
Box 1. Tutorial
This paper contains five sections. The “Introduction” briefly describes the background of the review. 
Section 2 is about river damming impact on fish physical habitat, including river connectivity, hydrolog-
ical regime, sediment regime and morphology, water temperature regime, and dissolved gas. Section 3 
is about river damming impact on key fish species across different continents, including salmonids, 
Chinese carps, sturgeon, eel and lamprey, and other typical fish species. Section 4 focuses on major 
conservation measures, which include fish passage facilities, artificial breeding and release, reservoir 
ecological operation, and habitat compensation in tributaries, for fish in dammed rivers. The last section 
highlights future research perspectives on impact assessments and mitigations, effect of climate and 
land cover changes, and long-term systematic observations.

Abstract  River damming has brought great benefits to flood mitigation, energy and food production, and 
will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. 
However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, 
thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects 
on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been 
implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. 
Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical 
fish habitats, with a particular focus on key fish species across continents. We also consider current fish 
conservation measures and their applicability in different contexts. Finally, we identify future research needs. 
The information presented herein will help support sustainable dam operation under the constraints of future 
climate change and human needs.

Plain Language Summary  River damming yields great social-economic benefits, but also causes 
significant eco-environmental impacts, particularly on fish. Dams block fish migration routes, alter hydrological 
and water temperature regimes, and modify channel morphology. These changes impact fish physical habitats 
and associated communities. Here, we synthesize the impacts of river damming on fish physical habitats, and 
review potential conservation measures that could be used to off-set or mitigate the impacts of dams on fish 
habitats, populations and communities.
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Key Points:
•	 �Dam construction alters river 

hydro-geomorphological conditions 
and hence influences fish habitat 
quality and quantity

•	 �Knowledge of river 
hydrogeomorphology and reservoir 
properties can inform which 
conservation measures may benefit 
fish conservation

•	 �Long-term monitoring is needed 
to understand causal effects and 
synergies with climate change
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Box 2. Glossary
�ATT: accumulated temperature threshold for fish gonad maturity.
�ATU: accumulated thermal units.
�CI: connectivity index. For each river basin, CI is quantified for each fish species by combining its 
occurrence range with a high-resolution hydrography and the locations of the dams (Barbarossa 
et al., 2020).
�CSI: connectivity state index. CSI of river reaches is determined with four dimensions, including 
longitudinal connectivity between up- and downstream, lateral connectivity to floodplain and ripar-
ian areas, vertical connectivity to groundwater and atmosphere, and temporal connectivity based on 
seasonality of flows (Grill et al., 2019).
�CTT: critical temperature threshold for fish spawning.
�FMCCs: four major Chinese carps.
�GBD: gas bubble disease.
�IHA: indicators of hydrologic alteration.
�LHPs: large hydropower plants.
�MPUE: mass per unit effort.
�NbS: nature-based solutions.
�NFR: natural flow regime.
�RVA: the range of variability approach.
�SHPs: small hydropower plants.
�TDG: total dissolved gas.
�TGR: Three Gorges Reservoir.

1.  Introduction
Since the first masonry dam was constructed around 3000 BCE on the Wadi Rajil at Jawa, Jordan, river damming 
has made significant positive contributions to the supply of water and energy, flood management, irrigation, and 
navigation worldwide, especially in the last century (Best, 2019). The first global boom of dam construction 
occurred after the Second World War, peaking in the 1960s and 1970s, mainly in Western Europe and North 
America (Figures 1a and 1b; Lehner et al., 2011). Following increasing concerns about the social and ecological 
impacts caused by river damming, the trend of global dam construction slowed in the 1990s (Moran et al., 2018). 
However, to meet the rapidly growing demands for energy and water for socio-economic development, there has 
been a second boom in dam construction, mainly in developing countries and emerging economies in Asia, Africa 
and South America (Figures 1c and 1d), and particularly in large river basins such as the Amazon, Congo, and 
Mekong (Winemiller et al., 2016; Zarfl et al., 2015). To date, approximately 3,700 major dams are either planned 
or under construction, and the number is predicted to increase further (Zarfl et al., 2015), although removal of 
aged dams has become an issue for engineering security and possible restoration of damaged river ecosystem in 
some countries (Habel et al., 2020; O'Connor et al., 2015). According to the International Commission on Large 
Dams (ICOLD, https://www.icold-cigb.org/), the number of registered large dams (dam height ≥15 m, or 5–15 m 
with reservoir capacity ≥0.03 km 3) worldwide reached 58,713 by April 2020. Dams can be categorized accord-
ing to their height or the associated reservoir regulation capacity. Large dams usually convert the upstream lotic 
rivers into lentic reservoirs, and have an annual to seasonal regulation capacity that can significantly modify the 
hydrological regime downstream; small dams (dam height <15 m) and run-of-river dams typically have a small 
reservoir, or even no reservoir, and are associated with weekly to sub-daily regulation capacities that impose rela-
tively low impacts on the hydrological regime downstream (D. Anderson et al., 2015; Timpe & Kaplan, 2017).

River damming disrupts free flows, and hence results in habitat fragmentation (Grill et al., 2015, 2019). Globally, 
63% of the world's large rivers (>1,000 km) are no longer free flowing (Grill et al., 2019). The construction of 
over 3,700 expected hydropower dams is estimated to increase global river habitat fragmentation to 93% in the 
future, which has already reached 48% due to the 6,374 existing large dams (Grill et al., 2015; Zarfl et al., 2015). 

Writing – review & editing: Qiuwen 
Chen, Qinyuan Li, Yuqing Lin, Jianyun 
Zhang, Jun Xia, Jinren Ni, Steven J. 
Cooke, Jim Best, Shufeng He, Daniele 
Tonina, Rohan Benjankar, Sebastian Birk, 
Ayan Santos Fleischmann

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.icold-cigb.org/


Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

3 of 64

The seasonal and interannual dynamics of river flow and water temperature regimes have been greatly dampened 
by river dam operation (Poff et al., 2007). As the reservoir operating time increases, sediment is deposited in 
reservoirs, while the downstream riverbed tends to experience scour, eventually altering the river morphology 
(Kondolf et al., 2014, 2018; Schmitt et al., 2019). Moreover, the flood discharge and energy dissipation associated 
with high dams can result in supersaturation of total dissolved gas in the downstream waters (Q. Ma et al., 2018; 
Weitkamp & Katz, 1980).

The alterations of river geophysical conditions caused by dams have significant effects on river ecology, among 
which the impact on fish is of great concern because fish contribute to human welfare as key food resources. 
Inland fisheries provide the equivalent of all the dietary animal protein for 158 million people globally (McIntyre 
et al., 2016), particularly for poor and undernourished populations in food-insecure regions such as the Amazon 
(Winemiller et al., 2016) and Mekong (Orr et al., 2012; Ziv et al., 2012) basins, where river fish are a key source 
of protein. For example, in the Lower Mekong River basin, fisheries are the primary source of protein for 60 
million residents (Ziv et al., 2012). Rivers also provide essential habitats for a diverse array of fishes. Alterations 
in river geophysical conditions arising from dams have considerably impaired fish biodiversity and resources 
worldwide (Reid et al., 2019; G. H. Su et al., 2021), as dams modify the natural flow, thermal and sediment 
regimes, and decrease fish access to spawning and nursery habitats (Freeman et al., 2007). These alterations 
cause dramatic reductions in fish productivity and lead to declines in fish populations, threatening global fishery 
production and regional food security. The effects of river damming on fish populations have received consider-
able attention (Fullerton et al., 2010), with many studies investigating impacts on globally important commercial 
and endangered fish species, such as salmonids (Hilborn, 2013), eels (Atkinson et al., 2020), Chinese carp (Q. 
Chen et al., 2021), and sturgeon (Z. Huang & Wang, 2018).

To mitigate the negative impacts of river damming on fish, a variety of conservation measures, spanning off-setting 
to mitigation, have been developed and applied. Reservoir operations have been optimized to mimic natural flow 
regimes (NFRs) to satisfy fish living conditions (W. Chen & Olden, 2017; Sabo et al., 2017), and fish passage 
facilities have been installed at river dams to maintain biological connectivity (Katopodis & Williams, 2012; 
Noonan et al., 2012). Some small dams and barriers have been removed in tributary channels to rehabilitate and 

Figure 1.  Global dam construction and distribution. (a) Distribution of global dams. (b) Number of global total dams and number of dams constructed in each decade 
from 1900 to 2017. (c) Distribution of global dams in planning and under construction. (d) Number of dams under planning and construction in each continent. Data 
of panel (a) and (b) are from Global Reservoir and Dam Database (Lehner et al., 2011). Data of panel (c) and (d) are from Future Hydropower Reservoir and Dams 
Database (Zarfl et al., 2015).
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compensate for fish habitats lost in the dammed mainstems (Marques et al., 2018; L. Tang et al., 2021). Artificial 
breeding programs have been implemented to restore fishery resources, which to some extent have succeeded 
by increasing the target fish populations (Holsman et al., 2012; J. Yang et al., 2013). However, the efficiency 
and effectiveness of these conservation measures have not been well investigated, leading to some controversial 
perceptions concerning fish conservation measures in dammed rivers. Therefore, assessing the efficiency and 
cost-effectiveness of different conservation measures could contribute significantly to identifying and promoting 
efficient practices.

The number of studies documenting the impacts of river damming on fish habitats, fisheries resources, regional 
food insecurity, and associated conservation measures has rapidly increased in the past decade. This review seeks 
to analyze and synthesize state-of-the-art studies concerning the impacts of river damming on fish physical habi-
tats and associated conservation measures. Specifically, we focus on the geophysical aspects of hydrological and 
water temperature regimes, dissolved gas supersaturation, sediment dynamics and biogeomorphology in relation 
to fish habitats, with emphasis on several key fish species that occur on various continents. In addition, we assess 
the cost-effectiveness of existing fish conservation measures. Finally, we formulate future key research directions 
for fish conservation in dammed rivers, with the aim of helping foster sustainable hydropower development.

2.  River Damming Impacts on Fish Physical Habitat
Dam construction alters river hydro-geophysical characteristics, including river connectivity, hydrological 
regime, sediment regime, and morphology, water temperature regime, and dissolved gas, which have essential 
impacts on fish physical habitat.

2.1.  Impacts on River Connectivity

River longitudinal and lateral connectivity play a vital role in maintaining the structure and functioning of river-
ine ecosystems (Díaz et al., 2020). River systems are hierarchical tree-like networks, whose ecological function 
is highly dependent on physical connectivity (Fuller et al., 2016; Grant et al., 2007). The needs of fish for diverse 
habitats are strongly dependent on river connectivity and natural mobility (Arthington et al., 2016). Longitudinal 
connectivity is essential for fish migration (Figures 2a and 2b), and lateral connectivity provides fish the access 
to spawning and rearing grounds in floodplains, side channels, oxbows and floodplain lakes (Figure 2c).

With the increasing number of dams, the longitudinal connectivity of global rivers is significantly under threat. 
Currently, about half of global river reaches show diminished longitudinal connectivity, with the Connectivity 
State Index (CSI) below 100%; nearly 10% of global river reaches have CSI below 95%, which is the minimum 
value for a high level of connectivity (Grill et al., 2019). Large river networks with completely natural connectiv-
ity (CSI = 100%) exist only in remote regions of the Arctic, Amazon and Congo basins (Grill et al., 2019). During 
the second half of the 20th century, the impairment of river network connectivity became more severe and is now 
widespread throughout the entire pan-European continent. There are at least 1.2 million river barriers (an average 
density of 0.74 per km) in the 36 European countries (Belletti et al., 2020), and in general more than 50% of river 
length is affected (Duarte et al., 2021). The highest barrier densities are found in rivers in central Europe where 
river connectivity has been severely altered, whilst the lowest barrier densities are found in the most remote and 
less populated alpine areas. Relatively undisturbed rivers exist only in parts of the Balkans, Baltic States, and 
Scandinavia in Europe (Belletti et al., 2020). As far as large rivers (catchment area >10,000 km 2) are concerned, 
the Mediterranean and Western Atlantic regions are those most affected by fragmentation in terms of the number 
of basins, while the Black Sea and Caspian Sea regions are the most affected by fragmentation in terms of river 
length (Duarte et al., 2021). In the USA, large dams have increased river segmentation by 801% compared to 
free-flowing streams in the absence of dams, and 79% of stream length is disconnected from their outlet of oceans 
or Great Lakes (Cooper et al., 2017). In South America, more than a hundred hydropower dams have fragmented 
the rivers in the Amazon basin. For the eight major river systems in the Andean region of the Amazon headwaters, 
the 142 existing or under construction dams have fragmented the tributaries of six major river systems, and the 
160 proposed dams could further result in a significant loss of river connectivity in the mainstreams of five major 
river systems (E. Anderson et al., 2018; Flecker et al., 2022; Latrubesse et al., 2017, 2020; Lees et al., 2016). 
In general, the Connectivity Index (CI) of rivers is the lowest in the Europe, United States, South Africa, India 
and China, and the completion of the dams currently under construction or planned will further reduce river 
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connectivity, particularly in countries such as India and China that are facing a boom in dam construction. 
However, commensurate studies are insufficient in these developing countries (Barbarossa et al., 2020).

