protected areas remain valuable
and necessary (LeDee et al., 2021; Rummer et al., 2022),
they may not always be sufficient (Fernando and Pastorini,
2021; LeDee et al., 2021; Moore and Schindler, 2022). Land-
scapes worked by humans (e.g. urban and agricultural land-
scapes) can also provide important habitats for wildlife and
harbour functioning ecological communities (Fahrig ez al.,
2011; Pedroza-Arceo et al., 2022). Physiological assessments
can offer an effective approach to identify the conservation
value of different environments by mapping environmental
conditions (e.g. heterogeneity of thermal habitats) to phys-
iological performance (e.g. thermal sensitivity of locomotion
and other performance measures). The utility of physiological
data thereby extends beyond individual species to habitat
conservation and biodiversity. More complex habitats also
support a broader range of species and thereby improve bio-
diversity (Wild er al., 2011; Sato et al., 2014; Hekkala et al.,
2023). Complexity and heterogeneity of habitats are therefore
essential criteria to establishing novel ecosystems, for exam-
ple, ecosystems created in urban environments, which can be
an effective tool for maintaining biodiversity (Ignatieva et al.,
2023). Knowledge of physiological sensitivities (e.g. thermal
sensitivity) of key biodiversity components is important to
inform establishment of appropriate habitat features (Sato et
al., 2014).

Summary and conclusions

This Perspective has focused particularly on the impacts of
climate warming. However, the impacts of climate change are
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much broader and encompass changes in rainfall and drought,
ocean acidification and impacts on nutritional environments,
for example (Portner et al., 2022). A more comprehensive
review was beyond our scope, but a similar approach to
the one we describe here to assess the impacts of warming
could also be applied to changes in other environmental
variables. Enlisting physiology, ecology (including demogra-
phy and behaviour) and genetics together will inform the
development of the most robust conservation decisions and
interventions. Physiology can detect the sensitivity of indi-
viduals to environmental change and assess the potential for
populations to respond to change via phenotypic plasticity
(Seebacher and Franklin, 2012; Fox et al., 2019); genetic
research can determine mutation rates and changes in allele
frequencies to assess the potential for genetic adaptation
in responses to environmental change (Lescak et al., 2015;
McGaughran et al., 2021); physiological and genetic insights
can contribute to ecological analyses of higher-level responses
and interactions (Loria et al., 2022; Wootton et al., 2023), and
estimates of rates of ecological change in the face of climate
change (Williams et al., 2021). Such integrated mechanistic
approaches to conservation are lacking (Cooke et al., 2023)
despite great potential to ensure that conservation actions are
targeted and effective.

How can physiology be integrated into the conservation
process? Conservation is a political process, to a large extent
(Buscher and Fletcher, 2019), and funding may be allocated
for reasons other than solely ecological value. Nonetheless,
the responsibility for biology and its practitioners lies in pro-
viding the best possible assessment of conservation problems
to lead to the most effective conservation outcomes given
financial and other constraints. To achieve this, biological
assessments need to be inclusive. Physiology is part of this
assessment. Much of the needed physiological knowledge is
already in the literature so that evidence syntheses (Cook
et al., 2017) are a first step in incorporating physiologi-
cal knowledge into conservation, particularly by higher-level
organizations such as government institutions and global
NGOs that have access to a broad range of evidence and the
expertise to interpret and synthesize it. Bespoke physiological
knowledge to address specific conservation problems can be
generated by research funding by government and govern-
ment-industry or government-NGO partnerships. Physiolog-
ical data generation may be perceived to be complicated and
restricted to specialist laboratories. However, there are several
widely accepted physiological measurements (Madliger ef al.,
2018) that are relatively easy to collect in the field at a local
scale to determine thermal sensitivities of particular popula-
tions, for example. Together with ecological and genetic tech-
niques, these approaches can provide effective conservation
assessment that will enable evidence-based conservation and
environmental management.

Areas for future research include broader geographical
coverage. Most research on physiological responses to envi-
ronmental variation has focused on Europe and North Amer-
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ica, and there are next to no data for geographical areas of
high biodiversity in Africa and South America, for example
(White et al., 2021). Similarly, there are taxonomic biases
(Palma et al., 2016; Dornburg et al., 2017) that limit the
generality of current understanding how wildlife responds
to environmental change. Finally, treatment conditions in
experimental studies often do not represent natural condi-
tions so that experimental insights, while being conceptually
important, may have limited utility for conservation (Morash
et al., 2018; Hall and Warner, 2020).
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