Dam construction also reduces lateral connectivity of rivers, which decreases the interactions between rivers 
and floodplains/wetlands in river basins (Latrubesse et al., 2017; Stoffels et al., 2022), and thereby affects the 
productivity of floodplain and wetland ecosystems (Palmer & Ruhi, 2019). In the Atreyee River basin in India, 
the active floodplain area was reduced by 66.2%, and 48.9% of total pre-dam wetland was completely obliterated, 
due to the reduction in lateral connectivity caused by the Mohanpur Dam (Saha et al., 2022). In the wet-dry 
tropics of Australia, dam construction reduces the average duration of the lateral connectivity between flood-
plain wetlands and their main river channels by 1% and 2% in the Flinders and Gilbert catchments, respectively 
(Karim et al., 2015). In the upper Paraguay River basin in South America, the Manso dam decreased the lateral 
connectivity between the Cuiaba River and Pantanal wetlands, one of the largest wetland systems in the world, 
which weakened the exchange of sediments and nutrients (Jardim et al., 2020). Regulated releases also impact 
on the vertical connectivity between surface and subsurface waters, which alters the exchange of solute, heat and 
nutrient between surface and sediment waters (Figure 2d) (Sawyer et al., 2009).

It is also necessary to emphasize river fragmentation caused by small dams, due to their large number and wide-
spread distribution, which are usually neglected (E. Anderson et  al.,  2018; Castello & Macedo, 2016; Fuller 
et al., 2016; Rodeles et al., 2017). Couto & Olden (2018) estimate that 82,891 small hydropower plants (SHPs) 
are operating or under construction across 150 countries, which is more than the number (58,713 by April 2020) 
of large hydropower plants (LHPs) recorded by ICOLD. In addition, there are 181,976 SHPs planned, 10,569 of 
which are to be implemented in the coming decades, indicating that the number of SHPs will continue to increase 
rapidly. In developed countries, as the hydropower potential of large rivers has been mostly exploited, an increasing 
number of SHPs are under planning in some of these nations, such as Austria, to meet energy demands (Wagner 
et al., 2015). In water-rich countries in Asia, Africa, Latin America and southeastern Europe, the potential of 
SHPs has gained particular interest from policymakers and more SHPs will be constructed (Harlan et al., 2021). 
SHPs are conventionally considered as a type of clean energy resource with less environmental impact than LHPs 
(Dursun & Gokcol, 2011; Nautiyal et al., 2011). However, SHPs are usually set in high-gradient alpine streams 
and a river basin usually contains a large number of SHPs, which lead to cumulative, and hence more severe, 
impacts on river fragmentation than LHPs (Timpe & Kaplan, 2017). For instance, the average loss of connectivity 

Figure 2.  River connectivity and the impacts of dams. (a) Migration and spawning grounds of fish in free-flowing river. 
(b) Migration and spawning grounds of fish in dammed rivers, (c) Spawning and rearing grounds of fish in floodplain. (d) 
Hyporheic exchange and redd habitats.
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due to SHPs is much higher than that due to LHPs in Brazil (Couto et al., 2021). Great concerns have been raised 
about the large expansion of SHPs in rivers feeding the Pantanal wetlands, as these SHPs have affected the lateral 
connectivity between rivers and wetlands (Figueiredo et al., 2021).

River fragmentation has significant impacts on freshwater fish (Barbarossa et al., 2020). Dams act as physical 
barriers in spawning or foraging routes and limit the expansion of fish populations (Figure 2b). Widely distributed 
dams have impeded fish migration and generated population isolation, leading to declines in fish populations and 
ultimately to local or total extinction, especially for migratory fish species (Duponchelle et al., 2021; Rodeles 
et al., 2017; van Puijenbroek et al., 2018). Over the past 50 years, freshwater migratory fishes have declined by 
96% globally, becoming the vertebrate group suffering the most severe decline (Deinet et  al.,  2020). Studies 
concerning the impacts of river fragmentation on migratory fish have mainly analyzed the life history of certain 
migratory species, measured their habitat characteristics at different life stages, and assessed the potential impacts 
of damming on their habitats (Goodwin et al., 2014; Liermann et al., 2012; Wofford et al., 2005). River frag-
mentation also leads to fish populations becoming isolated and genetically fragmented, exposing them to severe 
effects of genetic drift and inbreeding (Brinker et al., 2018; Cheng et al., 2015). Moreover, river fragmentation 
changes the structure of riverine food webs, reducing the taxonomic diversity of fish (Freedman et al., 2014). 
The beta diversity of native fishes in pools and non-native fishes in riffles decreased with an increase in the ratio 
between the length of the longest non-fragmented sections in the river network and the total length of the river 
network (Díaz et al., 2020). The decreased lateral connectivity due to dam construction causes loss of access 
for some fish species to their spawning and rearing grounds in floodplain and wetlands (Figure 2c) (O'Mara 
et al., 2021). In the Amazon River, decreases in river-floodplain interactions due to dam construction have caused 
significant reduction in catch-per-unit-effort and shifts in the functional composition of fisheries in the Madeira 
River floodplain (C. C. Arantes et al., 2021). In addition to fragmentation effects of large dams, widespread small 
dams also impose significant, particularly cumulative, impacts on fish distribution and diversity (Consuegra 
et al., 2021). Studies show that two-thirds of 191 migratory fish species in Brazil would be affected by river 
fragmentation due to the increasing number of SHPs, which is greater than the connectivity loss caused by LHPs 
(Couto et al., 2021).

The impacts of river fragmentation on fish diversity and distributions at larger scales (e.g., continental and global 
scales) may differ from that at local scales (e.g., basin and sub-basin scales), as fish beta diversity shows signifi-
cant differences among river networks with similar degrees of connectivity (Díaz et al., 2020). In recent years, the 
effects of dam-induced river fragmentation on fish, and the mechanisms by which fish diversity responds to river 
fragmentation at large scales, have become new areas of interest. Grill et al. (2015) assessed the effects of river 
fragmentation on fish habitat at high spatial resolution from sub-basin to watershed scales. Given current progress 
in river connectivity studies from watershed to continental scales (Belletti et al., 2020; Duarte et al., 2021; Grill 
et al., 2019), it is anticipated that research concerning the impacts of river fragmentation on fish diversity and 
distributions will quickly expand to global scales.

Most current studies concerning river fragmentation adopt physical connectivity indices (e.g., CSI, CI); however, 
the hydrological and hydraulic disconnections of dammed rivers should receive sufficient attention as they 
impose significant impacts on fish habitats. In addition, the impacts of cascade dams on river connectivity and 
their cumulative effects on fish are typically much greater than a single dam, and thus deserve more investigation. 
At present, indices of physical connectivity are mainly based on geo-spatial data, which may be insufficient in 
resolution or possess inadequate records for small dams. As such, the impacts of small dams on river connectivity 
worldwide are seriously underestimated, and demand urgent attention.

2.2.  Alterations to River Hydrological Regimes

Hydrological regime, including variables such as discharge, flow velocity, water depth, and peak flow, plays an 
essential role in riverine bio-habitats and ecosystems (Y. Chen et al., 2016). Fish spawning, rearing and wintering 
are strongly related to hydrological conditions. For fish species spawning drifting eggs, continuous stimulation 
of flow velocity is required, and thus flooding processes can provide favorable conditions for their reproduction 
(Young et al., 2011). With sufficient flow velocity, drifting eggs are not susceptible to sinking, which improves 
their survival rate (George et al., 2017). River flow can mediate the dispersal of fish eggs, extending their survival 
range and promoting the stability of fish communities (Castello & Macedo, 2016). The annual rise and fall of 
river depth induces lateral exchange of materials between the river channel and floodplain, which extends fish 
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physical habitat and increases baits for them (Castello & Macedo, 2016; Paillex et al., 2013). In cold regions, 
fish require water bodies with sufficient depth that have warm water in the deeper layers for overwintering (Cott 
et al., 2008).

River hydrological regime depends mainly on climatic conditions and possesses distinct features in different 
regions (Fiseha et  al.,  2014). In tropical regions, most rivers have a large annual runoff and their discharge 
possesses strong interannual fluctuations with little seasonality (J. P. Syvitski et  al.,  2014); some rivers have 
well-defined high and low discharges in correspondence to a unimodal rainy period, such as the Ganges River in 
south Asia and the Purus River in the Amazon basin; some rivers have two peak flows per year in correspond-
ence to bimodal rainy periods, such as the Magdalena River in South America and the Congo River in Africa 
(Latrubesse et al., 2005; J. P. Syvitski et al., 2014). In subtropical and temperate regions, rivers usually have a 
relatively smaller annual runoff than those in tropical regions, and their discharges have distinct seasonality that 
is influenced by seasonal rainfall and snowmelt, such as the Yangtze River and Yellow River in eastern Asia (W. 
Yang et al., 2020). In cold regions, rivers are characterized by low flow in winter due to ice cover and high flow 
in spring due to ice-jam floods (Peters et al., 2014; Prowse, 2001), such as the Mackenzie River in the North 
America and Lena River in Russia. In some rivers, peak flows are dominated by snowmelt in spring (from March 
to May), and these rivers are mainly distributed in southern North America, eastern Europe and westernmost 
Asia; peak flows may appear near June due to relatively late snowmelt (Hansford et al., 2020), and these rivers 
are located mainly in regions of low altitude and mid-high latitude (Q. Liu et al., 2022). Peak flows can also be 
brief and intense as determined by monsoon rains, and these rivers are mainly distributed in eastern and southern 
Asia, and eastern Australia (Dettinger & Diaz, 2000). In some rivers, there are no significant peak flows due to 
stable rainfall or mixed climates, such as the St. Lawrence River in central-eastern North America and rivers in 
southern Finland (Haines et al., 1988).

Dam construction may significantly alter river hydrological regimes (Timpe & Kaplan, 2017). The conversion 
from lotic river to lentic reservoir upstream of a large dam fully modifies the original hydrological regime. 
Dams directly decrease river flow velocity (Y. Yang et al., 2017). Stevaux et al. (2009) reported that the annual 
mean flow velocity of the Paraná River in South America was 0.88 m/s in the pre-dam period, and decreased 
to 0.56 m/s after dam construction. Reservoirs impound water in wet seasons and release it in dry seasons, thus 
decreasing the seasonal variability of discharges in rivers (Figure 3a). The discharge of the Mekong River in the 
dry season is now 63% higher than that in the pre-dam period, while the discharge in the wet season has declined 
by 22% (Chong et  al.,  2021). Although run-of-river reservoirs do not alter the seasonal pattern of discharge 
(Figure 3b), they can significantly increase the variability of diel or daily discharge through hydropeaking oper-
ations (R. M. Almeida et al., 2020). River damming decreases the number and duration of peak flows, and alters 
the frequency of water level variability (Timpe & Kaplan, 2017). After the construction of the Gezhouba Dam 
and Three Gorges Dam, the number of flow pulses in the downstream Yangtze River decreased by 22%, and their 
maximum duration decreased from 16 days to 4–6 days (Y. Wang et al., 2016). River damming decreases the 
maximum discharge and increases the minimum discharge of river, resulting in reduced water level fluctuation 
zone (Poff et al., 2007). River damming may also reduce the extent of active floodplain, the period and duration 
of flooding, as well as the exchange of materials between main channel and floodplain (Jardim et al., 2020; Moi 
et al., 2020). Dam construction in the Balonne River in Australia has resulted in a 23% loss of active floodplain 
area and decreased the availability of nutrients from the floodplain (Thoms, 2003). To quantify alterations to river 
hydrological regime incurred by dam construction, Richter et al. (1996, 1998) have developed the Indicators of 
Hydrologic Alteration (IHA) method (Table 1), which is widely used to evaluate alterations to the hydrological 
regime of dammed rivers. Based on the IHA, the range of variability approach (RVA) has been developed to 
evaluate the degree of alteration within specific ranges (Richter et al., 1997).

Alterations to hydrological regime caused by river damming could detrimentally impact the spawning, migration 
and feeding behavior of fish (Mims & Olden, 2012). A decrease in flow velocity caused by river damming has 
been found to reduce the stimulation for fish spawning, resulting in declines of fish reproduction (Figures 3c 
and 3d). In dammed rivers, fish gamma diversity, which indicates the regional or total diversity of fish, is nega-
tively correlated to magnitude in flow velocity (Jarzyna & Jetz,  2016; McGarvey & Terra,  2016; Timpe & 
Kaplan, 2017). For fish that fertilize in vitro, the decelerated flow of dammed rivers can reduce the success 
rate of fertilization (Campton, 2004). Decreases in flow velocity may lead to sinking of drifting eggs or failure 
to reach their destination for successful hatching (George et al., 2017). For fish species spawning sticky eggs, 
artificial hydropeaking incurred by reservoir operation can cause unsuitable conditions for their reproduction 

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

8 of 64

(Vilizzi, 2012). The reduced seasonal variability of discharge in dammed rivers can decrease floodplain produc-
tivity, which leads to poor growth and low survival of the fry, resulting in reduction of fish populations (Ficke 
et al., 2007; Reinfelds et al., 2013; Terra et al., 2010). Meanwhile, the degradation of plants in floodplain areas 
reduces the matrix for sticky eggs to attach, leading to a decrease in the survival of the eggs (Perna et al., 2012). 
The decrease in high and low flow pulses and their duration due to river damming can eliminate the hydrolog-
ical cues for fish migration, which reduces foraging opportunities and increase the risk of fish stranding (Bao 
et al., 2022; Reid et al., 2019). Rapid reductions of river water surface elevation due to dam operation may result 
in stranding of fish species (E. Bell et al., 2008; Irvine et al., 2015). Such fish stranding has been reported during 
flow reductions downstream of dams, leading to mortality of salmonids and sturgeon (Johnston et  al.,  2020; 
Nagrodski et al., 2012). Stranding is mainly caused by changes in flow magnitude, known as ramping rates in 
dam operations (Le Coarer et al., 2022; Poff et al., 1997). However, the potential for fish stranding also depends 
on factors such as fish species and their life stages, stream temperature, and the time of the day, and thus fish 
stranding may be site specific (Auer et al., 2022; Benjankar et al., 2023; Glowa et al., 2022). In newly constructed 
reservoirs, the decomposition of organic matter can provide more bait, and thus omnivorous fishes can increase 
in the short term (Bunn & Arthington, 2002; Junk et al., 2013). The increase in water depth and alteration of the 
substrate textures in reservoirs reduce the suitable habitat for periphytic algae and benthic macroinvertebrates 
(Holt et al., 2015; Taniwaki et al., 2013). This affects the fish feeding on periphytic algae and benthic macroin-
vertebrates, and increases the number of fish preferring phytoplankton and zooplankton, thereby altering the fish 
community structure in dammed rivers (W. Zhang et al., 2020). In winter, the rise of water depth in dammed 
rivers buffers the drop of water temperature, increasing the chances of fish survival during overwintering (Fuchs 

Figure 3.  (a) Hydrograph of the Pingshan hydrological station (averaged monthly discharge during 2007–2010, free-flowing) 
and the Xiangjiaba hydrological station (replacement of Pingshan hydrological station, averaged monthly discharge during 
2016–2020, regulated by a large reservoir) of the upper Yangtze River. (b) Hydrograph of the Ningnan hydrological station 
of the Heishui River, a tributary of the upper Yangtze River, before (2015) and after (2019) the removal of the Laomuhe 
Dam (a small hydropower dam with no reservoir regulation capacity). (c) Discharge from the Three Gorges Reservoir (TGR) 
and fish egg density of four major Chinese carps (FMCCs) measured at the Yidu cross-section of the Yangtze River during 
the ecological operation of the TGR in 2016. (d) The number of annual spawned eggs of FMCCs measured at the Yidu 
cross-section of the Yangtze River before and after the operation of the TGR. The data of panel (a) and (b) are available from 
Hydrological Data of Changjiang River Basin in Annual Hydrological Report P. R. China, and the data of panel (c) and (d) 
are from the authors.
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et al., 2021; Keefer et al., 2008). In summary, alterations to river hydrological regime caused by dam construction 
impact significantly on fish habitats, further affecting the population and diversity of fish in dammed rivers.

Existing studies mainly focus on the impact of altered hydrological regime on the spawning aspects of fish 
reproductive biology. However, adequate attention should be paid to the impact of altered hydrological regime on 
the hatching processes of spawned eggs in dammed rivers, which also plays an essential role in early-stage fish 
resources. The reduced water levels during the flood season diminish material exchanges between channels and 
floodplain, which reduces feeding field and food abundance of fish. In addition, most available studies investigate 
the behavioral response of fish to hydrological alterations, and it is imperative to better understand the physiolog-
ical mechanisms of fish reactions to dam-induced hydrological alterations.

IHA statistics group Regime characteristics Hydrologic parameters Examples of river ecosystem influences

Magnitude of monthly discharge 
conditions

Magnitude Mean discharge for each calendar month Habitat availability for fish

Timing Influences water temperature, oxygen 
levels, and photosynthesis in water

Magnitude and duration of annual 
extreme discharge conditions

Magnitude Annual minima (1-day means; 3-day means; 
7-day means; 30-day means; 90-day means)

Balance of competitive, ruderal, and 
stress-tolerant fish

Structuring of river ecosystems by abiotic 
versus biotic factors

Duration Annual maxima (1-day means; 3-day means; 
7-day means; 30-day means; 90-day means)

Structuring of river channel morphology 
and physical habitat conditions

Number of zero-flow days Volume of nutrient exchanges between 
rivers and floodplains

Duration of stressful conditions (e.g., low 
oxygen, concentrated chemicals) in 

river ecosystem

Seven-day minimum flow divided by mean flow 
for year (base flow)

Duration of high flows for aeration of 
spawning beds in river sediments

Timing of annual extreme discharge 
conditions

Timing Julian date of each annual 1-day maximum 
discharge

Compatibility with life cycles of fish

Predictability/avoid ability of stress for fish

Access to special habitats during 
reproduction or to avoid predation

Julian date of each annual 1-day minimum 
discharge

Spawning cues of migratory fish

Evolution of life history strategies and 
behavioral mechanisms

Frequency and duration of high/low flow 
pulses

Magnitude Number of high pulses each year Availability of fish habitat in floodplain

Nutrient and organic matter exchange 
between rivers and floodplains

Frequency Number of low pulses each year Soil mineral availability

Duration Mean duration of high pulses within each year Water birds enter foraging, resting, and 
breeding places

Mean duration of low pulses within each year Bed load transport, channel sediment 
structure, and substrate disturbance 

duration (high pulses)

Rate/frequency of hydrograph changes Means of all positive differences between 
consecutive daily values

Entrapment of fish on islands and 
floodplains (rising levels)

Frequency Means of all negative differences between 
consecutive daily values

Rate of change Number of flow reversals Desiccation stress on low-mobility stream 
edge fish

Table 1 
Summary of Hydrologic Indicators and Their Ecological Influences (Richter et al., 1998)
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2.3.  Changes to River Sediment Regimes and Morphology

Sediment is an essential component in rivers, and plays a pivotal role in maintaining the ecological status of global 
river systems (Chapman & Wang, 2001; Förstner et al., 2004, 2008; Netzband et al., 2007; Ralph et al., 2009). 
River sediment is entrained, transported and deposited, thus shaping river morphology and affecting fish habitat 
(Nichols, 2009). The balance between sediment supply and transport capacity of a river system is a fundamental 
driver for river geomorphology, which not only dictates the aggradational or degradational state of a system, 
but also controls channel morphology and substrate textures (Dietrich et al., 1989; Lisle et al., 1993; Pitlick & 
Wilcock, 2001). River planform can adopt a range types, form straight to sinuous, braided, anabranching or anas-
tomosing shapes (Latrubesse, 2008; Leopold & Wolman, 1957). These different river planforms induce different 
hydrodynamic conditions, which in turn cause different patterns of sediment erosion and deposition, forming a 
variety of geomorphic units such as riffles, pools, barforms and bedforms, and flood plains, which thus increase 
the diversity of biological habitats, for example, those used for fish spawning and wintering grounds (Chapuis 
et al., 2015; Namour et al., 2015). Rivers also transport large quantities of organic matter, providing food sources 
for aquatic organisms (Karr, 1991). The content of organic matter in sediment is affected by sediment character-
istics, including particle size and density, surface site density, and particle morphology (Y. Wu et al., 2020). In 
most rivers, bed sediments show an overall downstream-fining trend (Luo et al., 2012), as illustrated in Figure 4a.

Sediment from global rivers delivered to the oceans was estimated to be about 20 Bt/yr, prior to significant dam 
interception (Milliman & Syvitski, 1992). Dams alter the natural balance of sediment flux in rivers by trapping 
sediment in reservoirs, discharging waters often free of sediment downstream (Morris & Fan, 2010). Global 
dams decreased about 5 Gt/yr of sediment flux to the oceans by the 21st century (Milliman & Syvitski, 1992). 
Upstream of a dam, the reduction in flow velocity may facilitate sediment deposition in the river channel and 
floodplain (Fencl et al., 2015; X. Su et al., 2017; Walter & Merritts, 2008). As shown in Figure 4b, coarse parti-
cles, such as gravel and coarse sand, are the first to settle, forming a delta at the point where the backwater effect 
ends; fine sediment particles enter the reservoir and are transported by turbid density currents or non-stratified 
flow, and may be deposited near the dam (Fan & Morris, 1998; Garde & Raju, 1979). In addition, the peak 
sediment load in dammed rivers is separated in time from the maximum water flow (Dang et al., 2010; Topping 
et al., 2000), which also promotes the deposition of sediment. In the river downstream of a dam, the reduction 
in sediment content usually leads to channel incision, chronic erosion of the bed and banks, and even the loss of 
delta plain (Bittencourt et al., 2007; Graf, 2006; Magilligan & Nislow, 2005; Petts & Gurnell, 2005). Intensified 
scour and floodplain incision are often observed in sediment-starved rivers, as the flows entrain bed material 
equaling to their transport capacity (Csiki & Rhoads, 2010). In some cases, dams reduce the number of intense 
floods and lead to sedimentation downstream, which raises the river bed (Kotti et al., 2016; Słowik et al., 2018). 
After damming, pools may occur more frequently and individual pools are longer in the lower reach than that in 

Figure 4.  Impact of river damming on river bed sediment. (a) Bed sediment in free-flowing rivers. (b) Bed sediment in dammed rivers.
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the upper reach; in contrast, individual riffles in the upper reach are longer than that in the lower reach (Kobayashi 
et  al.,  2012). Low sediment loads downstream after dam construction also leads to reductions in associated 
nutrient transport, and thus affects fish feeding grounds (C. Guo et al., 2020). Moreover, the balance between 
inorganic and organic sediment is disrupted by damming, with mineral particles deposited predominately in the 
reservoirs, and the increased biological production causing the suspended load of the reservoir outflow to be 
largely composed of organic matter from aquatic organisms (Sokolov et al., 2020).

Alterations to sediment regimes due to river damming have potential impacts on fish habitat. The changes to 
erosion and deposition patterns, and hence the river morphology, may impede suitability for fish spawning and 
overwintering grounds (Kruk & Penczak, 2003; McLaughlin et al., 2006). For resident or potamodromous fish, 
river damming changes the number and distribution of fish habitats for spawning, feeding and overwintering 
downstream, leading to increases in competition for spawning and wintering sites as well as food resources 
(Cambray et al., 1997). The changes of mesoscale riverbed morphology, such as riffles and pools in the upstream 
and downstream, after river damming can indirectly lead to changes in the diversity and distribution of fish 
communities (Calderon & An, 2016; Langeani et al., 2005). In addition, different fish species may have a differ-
ent preference for sediment properties. For example, larvae of white sturgeon (Acipenser transmontanus) prefer 
substrates of clean gravel and cobbles (Nguyen & Crocker, 2006), while larvae of Schizothorax wangchiachii 
change their preference for substrate at different life stages (Chai et  al.,  2019). Typically, lamprey spawn in 
riverbeds covered with a mixture of sand, gravel, and pebbles (N. S. Johnson et al., 2015). Fine sediment with 
relatively high organic matter is a primary source of food and energy for some species, and can even be an inte-
gral requirement within the lifecycles of species such as lamprey ammocete and psammophilous fish. Sediment 
coarsening downstream of a dam would result in less bait for these fish (Maitland, 2003). Moreover, complex 
habitat structure, such as pore space between coarse sediment, can increase predator-free space and thus reduce 
predation efficiency, an effect that is most pronounced at low prey densities (Barrios-O’Neill et al., 2015, 2016; 
Toscano & Griffen, 2013). Therefore, the altered river morphology and sediment gradation due to dam construc-
tion may seriously impact fish habitat. The alteration of suspended sediment content can also cause a variety of 
effects on fish habitat in dammed rivers. Some fish species prefer turbid over clear water, presumably benefiting 
from a reduced risk of predation and increased opportunity of feeding (Cyrus & Blaber, 1987, 1992). As reser-
voirs convert flowing water to relatively still water, the upstream water changes from turbid to limpid (C. Guo 
et al., 2020), and the increase in water clarity can directly affect the habitat of these fish species. In summary, 
the alterations of both suspended and bed load sediment regimes have important implications for the whole life 
history of fish in dammed rivers.

Despite extensive studies concerning the impacts of sediment regime alterations induced by river damming on 
fish, many challenges remain. The effects of changes in transparency and bed color on fish communities after 
river damming have not been explored sufficiently. Quantification of the contributions from direct effects, such 
as turbidity changes, and indirect effects such as predation behavior changes, also demand investigation. To date, 
most studies have focused on the response of fish to alterations in sediment regimes, but neglected the effects 
of alterations in fish activity on river sediment and morphology. It has been reported that spawning mucus of 
some fish species can modify substrate characteristics and thus affect sediment transport, which highlights the 
significance of spawning as a zoogeomorphic activity (Roberts et al., 2020). The effect of changes in spawning 
grounds of these fish species on river morphology after dam construction is a topic that demands further study.

2.4.  Alterations in River Water Temperature Regimes

Water temperature is an important and highly sensitive factor in river ecosystems, and possesses distinct and 
regular seasonality. The natural rhythm of water temperature affects the phenological functioning of aquatic 
species, and the longitudinal variation of water temperature plays an essential role in generating spatial patterns 
of species communities (Isaak et al., 2012). Water temperature regime can affect the whole life cycle of fish 
(Servili et  al.,  2020), including migration timing, reproductive performance, embryo health, and growth rate 
(Figure 5c). For migratory fish, the change of water temperature within a suitable range is one of the key envi-
ronmental cues for migration (Harvey et al., 2020; Rijnsdorp et al., 2009). The Atlantic salmon (Salmo salar) 
smolts in the three tributaries of the West River in Vermont, USA, begin migration when the water tempera-
ture rises to 5°C, and reach peak migration when water temperature rises to 8°C (Whalen et al., 1999). Fish 
have specific reproduction strategies, and a suitable temperature promotes healthy egg development and ensures 
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successful spawning (Kurita et al., 2003; Sieiro et al., 2020). For temperate or tropical fishes that spawn in spring 
and summer, warm winters could affect the accumulation of nutrients during egg development, resulting in 
smaller eggs (Collingsworth et al., 2017; T. M. Farmer et al., 2015). For most cyprinids in temperate and tropical 
climates, temperature acts as a time clue for reproduction events, such as ovulation and oviposition (Pankhurst & 
King, 2010; N. Wang et al., 2010). In addition, changes in plankton and benthos in response to variations in water 
temperature directly affects fish food chains, and thus indirectly regulates the energy intake and growth of fish 
(Pörtner & Farrell, 2008; Prokešová et al., 2020).

The spatio-temporal variation of river water temperature is influenced by multiple factors, including water 
flux, climate, latitude and human activity (Caissie,  2006; Collins,  2009; Markovic et  al.,  2013; B. W. Webb 
et al., 2008). The study on a Cairngorm stream in northeast Scotland (Hannah et al., 2004) shows that in terms 
of average energy flux affecting water temperature, the main heat sources are sensible heat (38.7%), bed heat 
(37.0%) and friction at stream bed and banks (24.3%), while the main heat losses are latent heat (73.1%) and 
longwave radiation (26.9%). Typically, the water temperature of headwater streams is often lower than that of 
downstream reaches, because many rivers originate in plateaus or snow-covered mountains with water sourced 
from ice melting (Cai et al., 2018; Dugdale et al., 2017; Moors et al., 2011). At the global scale, regional trends 
of river water temperature are consistent with air temperature (J. Syvitski et al., 2019). In addition, river water 
temperature is increasingly affected by climate change (Dugdale et al., 2017; van Vliet, Franssen, et al., 2013; van 
Vliet, Ludwig, & Kabat, 2013). The response of river water temperature to climate change varies with latitude. 
Increases in water temperatures at low latitudes are generally greater than those in high and middle latitudes. 
However, water temperature changes in rivers in high-altitude regions, such as the Qinghai-Tibet Plateau (S. Liu 
et al., 2020), are different from this broad latitudinal pattern.

River damming can significantly alter water temperature regimes, as illustrated in Figure 5a (D. Cheng et al., 2015; 
Jung et al., 2022). The alteration of water temperature regime by reservoirs can be influenced by various factors, 
including the shape, storage and depth of the reservoir, the inflow water temperature, the hydraulic residence 
time, and the operation modes of the reservoir (Lessard & Hayes, 2003; Prats et al., 2010; Wotton, 1995). The 

Figure 5.  (a) Water temperature of the Pingshan hydrological station (averaged monthly water temperature during 
2007–2010, free-flowing) and Xiangjiaba hydrological station (replacement of Pingshan hydrological station, averaged 
monthly water temperature during 2016–2020, regulated by the large Xiangjiaba Reservoir) of the upper Yangtze River. 
(b) Water temperature stratification in free-surface (left) and frozen-surface (right) reservoirs. (c) Water temperature in 
downstream of the Xiangjiaba Dam on the upper Yangtze River before and after the impoundment of Xiangjiaba Reservoir, 
and the phenological properties of fish (OW: overwintering, MG: migration, SP: spawning, GD: gonadal development, 
GR: gonadal recovery). Data are available from T. Li et al. (2021). (d) Impact of altered water temperature regime on fish 
spawning (CTT: critical temperature threshold for spawning, ATT: accumulated temperature threshold for gonad maturity). 
The data of panel (a) are available from Hydrological Data of Changjiang River Basin in Annual Hydrological Report P. R. 
China, and Figure 5d is adapted from T. Li et al. (2021).
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essence of water temperature alteration by reservoirs is that the impounded water is thermally stratified season-
ally and the outflow is mostly from deep layers. Although the impact of reservoirs on river water temperature 
regime is complex, the degree of alteration depends principally on dam height and regional climate characteristics 
(Maheu et al., 2016b), as summarized in Table S1 in Supporting Information S1. Reservoirs in different climatic 
regions have different effects on the water temperature regimes of dammed rivers (Pieters & Lawrence, 2012; D. 
Yang et al., 2005). In tropical, subtropical and temperate regions, large reservoirs usually form thermal stratifica-
tion in the spring, summer and autumn, with high temperatures in the surface layer and low temperatures in the 
bottom layers (Figure 5b). In cold regions, large reservoirs have thermal stratification in freezing periods, mostly 
in winter and early spring, with low temperatures in surface layers but relatively high temperatures in the bottom 
layers (Figure 5b). The seasonal stratification of reservoir waters can, to some extent, alter the natural rhythm 
of water temperature downstream (Figure 5a), which are characterized by elevated water temperatures in winter, 
decreased water temperatures in spring and summer, and reduced amplitude of maximum water temperatures 
(Long et al., 2019; Soleimani et al., 2019). In particular, the largest alterations in downstream water temperature 
occur in dry seasons (Maheu et al., 2016a). Because of the surface layer discharge mode and non-stratification, 
the effects of small dams on river water temperature are different from that of large dams (Maheu et al., 2016b). 
The release of surface water from small dams in spring and summer tends to elevate downstream water tempera-
ture (B. W. Webb et al., 2008), which is opposite to water temperature alterations in the summer period caused by 
large dams (Skoglund et al., 2011). To quantify the alteration to water temperature in dammed rivers, a variety of 
indicators have been proposed, such as changes in suitable water temperature range of target species, and changes 
in maximum and minimum water temperatures (T. Li et al., 2021; Maheu et al., 2016a).

Alteration of water temperature regime by dams has serious impacts on river fish habitat (Ahmad et al., 2021; 
Couto et al., 2021; Grill et al., 2019; Kuczynski et al., 2017; Prats et al., 2010), which directly affect the spawning, 
migration and growth of fish (Figure 5c). Fish reproduction is the most vulnerable and sensitive to water tempera-
ture alterations. Due to the operation of the Xiluodu and Three Gorges dams on the upper Yangtze River in China, 
the elevated water temperatures in autumn inhibit the reproduction activities of Chinese sturgeon (Acipenser 
sinensis) that usually spawn in autumn, causing the effective breeding quantity to reduce to 0%–4.5% (Z. Huang 
& Wang, 2018). The warming of water during winter due to reservoir operation in northern Europe and North 
America leads to delayed timing of spawning and shortened time of egg incubation for winter-spawning Atlantic 
salmon and brown trout (Salmo trutta) (Bohlin et al., 1993; Heggenes et al., 2018; Jonsson & Jonsson, 2009). In 
addition, a phenological knock-on effect could emerge as a consequence of delays in spawning time (Elliott & 
Elliott, 2010; Skoglund et al., 2011), resulting in low survival rates of Atlantic salmon and brown trout larvae. 
In the upper Yangtze River, the ray-finned fish (Coreius guichenoti) spawns in late spring and early summer 
when the critical water temperature exceeds 20°C. The timing of the arrival of this critical temperature is delayed 
due  to  the operation of the Xiluodu Reservoir (T. Li et al., 2021). Meanwhile, the warming of water in winter 
accelerated the development of gonads and advances the time of egg maturity. The joint effects of warmed water 
in winter and cooled water in early summer thus cause ray-finned fish to miss the historical time window for 
spawning, resulting in the sharp decline of its population (T. Li et al., 2021; Z. Yang et al., 2021).

The critical temperature threshold (CTT) for fish spawning and the accumulated temperature threshold (ATT) for 
fish gonadal development have been used to quantify the impact of water temperature alteration on fish repro-
duction (Figure 5d). The ATT is the minimum accumulated temperature required for gonadal maturity, which is 
calculated by summing the temperatures higher than the ontogeny temperature in days during gonadal develop-
ment (Chezik et al., 2014; Honsey et al., 2018). For example, the CTT and ATT thresholds for bronze gudgeon 
(Coreius heterodon) reproduction in the upper Yangtze River were about 18.4 and 1,324.9°C·day, respectively. 
Operation of large reservoirs results in cooling in spring and summer, and warming in autumn and winter (Long 
et al., 2019; Y. Tao et al., 2020), which delays the timing for reaching CTT and advances the timing for reaching 
the ATT (T. Li et al., 2021). It has been shown that elevated temperatures of 2–3°C in winter can have a signif-
icant impact on the development of fish gonads (T. M. Farmer et al., 2015; T. Li et al., 2022). When the time 
to reach the ATT is advanced, fish tend to consume energy in the yolk in order to maintain early exercise and 
strengthen metabolism (Mcqueen & Marshall, 2017; Wright et al., 2017). When the time to reach the CTT is 
delayed and becomes behind the time for reaching the ATT, temperature-sensitive fish cannot spawn in a timely 
manner, resulting in over-maturity of their gonads and thereby a decrease in reproduction (Kennedy et al., 2011; 
J. King et al., 1998). At present, most studies use the time to reach the CTT as the indicator for reservoir operation 
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management (Y. Tao et al., 2020; Y. Wang et al., 2016); however, re-matching the time for reaching both the CTT 
and ATT is key to mitigate the impact of water temperature alterations on fish in dammed rivers.

Despite many studies addressing the effects of river damming on water temperature regimes, there is a great 
knowledge gap between alterations in water temperature and their impacts on fish, particularly on the whole 
life cycle of fish migration, growth and food chain. The limited number studies that document the impacts of 
water temperature alterations on fish physiology, such as sex determination and gonad development, have mostly 
been conducted at extreme temperature conditions (C. Li et  al.,  2014; Ribas et  al.,  2017) instead of natural 
temperature conditions (Dorts et al., 2012). In addition, understandings to the long-term impact of water temper-
ature alterations on fish phylogeny are insufficient. In the future, climate change may increase the frequency of 
extreme weather events, which could intensify or offset the impacts of reservoir operations on water temperature. 
Therefore, the combined effects of river damming and climate change upon water temperature regimes and fish 
communities demand further investigations.

2.5.  Dissolved Gas Supersaturation

Total dissolved gas (TDG) supersaturation refers to the physical condition that the sum of dissolved gas partial 
pressures in water exceeds the sum of gas partial pressures in the air under local atmospheric pressure (Weitkamp 
& Katz,  1980). In natural rivers, TDG supersaturation is often caused by a change of water temperature 
(Bouck, 1984) and water falling (Rowland & Jensen, 1988). Dammed rivers can occur severe TDG supersatura-
tion caused by flood discharge during flooding seasons (Figure 6a), resulting in serious impacts on fish down-
stream (Ji et al., 2019; Pulg et al., 2016). For instance, the Chief Joseph Dam released flow in excess of the 110% 
TDG compliance criterion (EPA, 1987) in the Columbia River, causing the downstream Wells Dam to be unable 
to comply with water quality criteria for 125 of 133 compliance-mandated days in 2012 (Witt et al., 2017). During 
the flood discharge of the Xiluodu Reservoir in the upper Yangtze River in July 2014, the average TDG saturation 
of the downstream water was 135%, with a maximum value of 144%, resulting in massive fish mortality in the 
downstream reservoir (Q. Ma et al., 2018; Zeng et al., 2020). The release of TDG is slowed with increases in 
water depth and decreases in flow velocity. Thus, in a reservoir cascade system, water with supersaturated TDG 
from the upstream reservoir is transported to the downstream reservoir and can cause cumulative effects (Q. Ma 
et al., 2018). TDG supersaturation effects are thus particularly prominent in reservoir cascade systems.

The generation of TDG supersaturation is mainly affected by water pressure, water temperature, bubble pressure, 
bubble retention time, and aeration concentration. The saturation solubility of gas is positively related to water 
pressure (J. Feng et al., 2018). When a large volume of water with high head is released from a dam, the water jet 
entrains a large amount of air to form aerated water, and drops deeply into the energy dissipation pool near the 
dam (Bertola et al., 2018). Due to high water pressure in the pool, the air carried by the water jet dissolves rapidly, 
forming TDG supersaturation in the water (Pulg et al., 2016; H. Xue et al., 2018). The degree of TDG super-
saturation in the stilling pool is positively correlated to the bubble retention time (Lu et al., 2019; Y. Peng, Lin, 
et al., 2022). The initial saturation of high dam release has little impact on the generation of TDG supersaturation 
in the stilling pool, as the water jet is largely saturated after undergoing the process of full gas mixing during the 
downward discharge (S. Xue et al., 2019). The influence of aeration on the stable saturation of the water body 

Figure 6.  Impact of total dissolved gas (TDG) supersaturation on fish. (a) TDG supersaturation due to reservoir flood 
dispatch causes fish gas bubble disease. (b) Relation between TDG saturation and half-lethal time of Ya-fish (Schizothorax 
prenanti). The data are available from Y. Wang et al. (2015).
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downstream of the dam is also marginal, since the amount of aeration carried by the water jet into the stilling pool 
is usually sufficient (Qu et al., 2011).

TDG supersaturated water gradually releases the dissolved gas during its flow downstream, with the release rate 
influenced principally by water depth, flow velocity, wind speed and water temperature (C. Cao et al., 2020; Ou 
et al., 2016). The release rate of TDG decreases with increase in water depth and decrease in flow velocity. Obser-
vations downstream of the Three Gorges, Ertan and Zipingpu dams, China, showed that the release rate down-
stream of the Zipingpu Dam is the highest, which corresponds to its lowest water depth (J. Feng et al., 2010). 
Compared to downstream, the upstream side of a dam has larger water depths and slower flow velocities, result-
ing in lower release rates, as observed in the Kootenay River, North America (Kamal et al., 2018). Increase in 
wind speed enhances gas transfer at the gas-liquid interface, which accelerates the release of TDG in the water 
(Chu & Jirka, 2003; J. Huang et al., 2016). Elevated water temperatures promote the thermodynamic movement 
of gas molecules, which can also increase the release of TDG (S. Liu, 2013; Ou et al., 2016). Suspended particles 
and water plants provide nucleation and aggregation sites for dissociative gas molecules, enhancing free gas 
molecules in the water to concentrate and escape in the form of bubbles, and thus promote the release of TDG (J. 
Feng et al., 2012; Y. Yuan, Huang, et al., 2018).

When TDG saturation exceeds the sum of atmospheric pressure and hydrostatic pressure, gases in the dissolved 
state in fish tissues and body fluids will precipitate and accumulate to form gas bubbles (Figure 6a). Gas bubbles 
often appear in the tissue of the head, mouth, fins, and gill arches of fish, or in the capillaries of the gill plates 
(Lemarie et al., 2011), resulting in gas bubble disease (GBD). GBD could affect the physiology and behavior of 
fish, such as loss of balance and abnormal buoyancy, leading to fish death in severe cases (Bouck, 1980; J. Huang 
et al., 2021). Several fish abnormalities caused by GBD have been reported, such as fast swimming, rapid breath-
ing, back and forth movement, and mouth breathing with sticky bubbles (C. Feng et al., 2019; Y. Yuan, Wang, 
et al., 2018). Bleeding may also appear in tissues of gills, fins, muscles, gonads, and intestinal epithelium (Meyers 
et al., 2008). These symptoms may impose potential damage on fish, such as tissue necrosis, abnormal growth 
(Geist et al., 2013), decreased immunity (Schisler et al., 2000), reduced swimming ability (Y. Wang et al., 2017), 
increased risk of predation and increased buoyancy (Shrimpton et al., 1990a, 1990b), as well as changes in phys-
iological characteristics (Yuan et al., 2021).

The impact of TDG supersaturation on fish is determined by TDG saturation, exposure time, age and species of 
fish, swimming depth, and behavioral habits. High TDG saturation and long exposure time increases the mortal-
ity of fish. The half-lethal time of Ya-fish (Schizothorax prenanti) at 150% TDG saturation is 8.5 times shorter 
than that at 120% TDG saturation (Figure 6b). Repeated exposure of fish to TDG supersaturated water can lead 
to reduced feeding ability and increased susceptibility to fungal and bacterial infections, thereby further reducing 
fish tolerance to TDG supersaturated water and affecting fish survival (Brosnan et al., 2016; Huchzermeyer, 2003; 
Schisler et  al.,  2000). Fish tolerance to supersaturated TDG also varies between species and growth stages. 
During the incubation phase of eggs, increased TDG saturation causes a gradual decrease in the hatching rate (N. 
Li et al., 2019; R. Liang et al., 2013). The tolerance threshold of TDG saturation for the juvenile fish of Ya-fish 
(Y. Wang et al., 2015), silver carp (Hypophthalmichthys molitrix) (Deng et al., 2020), and Chinese sucker (Myxo-
cyprinus asiaticus) (L. Cao et al., 2016) is higher than that for the juvenile fish of rock carp (Procypris rabaudi 
Tchang) (X. Huang et al., 2010) and grass carp (Ctenopharyngodon idella) (F. Wu et al., 2020). However, when 
TDG saturation exceeds 135%, the tolerance threshold of TDG saturation for fish is not significantly different 
between species and body sizes (S. Xue et al., 2019).

With an increase in water depth, the saturation solubility of TDG increases, and the relative saturation of TDG 
decreases. The release of TDG is also related to turbulence, and thus TDG supersaturation is unevenly distributed 
vertically (P. Li et al., 2022). Therefore, the tolerance of fish to TDG supersaturation is improved with greater 
water depths, which is known as the effect of depth compensation (Yuan et al., 2020). Some fish species can avoid 
TDG supersaturation stress using the effect of depth compensation. For instance, when TDG saturation exceeds 
120%, Ya-fish, Chinese sucker and elongate loach (Leptobotia elongata) have the ability to detect and avoid TDG 
supersaturated water in horizontal and vertical directions (Deng et  al.,  2020). Rainbow trout (Oncorhynchus 
mykiss) has a significantly higher TDG exposure risk than mountain whitefish (Prosopium williamsoni), but 
refuge habitats with sufficient water depth can mitigate exposure risk and GBD. To alleviate the stress of TDG 
supersaturation, rainbow trout uses depth compensation, with each 1.0 m increase in swimming depth offsetting 
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9.7% TDG saturation (Pleizier et al., 2020). Therefore, TDG exposure risk and actual risk depend on the interplay 
between species-specific ecology and dam-induced TDG patterns (Algera et al., 2022).

TDG supersaturation only occurs occasionally during the discharge of floodwaters, when it is usually risky and 
difficult to conduct field surveys (Bertola et al., 2018; Pulg et al., 2016). Therefore, field observation data of 
TDG supersaturation are relatively scarce. Also, limited by monitoring technologies, TDG concentration in the 
near-field of large dams is difficult to measure well (Algera et al., 2022). Scale models in laboratories possess 
substantial difficulties in simulating the processes involved in generation and release of supersaturated TDG in 
the field, due to insufficient consideration of the Reynolds and Weber numbers as well as water pressures (P. Li 
et al., 2022). Therefore, it remains challenging to model the mass transfer process accurately, and predict bubble 
size as well as size distribution in order to support the development of effective mitigation measures. In addition, 
the threshold of TDG saturation for fish injury in different tissues requires further investigation. Moreover, fish 
adopt an avoidance behavior when TDG saturation exceeds their tolerance threshold, and the tolerance of fish to 
TDG supersaturation is enhanced with an increase in water depth. Previous laboratory studies investigating the 
response of fish to TDG only consider different TDG concentrations, lacking investigations on depth compensa-
tion effects. Therefore, it is essential to further study the effect of depth compensation, as well as fish physiolog-
ical and behavioral response, in the assessment of TDG supersaturation impacts on fish.

3.  River Damming Impacts on Key Fish Species
The interests in the key fish species impacted by river damming vary between different continents. Herein, we 
focus on salmonids, Chinese carps, sturgeon, eel and lamprey, which have been intensively studied.

3.1.  Impact on Salmonids

Salmonids (family Salmonidae) are one of the most popular commercial fishes, providing high-quality protein to 
people around the world, particularly in Europe and the United States (Phillips & Rab, 2001). They mainly include 
the genera Salmo and Oncorhynchus, which have received most research concerns (Klemetsen et al., 2003). The 
genera Salmo contains two typical anadromous species, which are the Atlantic salmon and brown trout. Atlantic 
salmon are mainly distributed along both the east and west coasts of the North Atlantic Ocean, while brown 
trout is indigenous to Europe, North Africa and western Asia (MacCrimmon et  al., 1970; MacCrimmon and 
Gots, 1979). The genera Oncorhynchus contains the Pacific salmon (Oncorhynchus tshawytscha, named Chinook 
salmon; Oncorhynchus keta, named Chum salmon) and Pacific trout (Oncorhynchus mykiss, including rainbow 
trout and steelhead trout subspecies), which mainly inhabit the north Pacific and the coastal rivers of both Amer-
ica and Asia (Figure 7). The Chinook salmon and Atlantic salmon have received most research attentions due to 
the threats of river dams (Harnish et al., 2014; Hilborn, 2013; Potter & Crozier, 2000).

Figure 7.  Distribution of salmonids around the world and their migration route for spawning.
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The anadromous salmonids migrate to freshwater rivers for spawning and juvenile rearing, and to saltwater 
oceans for feeding, growing and maturing (Crozier et al., 2021; Groot, 1991). The main life cycle of anadromous 
salmonids includes a spawning stage (egg, alevin), juvenile stage (fry, fingerling, parr), smolt stage, and adult 
stage. In the autumn, female salmonids excavate nest pits (called redds) in river bed gravels and spawn eggs into 
them. The optimal spawning temperature for salmonids is in the range of 6–14°C, and the spawning timing is 
especially sensitive to temperature changes. Over the winter, the eggs develop into very small salmonids (alev-
ins). In the spring, the alevins swim out of the redds and become fry, with the fry growing into parr that can 
protect themselves from predators. The parr grows in freshwater for 2–3 years, and transforms into smolts. In 
the early spring, silvery smolts swim to the ocean and spend 1–2 years maturing into adults. Atlantic salmon 
is a cool-water species, and the downstream migrating smolts must swim to the ocean before river tempera-
ture becomes too warm. River discharge plays an important role once migration is under way, and influences 
the onset, duration and termination of smolting (Sykes et  al.,  2009). During the adult stage, salmonids feed 
in the open ocean for a certain period of time, which differs between different species. In the summer, adult 
salmonids migrate back to the freshwater, strongly following the migratory route they adopted when leaving the 
river as smolts (Rivinoja et al., 2001). Increasing flows can facilitate downstream migration of smolts, and flow 
augmentation during the upstream migration period can improve the survival of migrating salmonids (Connor 
et al., 2003). The upstream swimming capability of salmonids would be reduced at low (below 10°C) and high 
(>20°C) temperatures (Alabaster, 1990; Johnsen & Jensen, 1994). Therefore, the connectivity between fresh-
water and ocean, water temperature, and river discharge are key factors affecting the physiological behaviors of 
anadromous salmonid across their life cycle (Caudill, et al., 2013).

Dams impede both the downstream and upstream migration of salmonids, resulting in the decline of salmonid 
populations around the world (Lawrence et al., 2016; Limburg & Waldman, 2009). In North America, dams have 
been one of the most important factors blamed for the decline of Chinook salmon populations in the Pacific coast 
of Oregon and British Columbia (P. H. Wilson, 2003). Dams in the upper Columbia River have caused a decline 
in the abundance, survival and population of Chinook salmon (Levin & Tolimieri, 2001). In South America, 
both the catch rate and body size of introduced salmonids decreased in several dammed large rivers in Chile and 
Argentina (Arismendi et al., 2019).

Budy et al. (2002) demonstrated that the survival rates of salmonids in dammed rivers decreased mostly in the 
smolt-to-adult life stage, rather than in the spawner-to-smolt life stage. When smolts migrate downstream from 
the dammed river to the ocean, most of them pass the dams through the spillway, the juvenile bypass system, or 
the hydropower turbines. Physiological or behavioral stresses caused by this passage experience on smolts would 
result in direct death or a chronic influence, including injury, trauma, diminished physical abilities, and increased 
susceptibility to predation and disease, which may eventually lead to death at a later life stage (Budy et al., 2002). 
Compared to rivers with a single dam, rivers with cascade dams make juvenile salmonids experience multiple 
dam passages, and these cumulative stresses can result in significantly higher mortality (Molina-Moctezuma 
et al., 2021). For instance, in rivers with three or four dams, the decline of fish populations can increase to exceed 
30% (Lawrence et al., 2016).

When adult salmonids migrate upstream to their natal spawning and rearing habitat, their instinct and imprint of 
the downstream passage experience during their juvenile stage leads them to the bypass channel or the turbines, 
which increases mortality or results in the situation that they cannot find the correct route, and delays their 
migration until they determine the correct route (Rivinoja et al., 2001). On average, there is a 70% loss of poten-
tial Atlantic salmon spawners during their upstream passage at dams in Sweden (Lundqvist et  al.,  2008). In 
Europe, many rivers of the Baltic Sea have lost the natural juvenile reproduction of Atlantic salmon, because river 
damming has blocked or reduced the access of adult salmon to their spawning grounds (Rivinoja et al., 2001). 
Over several generations, some of the white-spotted charr (Salvelinus leucomaenis) in Japan in dammed-off areas 
no longer migrate to the sea and become resident fish due to habitat fragmentation, which leads to a decrease in 
their spawning and populations (Morita et al., 2009). Therefore, river fragmentation caused by dams can lead to 
the increasingly direct or delayed mortality of salmonids, and thus may severely reduce their population.

Hydrological alterations caused by dam operations may lead to the decline of salmon populations (E. J. Ward 
et al., 2015). During the spawning period, the female and male Chum salmon that remain on their redds would 
increase swimming activity, reduce digging activity and leave their redds when flow velocities are above a thresh-
old of 0.8 m/s. Therefore, artificial hydro-peaks would lead to a decline in spawning rates (Tiffan et al., 2010). 
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A significant reduction in discharge under the dam could lead to the stranding of salmonid fry and increase their 
mortality (E. Bell et  al.,  2008). For example, dam operations result in dewatering of Chinook salmon redds, 
causing the mortality of eggs and larval fishes (Harnish et al., 2014; Ostberg & Chase, 2022; Young et al., 2011). 
Regulated flows, even if they do not dewater the redds, can still impact on redd habitats for embryos survival and 
development by altering hyporheic exchange of heat and dissolved oxygen (Figure 2d) (Bhattarai et al., 2023; 
Martin et al., 2020). The upstream migration of adult salmonids may be disrupted by the seasonal and weak 
variation in spillway discharge from the dam (Rivinoja et al., 2001). Therefore, alterations to hydrological regime 
caused by dams may result in declines in spawning rate, survival of fish eggs and juveniles, and migration of adult 
salmonids, thus decreasing the populations of salmonids.

Dam construction can cause the historical spawning grounds of salmonids to become warmer, which makes the 
hatchery juveniles progress their life history at an earlier time and thus swim to areas with relatively cool water 
temperatures and lower growth opportunities, leading to a decline in their survival and populations (Connor 
et al., 2002). However, rising water temperatures in springtime caused by dam operation can negatively affect 
the rate of salmonid egg incubation, such as Chinook salmon (Dusek Jennings & Hendrix, 2020). Compared to 
the daily mean temperature or threshold temperature, temperature experience (accumulated thermal units, ATU) 
has more effects on the onset, duration and termination of downstream migration of Chinook salmon smolts 
(Sykes et al., 2009). Stich et al. (2015) found that dams decreased the ATU for smolts, thus delaying the time to 
initiate their downstream migration. In addition, dams as barriers along migration routes can delay or prolong 
the migration of smolts, which may result in a mismatch with migration-timing adaptations. For instance, water 
tempera tures in downstream reaches become warmer in the spring due to dam operations, which delays the down-
stream migration of smolts of Atlantic salmon. Consequently, the delayed smolts may face a situation that the 
water temperature further increases to a lethal or near-lethal level for smolts (Marschall et al., 2011). Compared 
to fish in free-flowing rivers, upstream-migrating fish in impounded systems could encounter potential thermal 
barriers in fishways. For instance, fishways offer opportunities for upstream migration of adult Chinook salmon, 
but the unfavorable water temperature gradient in the fishway caused by thermal stratification in reservoirs 
presents an obstacle to the upstream migration of individuals (Caudill et al., 2013). Therefore, the altered water 
temperature regime caused by dams negatively affects egg hatching, the downstream migration of smolts, and the 
upstream migration of adult salmonids in fish passages.

The TDG supersaturation caused by flood discharge of dams has little impact on juvenile and adult salmonids 
(Geist et  al., 2013; Muir et  al., 2001). There is little potential of negative effects of TDG supersaturation on 
populations of adult Chinook salmon, although fish tissues are probably damaged by the dissolved gases (E. L. 
Johnson et al., 2005, 2007). Among the fish that pass through dam spillways, the survival of juvenile salmonids 
is the highest (Beeman & Maule, 2006; Muir et al., 2001).

Overall, most studies focus on the impact of dam construction on the spawning process and migration of salmo-
nid smolts. However, sufficient attention should also be devoted to investigating the direct impact of altered 
flow regimes and water temperatures on the upstream migration of adult salmonids, which can provide specific 
evidence to improve conservation measures for adult salmonids during upstream migration. Meanwhile, natural 
factors such as climate and oceanic conditions also affect the physiological behavior of salmonids. Dam-induced 
and natural factors could interact with each other, resulting in nonlinear interdependence (Goodwell & 
Bassiouni, 2022; Ye et al., 2015). This complex interaction highlights the necessity to better understand how 
co-varying dam-induced and natural factors influence the physiological behavior of salmonids across their whole 
life cycle. Engineering mitigation measures have been used to reduce the adverse influence of dams on salmo-
nids. However, it is controversial whether these mitigation efforts are effective if differential mortality rates of 
salmonids occur for reasons unrelated to river damming (Rechisky et al., 2013; Welch et al., 2008). In the future, 
long-term observations of upstream and downstream salmonid are needed to determine whether dams are the 
major cause for the decline of salmonids in impounded rivers.

3.2.  Impact on Chinese Carps

The four major Chinese carps (FMCCs) are grass carp (C. idellus), black carp (Mylopharyngodon piceus), silver 
carp (H. molitrix) and bighead carp (Aristichthys nobilis). FMCCs are freshwater fish whose adults migrate 
upstream to spawning sites during flood seasons and spawn semi-buoyant drifting eggs (Figure 8). The fertilized 
eggs drift a long distance for development, and then juvenile fish swim into riparian lakes, which serve as nursery 
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habitats (Q. Chen et al., 2021; W. Xu et al., 2020; B. Yi et al., 1988). The spawning activity of FMCCs requires a 
minimum flow velocity to trigger the release of eggs (Q. Chen et al., 2021), and the drifting eggs require a suitable 
flow velocity to keep them suspended (Garcia et al., 2013; M. Li et al., 2013; Q. H. Yang et al., 2014; P. Zhang 
et al., 2021). High flow events are the most visible physical phenomena associated with the reproductive success 
of FMCCs (Coulter et al., 2018; Embke et al., 2016). Under natural conditions, adult fish usually initiate spawn-
ing activity when the water level continues to rise for 0.5–2 days, and reduce or even cease spawning when water 
levels begin to recede (B. Yi et al., 1988). In China, the Yangtze River basin provides the principal habitats and 
spawning sites for the FMCCs, although they are widely distributed across many parts of China. The FMCCs in 
the Yangtze River are the dominant natural germplasm resource, which sustains the gene diversity and maintains 
freshwater fish aquaculture (J. Wang, Li, Duan, Chen, et al., 2014). Prior to the construction of the Three Gorges 
Dam, there were 30 spawning sites for FMCCs in the mainstream Yangtze River (C. Tang et al., 2022), with the 
middle reach of Yangtze River being the main reproduction area. There are 12 spawning sites scattered along the 
380 km long reach from Yichang to Chenglingji, producing about 43% of the total eggs in the Yangtze River (Y. 
Yi et al., 2010).

FMCCs play a vital role in providing high-quality animal protein, ensuring national food security, as well as 
promoting rural economic development in China (Ban et al., 2019; D. Li, Prinyawiwatkul et al., 2021). However, 
FMCCs are an aggressive invasive species in other countries (D. Li, Prinyawiwatkul, et al., 2021), as shown in 
Figure 8. The silver carp and bighead carp, jointly known as Asian carp, were first imported to North America 
in the 1970s as aquaculture fishes. Due to their rapid growth rates and lack of natural predators, they have estab-
lished dense populations in the Mississippi, Ohio, Missouri and Illinois Rivers, and may pose a threat to the Great 
Lakes (Heer et al., 2019; Wittmann et al., 2014; Zhu et al., 2018). In Europe, bighead carp are found to have 
been widely recruited in northeastern Italy, demanding serious efforts to limit the spread and establishment of 
reproducing populations (Milardi et al., 2017). In Australia, Asian carp impose significant impacts throughout the 
Murray-Darling basin and other freshwater systems (Marshall et al., 2018).

River damming can block or delay reproductive migration, affect fish assemblages, impair spawning habitat 
conditions, and thus reduce the recruitment of FMCCs. After the impoundment of the Three Gorges Reservoir 
(TGR) in 2003, the larval abundance of FMCCs in the middle reach of the Yangtze River declined sharply to 
less than 20% of the pre-dam abundance (P. Zhang et al., 2021), and the eggs and larvae in the lower reaches of 
the Yangtze River declined to 0.34 billion, accounting for only 13% of the pre-dam amount (M. Li et al., 2016). 
The Three Gorges Dam reduces river connectivity, preventing FMCCs migration (P. Zhang et al., 2021). Loss 
of connectivity in dammed rivers also restricts the gene flow between fish populations located upstream and 
downstream of a dam, affecting population genetic structure. Since the construction of the Gezhouba Dam and 
Three Gorges Dam, significant genetic differentiations have appeared in the grass carp populations between the 
upper and middle reaches of the Yangtze River, which might stimulate population divergence (Zhao et al., 2011). 
Although spawning grounds for FMCCs downstream of the dam remain after impoundment, eight spawning 

Figure 8.  Native and invading distribution of Chinese carps around the world and their migration route for spawning.
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grounds in the reservoir have been lost due to establishment of the lentic ecosystem (Y. Yi et al., 2010). Reservoir 
operations cause direct changes in the annual hydrograph and thus water depth and flow velocity, which affect 
the spawning activity of FMCCs (Duan et al., 2009; W. Jiang et al., 2010; Z. Wang et al., 2013). Downstream of 
the Three Gorges Dam, the suitable flows required for the reproduction of FMCCs are suggested to start from 
12,500 m 3/s on the day when a spawning event begins, and gradually increase to 18,600 m 3/s at day 4 when 
spawning actions reach their peak, and then quickly drop to support hatching and larvae survival (Q. Chen 
et al., 2021). However, this flow process is mostly not met during the spawning period of FMCCs.

Water temperature has strong impacts on the reproduction of FMCCs. Laboratory studies and field measurements 
have shown that the minimum water temperature threshold for gonad development of FMCCs is 18°C, and the 
ideal water temperature range for spawning is between 21 and 24°C (Embke et al., 2016; M. Li et al., 2013; Y. Yi 
et al., 2010). There is also a significant correlation between spawning time and the arrival date of the cumulative 
temperature needed for gonad development. The initial date of FMCCs spawning in the Yangtze River has been 
delayed from early May to middle June since operation of the TGR in 2003. The main reason for this delay is that 
the water temperature downstream of the dam drops by 2–4°C from March to May, which is the critical period for 
gonad development of FMCCs (J. Wang, Li, Duan, Luo, et al., 2014), and thus postpones the arrival date of their 
gonad maturity. In addition, flood release could cause the TDG saturation to exceed 120% in the downstream 
reach of the Three Gorges Dam during the spawning periods of FMCCs, resulting in the dispersing larvae being 
highly vulnerable to the effect of TDG supersaturation. Dead larvae were found due to GBD during the early 
operation stage of the Gezhouba Dam between 1981 and 1984 (L. Liu et al., 1986).

However, as invasive species in some regions such as the North America, a viable strategy to prevent the spread 
of FMCCs and reduce their population is to manage the existing dams and barriers to limit their dispersion (Fritts 
et al., 2021; Whitledge et al., 2019). In the upper Illinois River, reducing gate openings of the locks and dams 
during the late spring and summer could provide opportunities to avoid the upstream migration of bighead carp, 
and thus limit their recruitment into the upper section of the river (Lubejko et al., 2017). Rather than attempting 
to directly block the migration route through dams, another option would be to encourage adult carp to spawn in 
the reaches that have suitable spawning sites but lack adequate hydrological conditions to further support embryo 
development. Such action could be implemented by adaptive management of hydraulic engineering structures in 
rivers (Coulter et al., 2018; Cupp et al., 2021; Prada et al., 2020).

Previous studies attribute the primary cause of decreases in the population of FMCCs in the Yangtze River to the 
construction of dams. However, it has also been argued that intensive fishing contributes greatly to their decline 
(D. Chen et al., 2009). However, there are few published data on long-term trends in FMCCs catches, making 
it difficult to assess whether dam construction or overfishing plays the major role in the degradation of natural 
FMCCs resources. Meanwhile, a series of physical barriers, including dams, behavioral deterrents and electric 
dispersal barriers, have been applied to block migratory pathways of FMCCs in the rivers in which they have 
become invasive, although in practice the effectiveness of this approach is limited. There remains a knowledge 
gap in understanding the associated hydrological mechanisms that affect the spawning behavior and early life 
development of FMCCs. Studies have indicated that a warm winter-spring period advances the expansion of 
Asian carp by altering thermal characteristics to be more favorable for their growth and lessening the time for 
competitive interaction with invasive mussels (Alsip et al., 2020; M. Li et al., 2013). It has been observed that the 
surface water temperature of the Great Lakes is warming faster than the global rate (Collingsworth et al., 2017; 
O’Reilly et al., 2015), and there is thus a great value to investigate whether climate change will increase the risk 
of invasion by Asian carp in this region.

3.3.  Impact on Sturgeon

Sturgeons are one of the earliest extant vertebrates, and play an important role in the evolution of fishes and even 
all vertebrates (Shen et al., 2020). There are 27 species of sturgeons that belong to the Acipenseridae and Poly-
odontidae families. The family Acipenseridae mainly includes Chinese sturgeon (A. sinensis), Russian sturgeon 
(Acipenser gueldenstaedtii), Dabry's sturgeon (Acipenser dabryanus), Atlantic sturgeon (Acipenser oxyrinchus), 
ship sturgeon (Acipenser nudiventris), sterlet (Acipenser ruthenus), and starry sturgeon (Acipenser stellatus). 
The family Polyodontidae, which is commonly called paddlefish, includes the American paddlefish (Polyodon 
spathula) and Chinese paddlefish (Psephurus gladius). The number of wild sturgeons in the world has decreased 
significantly in recent years, due to the degradation of natural habitats, dam construction, and overfishing (Billard 
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& Lecointre, 2000; T. Webb & Meyer, 2019). Sturgeons are typically anadromous fish that spend most of their 
lives in the ocean and return to freshwater to spawn (Figure 9). They lay adhesive eggs in rivers with fast currents 
and gravel beds. They are subcooled fishes, which prefer to live in water with relatively low temperature (Billard 
& Lecointre, 2000; McDowall, 1997; Siddique et al., 2016), and are mainly found in Eurasia and North America 
(Du et al., 2020). According to the International Union for the Conservation of Nature and Natural Resources 
(IUCN) Red List of Threatened Species, Dabry's sturgeon has been considered extinct in the wild, Chinese 
paddlefish has been considered completely extinct, and 85% of the extant 25 species, such as Chinese stur-
geon, Russian sturgeon, starry sturgeon and sterlet, are endangered (Brevé et al., 2022; IUCN, 2022; Lenhardt 
et al., 2006; H. Zhang, Jarić, et al., 2020).

Chinese sturgeon has lived in the Yangtze River for about 140 million years, and is often considered a living 
fossil. It is a demersal fish species that usually breeds in river reaches with fast currents and gravel beds (Z. 
Huang & Wang, 2018). Every year, this migratory fish travels 2,000 miles from the East China Sea to its spawn-
ing grounds in the Yangtze River (D. Cheng et al., 2015). The spawning season of Chinese sturgeon is from 
October to November, and spawning occurs at water temperatures between 15.3 and 20.0°C, with the optimal 
water temperature for spawning being 18.0–20.0°C (Y. Wang et al., 2020). Atlantic sturgeon is one of the seven 
sturgeon species found in North America, and extends from New Brunswick, Canada, to the eastern coast of 
Florida, USA. Atlantic sturgeon spawns in the spring, and the water temperature requirement for spawning is 
13.3–23.0°C (Hager et al., 2014). It spawns in running waters with rocks, pebbles and other hard objects on the 
bed, or in pits and pools under waterfalls (Popov, 2017). Russian sturgeon is widely distributed in the Caspian 
Sea, the Sea of Azov and the Black Sea, as well as in the rivers flowing into these waters (H. Song et al., 2022). 
The water temperature requirement for the spawning of Russian sturgeon is 12–14°C (Elhetawy et al., 2020). 
Most of the spawning activity of Russian sturgeon takes place in the sloughs of main channels, with a few indi-
viduals spawning in the high tide zone. Sterlet is distributed in the Black Sea, Caspian Sea, Yenisei River and Ob 
River in Russia. The optimal water temperature range for sterlet spawning is 13–16°C (Ponomareva et al., 2020), 
and the typical spawning grounds of sterlet include riverbed and roaming beach formed by spring water (Lenhardt 
et al., 2006). Juvenile sterlets are often found in groups in shallow water, while individual adults are scattered 
in deeper water for feeding. White sturgeon is the largest of the eight sturgeon species found in North America. 
White sturgeon inhabits the Pacific Ocean from northern Baja California of Mexico to the Aleutian Islands in 
Alaska, and the large rivers flowing into the Pacific Ocean between Monterey, California and Alaska. White 
sturgeon exhibits freshwater amphidromy, although evidence suggests that only small proportions of their popu-
lations live in marine environments. White sturgeon is an iteroparous broadcast spawner, spawning in the spring 
and early summer when water temperatures are between 7 and 18°C (Counihan & Chapman, 2018). Therefore, 
water temperature and riverbed substrate are major factors that affect sturgeon life cycles, including spawning 
migration and reproductive processes.

Figure 9.  Distribution of sturgeon around the world and their migration route for spawning.

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

22 of 64

Global dam construction has blocked the migration routes and damaged the spawning habitats of sturgeons, 
leading to a significant reduction in their populations. The completion of Gezhouba Dam in 1981 and the Three 
Gorges Dam in 2003 on the Yangtze River blocked the migration routes, cut off the spawning grounds and 
affected the spawning time, spawning size as well as spawning frequency of the Chinese sturgeon, Dabry's stur-
geon and Chinese paddlefish, leading to significant reductions in their populations (Boscari et  al.,  2022; H. 
Zhang, Jarić, et al., 2020). The Gezhouba Dam shortened the migration distance and reduced the capacity of 
new spawning grounds of Chinese sturgeon, resulting in the number of hatched larvae being only 25% of that 
before dam construction (Z. Huang, 2019; J. Tao et al., 2009). The construction of the Volgograd Dam on the 
Volga River, Russia, has destroyed the natural spawning area of the Russian sturgeon, starry sturgeon and Beluga 
sturgeon, which caused mass mortality of these species. The Volgograd Dam has reduced the area of Russian stur-
geon spawning grounds by 80% (Secor et al., 2000), and the limited spawning area led to high spawning densities, 
resulting in egg mortality rates of up to 60% (Popov, 2017). In the Don River, Russia, dams cut off the main path 
of Russian sturgeon migrating to their spawning grounds, resulting in a sharp reduction in their spawning areas 
that are only located downstream of the dam (Boldyrev, 2018). At present, Russian sturgeon with natural repro-
duction only exists in the undammed Ural River in Russia and Kazakhstan. In North America, the Eddyville Dam 
on the Hudson River has blocked the migratory routes of shortnose sturgeon (Acipenser brevirostrum), leading 
to a significant reduction in its population and hence its inclusion in the Endangered Species Act (T. Webb & 
Meyer, 2019). In the Great Lakes region, dam induced sedimentation in many tributaries has led to a reduction 
in spawning grounds and juvenile habitats of lake sturgeon (Acipenser fulvescens), posing great challenges to 
the restoration of their population (C. C. Wilson et al., 2022). In Europe, the construction of the Djerdap I and 
Djerdap II dams blocked the migration of sturgeon in the Danube River, which seriously reduced populations of 
the ship sturgeon and Atlantic sturgeon (Lenhardt et al., 2006). Therefore, river damming seriously compromises 
the connectivity of sturgeon habitats worldwide, leading to significant declines in successful spawning and egg 
hatching rates, and thus severely decreasing the population of sturgeons.

Water temperature is a primary factor affecting the migration of sturgeons, and determines their spawning time. 
However, reservoir operations can alter water temperature regimes and thus affect the migration and spawning 
of sturgeon (Y. Wang et al., 2020; H. Zhang et al., 2019). In the Yangtze River, the patterns of water tempera-
ture have been temporally and spatially altered by reservoir operation, which leads to the degradation of gonad 
development and delays the spawning of the Chinese sturgeon (Z. Huang & Wang, 2018; H. Zhang et al., 2019). 
The TGR and Xiluodu Reservoir in the upper Yangtze River have reduced the effective breeding quantity down 
to below 4.5% by elevating the water temperature that inhibits breeding activity during the spawning season. The 
cumulative effect of the cascade dams, including Wudongde, Baihetan, Xiluodu, Xiangjiaba, Three Gorges and 
Gezhouba, has led to an ongoing decline in the abundance of adult Chinese sturgeon in the Yangtze River and 
the sea (Chang et al., 2017; Z. Huang & Wang, 2018). In the Sacramento River, USA, the optimal water temper-
ature for Chinook salmon spawning is 12°C, while the optimal water temperature for green sturgeon (Acipenser 
medirostris) growth is 19°C. At present, the Keswick Dam regulates the water temperature of the river in winter 
to match the suitable spawning temperature for the endangered Chinook salmon, causing the cold water to extend 
to the habitat of the green sturgeon, whose growth is thereby greatly affected (Zarri et al., 2019). In the Colum-
bia River, cascade dams have fragmented the spawning habitat of white sturgeon in the mainstream into short 
sections connected by long-distance impoundments. Due to differences in dam operation and geographically 
local environments, the water temperature in different river reaches varies greatly, which in turn leads to differ-
ences in the spawning temperature and time of white sturgeon in different river sections. In the lower Columbia 
River, the spawning of white sturgeon downstream of the Bonneville Dam begins at a water temperature of 8°C, 
but spawning in the three furthest downstream dam tailraces begins when water temperature reaches at least 
10°C. In addition, spawning occurs earlier downstream than upstream in the Columbia River during the spring 
season (Counihan & Chapman, 2018; Péril, 2004).

Dam construction alters the natural hydrological regimes of rivers, and thus affects the growth and reproduc-
tion of sturgeons. The reduced downstream flow results in limited lateral connectivity to the floodplain, which 
adversely affects habitat availability and reproduction of sturgeons (F. He et al., 2021). In the Kootenai River, the 
demand discharge during the spawning period of the white sturgeon is 1,416–2,832 m 3/s; however, the peak flow 
is reduced usually to 250–450 m 3/s due to operation of the Libby Dam, which has seriously affected the reproduc-
tion of white sturgeon (Paragamian et al., 2001). River impoundment reduces flow velocity and possibly causes 
hypoxia in the transition zone of the reservoir upstream, which exposes the pallid sturgeon (Scaphirhynchus 
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albus) to low oxygen conditions and thus results in their high mortality (Guy et al., 2015). However, dedi cated 
flow regulations can in some cases provide suitable condition for migration and spawning of sturgeon. For exam-
ple, intermittent flood pulsing through dam operation to achieve key water temperature thresholds may have 
better facilitated the upstream migration and spawning of shortnose sturgeon adults (Vine et al., 2019).

Previous studies claim that the barrier effect of dams is the primary cause for the decrease in Chinese stur-
geon populations. However, new spawning grounds for Chinese sturgeon may have formed downstream of the 
Gezhouba Dam (P. Zhuang et al., 2016), indicating that blockage by the dam has not completely hindered the 
natural reproduction of this species. Therefore, it is essential to investigate the impacts of other factors, such as 
altered water temperature regimes, in addition to the blockage of migration routes, on the spawning of Chinese 
sturgeon. To date, most studies focus on the impacts of river damming on the migration and spawning of sturgeon, 
but it is also important to understand the impact on other life stages, such as foraging and overwintering.

3.4.  Impact on Eel and Lamprey

Eels (genus Anguilla) and lamprey (genus Lampetra) are among the most valuable fishery species around the 
world (P. R. Almeida et al., 2021; FAO, 2015). There are 19 species or subspecies of eels being identified glob-
ally (Righton et al., 2021), of which 17 are scattered throughout the Indo-Pacific and the other two species are 
distributed in the Atlantic Ocean (Figure 10). At present, several species of eel have been listed as “endangered” 
or “critically endangered” in the wild (Jacoby et al., 2015; Vié et al., 2009), including the European eel (Anguilla 
anguilla L.), American eel (Anguilla rostrata) and Japanese eel (Anguilla japonica). Lampreys are often misi-
dentified as eels because of their similar appearance; however, lampreys belong to the Order Petromyzontiformes 
whilst eels belong to the Order Anguillifomes (Renaud, 2011). Most lampreys, such as the sea lamprey (Petro-
myzon marinus), European river lamprey (Lampetra fluviatilis), Pacific lamprey (Entosphenus tridentatus), and 
Caspian lamprey (Caspiomyzon wagneri), are anadromous parasitic fish. The sea lamprey is a notorious invasive 
species in the Laurentian Great Lakes (Figure 10), and has devastated the fisheries of whitefish and lake trout 
(McDonald & Kolar, 2007; Zielinski et al., 2019).

The life stages of eels comprise eggs, leptocephalus (larva), glass eel (post-larva), elver (juvenile), yellow 
eel (non-mature adult), and silver eel (migratory adult). At each life stage, eels exhibit distinct morphologies 
(Tsukamoto et al., 2011). The larva of eels is notably larger than that of almost all the other fish species, and 
their morphology is well equipped for both passive and active swimming in their oceanic migration (Righton 
et al., 2021). Eels usually form their sex at the silver stage (Miller & Tsukamoto, 2016). Unlike salmonid and 
sturgeon, eels have reverse migration and spawning behaviors, as they grow up in freshwater and return to the 
ocean for reproduction (Figure 10). They typically dwell in seawater during the life stages of eggs, leptocephalus 
and glass eel, and in brackish and freshwater during the life stages of elver, yellow eel, and silver eel (Haro, 2014). 
The spawning of temperate eels, such as European eel and American eel, occurs in the Sargasso Sea (Béguer-Pon 

Figure 10.  Native and invading distribution of eel and lamprey around the world and their migration route for spawning.
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et  al.,  2015; Schmidt,  1923; Tucker,  1959), which has been recently reconfirmed by genetic analyses (Barth 
et al., 2020). The eggs and spawning adults of Japanese eel have only been discovered within a restricted area 
along the seamount chain of the Pacific West Mariana Ridge (Tsukamoto et al., 2011). In contrast to the distribu-
tion of spawning zones, the habitats of eels during the entire growth stage are flexible, encompassing all saltwater 
and freshwater areas, because eels can adapt to diverse environmental conditions and different dietary niches 
(Tesch, 2003). Lampreys have an anadromous migration habit and a wide habitat range (Moser et al., 2021). 
Some lampreys are life-long freshwater dwellers, whilst others are seawater dwellers that migrate to freshwater 
to spawn (Renaud, 2011). The sea lamprey breeds anadromously in basins of Western Europe and eastern North 
America, and swims into the North Atlantic and Western Mediterranean. The Korean lamprey (Eudontomyzon 
morii) is a small freshwater species that is mostly distributed in the Yalu River as well as some mountain rivers 
in northeast China, North Korea and the Russian Far East (Renaud, 2011).

Although eels and lampreys have strong acceleration and high mobility (Tytell & Lauder, 2004), they cannot 
jump over obstacles and their burst swimming speed is relatively low (Kemp et al., 2011). The barrier effect 
caused by dams is thus the most immediate impact on eels and lampreys, impeding their migration between 
spawning and rearing grounds. The downstream passage through turbines and dams leads to the high disorienta-
tion and mortality of breeding silver eels, which results in significant declines in spawning rates and populations. 
It has been reported that 75% of eels are delayed in their downstream migration, and up to 65% are definitively 
halted by dams (Besson et al., 2016). Eels are especially vulnerable to screens and turbines due to their anguill-
iform morphotype (Kerr et al., 2015), and thus hydroelectric facilities in dams can cause sublethal injury and 
direct mortality to migrating adult eels (Bruijs & Durif, 2009). In rivers with cascade dams, the cumulative effect 
may result in the level of overall escape of eels not reaching the required conservation criteria, which is 40% for 
silver eel in European countries (Pedersen et al., 2012). Habitat fragmentation caused by dams also impedes the 
upstream migration of eels (Jellyman, 2022). More than 15,000 dams have been constructed in the coastal drain-
ages of the North Atlantic, obstructing direct access to 87% of rivers and streams flowing into the Atlantic, and 
hence drastically reducing the inland extension of American eels (Jellyman, 2022; Miller & Casselman, 2014). 
The decline of the European eel (Bevacqua et al., 2015), American eel (Kwak et al., 2019) and Japanese eel (J. 
Z. Chen et al., 2014) in turn affects the ontogenetic stage and physiological traits of eels (Righton et al., 2021). 
The barrier effect of dams is also the main reason for the decline in the global population of most lampreys, such 
as about 80% loss of sea lamprey in the Iberian Peninsula and Caspian lamprey in the Volga River, leading to the 
collapse of associated commercial fisheries (Atkinson et al., 2020; Jellyman, 2022), and strong decline of Pacific 
lamprey in the Columbia and Snake Rivers (Moser & Close, 2003).

Eels have specific habitat preferences and requirements, with their habitat selection involving water tempera-
ture, water depth, substrate, salinity, flow velocity, oxygen concentration, vegetation cover, prey availability, 
and predation threat (Jellyman, 2022; Righton et al., 2021). Water temperature appears to be an important factor 
throughout the whole lifespan of eels, as they grow faster and mature earlier in warm waters (Tesch, 2003). Water 
depth can affect the habitat quality of eels, since small eels tend to favor shallow waters and large eels prefer 
deep waters (Jellyman, 2022; Jellyman & Arai, 2016). In particular, large eels spend the daytime in deep waters 
and night time in shallower waters (Righton et al., 2021). Eels choose different types of substrates in different 
seasons, preferring soft substrates with abundant organics or silts in the spring, muddy substrates in the summer, 
and rubble substrates in the autumn (Tomie et al., 2016). Their substrate preference varies with body size, with 
smaller eels preferring coarse substrates (gravels, cobbles, and boulders) and larger eels preferring fine substrates. 
These habitat variations are likely due to the combined effects of changes in physical space requirements and prey 
preference with the increasing body size of eels (Lloyst et al., 2015).

Alterations of water temperature regime, flow velocity and riverbed substrate due to river damming can have 
dramatic effects on the living conditions of eels (Righton et al., 2021). The release of hypolimnetic water from 
reservoirs has a cooling effect on water temperature in summer and thus degrades the growth of eels downstream 
of dams (Maheu et  al.,  2016a). The migration speed and route selection of eels are affected by flow veloc-
ity, and thus decreases in flow velocity due to dams may cause failure of their migration (Jansen et al., 2007). 
During downstream migration, eels usually swim actively with a speed of 0.3–1.2  m/s (Behrmann-Godel & 
Eckmann, 2003), and those that manage to migrate downstream pass over the dam crest only when the flow 
velocity is high (Besson et al., 2016). Artificial fluctuations in water depth due to dam operations inevitably 
affect the living environment of eels (Righton et al., 2021). Dams are known to cause substrate-sorting effects 
and thus result in local habitat homogeneity, which limits the diverse substrate requirements of eels (Naganna 

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

25 of 64

& Deka, 2018). Dams intercept sediment and reduce downstream substrate availability for the critical life stages 
such as nesting and refuge of eels (Černý et al., 2003). The decreased sediment flux can also cause delta recession 
(Baisre & Arboleya, 2006), which increases the susceptibility of eels to natural disturbances (Day et al., 2007; 
O'Connor et al., 2015). The introduction of non-native species due to river damming squeezes the habitat and 
even leads to extinction of native eels and lampreys (Marohn et  al., 2014). Nonetheless, there are also some 
marginal benefits of river damming for eels. Reservoir eutrophication has been reported to increase chirono-
mid populations, which comprises the major food of eels (Aprahamian et al., 2021). The increase in plant and 
zooplankton production caused by reservoir eutrophication is considered to provide an additional benefit to the 
populations of eels (Bunting et al., 2007). In some cases, the isolation created by dams can be beneficial to eels 
by preventing the introduction of contaminants, parasites and diseases into their habitats (Liermann et al., 2012; 
Righton et al., 2021).

Limited by monitoring technology, comprehensive and reliable data on the migration routes and spawning 
grounds of eels are sparse, which hinders accurate assessments of the impact of river damming on eels. To date, 
relevant studies outside of Europe, the Americas and Japan are scarce, and the lack of information across Africa 
is a severe barrier to the appropriate assessment of the conservation status of eels on a global scale (Righton 
et al., 2021). In addition, when compared to intensive studies concerning the impacts of river damming on eels, 
similar research on lampreys needs to be enhanced. Although an individual small dam has much less impact on 
eels and lampreys than a large dam, the cumulative impact of many small dams requires adequate attention, given 
their widespread and intensive distribution (Lehner et al., 2011). Climate change could alter water temperature 
regime and thereby induce impacts on the habitat of eels and lampreys, and is regarded as one of the least under-
stood risks to the species worldwide (Jacoby et al., 2015).

3.5.  Impact on Other Fish Species

River damming also impacts on other fish species, which have less socioeconomic and cultural value, such as 
giant catfish, tilapia and sardines (Figure 11).

Giant catfishes are widely known for their giant bodies and mysterious trails in deep water areas, and they 
can grow to more than two m in length (Boulêtreau & Santoul,  2016). Giant catfish species mainly include 
the Mekong catfish (Pangasianodon gigas, Pangasius krempfi, Pangasius sanitwongsei, and Pangasius mekon-
gensis), Amazonian catfish (Brachyplatystoma rousseauxii and Brachyplatystoma filamentous), and European 
catfish (Silurus glanis). Megafaunal species have disproportionate per capita effects on community structure 
and ecological processes, and any shift in their abundance is likely to affect food webs and ecosystem functions 
(Malhi et al., 2016). Giant catfishes generally spawn in freshwater rivers and live in estuaries with long-distance 
migration (Figure 11). The Mekong catfish migrates long distances to spawn, spending much of their lives in 
the brackish waters of the Mekong Delta and in the South China Sea near Vietnam before returning to spawn in 

Figure 11.  Distribution of giant catfish, tilapia, and sardines around the world, as well as migration route for spawning of giant catfish.
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the Mekong River in Laos and Thailand (Hogan et al., 2007). Amazonian catfish adopt a basin-wide migratory 
life cycle between the Andean piedmont and the Amazon estuary, which makes them possess the longest river 
migration that may total up to 12,000 km in the case of Brachyplatystoma rousseauxii (Duponchelle et al., 2021). 
Amazonian catfish are of high commercial importance to fisheries of the Amazon River basin, forming a major 
ecosystem service provided by this river system (Fraser, 2018). Due to the impact of dam construction, giant 
catfish, and especially long-distance migratory species such as the Mekong and Amazonian catfish, have become 
endangered in the wild, threatening the stability of ecosystem structure due to their top-tier status in the food web 
(Duponchelle et al., 2021; Fraser, 2018; Hermann et al., 2016; Hogan, 2011). Dams on the Mekong River have 
disrupted the migration and spawning of giant catfish, and the situation may become worse as Laos plans to build 
more dams on the mainstream of the Mekong River (Soukhaphon et al., 2021). The migration route and access 
to a substantial portion of the spawning grounds of the Amazonian catfish in the Madeira River are blocked by 
two dams built a decade ago, which profoundly affects the populations and fisheries of the Amazonian catfish 
and further alters the food web of the river ecosystem controlled by this apex predator (Duponchelle et al., 2016; 
Fearnside, 2013; Fraser, 2018). It has also been reported that the body size and trophic level of Amazonian catfish 
have declined in the reservoir and downstream reach of the Belo Monte Dam on the Xingu River after large 
hydropower development (Keppeler et al., 2022). Dams intercept sediment and nutrients that nourish the Amazon 
River and its floodplain, and damage fish physical habitats with a cascade of ecological effects (Fraser, 2018). 
The disruption of nutrient connectivity is more pronounced by dams in the Andean-Amazonian transition, whose 
rivers provide most of the sediment and nutrients to the Amazon (Lees et al., 2016).

Tilapia is the third most-cultured finfish in inland aquaculture, with its production reaching 4.41 million tons in 
2020, and accounting for 9% of world inland aquaculture (FAO, 2022). Tilapia mainly includes the Nile tilapia 
(Oreochromis niloticus) and Mozambique tilapia (Oreochromis mossambicus). The Nile tilapia is indigenous in 
the Nile River; however, it is highly invasive elsewhere and has invaded many ecosystems worldwide (Faunce & 
Paperno, 1999). The Mozambique tilapia is indigenous in South Africa, Zimbabwe, Mozambique, and Eswatini 
(Moyo & Rapatsa, 2021). Tilapia possess a strong survivability and are physiologically tolerant to a wide range of 
salinities, dissolved oxygen content and water temperature, and are characterized by multiple spawning, parental 
care, and extreme feeding plasticity (Avella et al., 1993; G. Farmer & Beamish, 1969; Vitule et al., 2009). Tilapia 
inhabits the middle and bottom layers of water bodies, and can survive in waters of 16–40°C, with the optimal 
temperature being 28°C. Tilapia is a warm-water fish, which will hibernate or even die when water temperature 
is lower than 15°C. Tilapia feeds on the base of the food web at the bottom layer of a water body, most often on 
sediment resources such as nematodes, rotifers, bryozoans and hydrozoans, and is well adapted to surviving and 
growing in non-native environments (Peterson et al., 2006). Tilapia is widely cultured in reservoirs using cages in 
tropical and subtropical regions (Hishamunda, 2007), which can alleviate pressures from water scarcity and also 
help tilapia to overwinter safely (Moyo & Rapatsa, 2021). However, due to the strong environmental adaptation 
ability of tilapia, non-native tilapia that escapes accidently from aquaculture in reservoirs could rapidly become 
the dominant population. This increases the risk of invasive species to the original ecosystem of reservoirs, result-
ing in the loss of genetic integrity of native species, damage to the native biodiversity, and further affecting the 
stability of the native river ecosystem (Bernery et al., 2022; Canonico et al., 2005; Cucherousset & Olden, 2011). 
Therefore, it is critical to quantify the impact of cultivated tilapia on the native fish species in reservoirs, and 
conduct actions to control their habitat range and prevent their escape into the wild, in order to protect the ecosys-
tem stability of dammed rivers.

River damming also affects non-migratory offshore marine fishes such as sardines (Sardina pilchardus), which 
are mainly distributed in the Atlantic and Mediterranean (Figure 11). Sardines are a small pelagic fish that typi-
cally feeds on plankton, and plays an important role in global fisheries (FAO, 2019). The availability of food such 
as phytoplankton and zooplankton depend on the nutrient inflows from rivers, and thus river damming indirectly 
affects sardine populations (Biswas & Tortajada, 2012). For example, the autumn flooding of the Nile River 
irrigates and fertilizes the floodplain annually, and supplies sufficient nutrients to the Mediterranean Sea. Before 
1965, the flood of Nile River delivered about 7 × 10 3 tons year −1 of nitrogen and 7–11 × 10 3 tons year −1 of phos-
phorous to the Mediterranean coast (Nixon, 2003). The nutrients in the Nile floodwater support a massive diatom 
bloom and a productive fishery, particularly for sardines (Halim, 1960; Halim et al., 1964). However, completion 
of the Aswan High Dam in 1965 decreased the fall flood by about 90% (Dorozynski, 1975) and reduced the fertil-
ity of the southeastern Mediterranean waters, leading to a sharp decline in the marine fisheries (Milliman, 1997; 
Mohamed, 2019; Rzóska, 1976). It has been reported that sardine catches along the Egyptian coast declined 
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from 18,000 tons in 1962 to a mere 460 tons in 1968 (Abul-Atta, 1978). Since the late 1980s, the total fish 
catch, including sardines, of the Nile and its estuaries have recovered back to the level before construction of the 
Aswan High Dam (General Authority for Fish Resources Development, 2012). The cause for this recovery may 
be attributed to the increasing discharge of sewage from urban expansion stimulated by damming in the Nile 
(Nixon, 2003; A. J. Oczkowski et al., 2009; Richards, 1982). However, the long-term fertilizing effects of sewage 
require further investigation, as the persistent discharge of highly poor-quality water could damage the coastal 
ecosystem and lead to an unsustainable increase, or even decline, of the fishery (A. Oczkowski & Nixon, 2008).

In many cases, the time of dam construction coincides with adjustment of fishery policies that aim at increasing 
fish catch and consequently results in overfishing. The contribution of overfishing and river damming to the 
decline of fish catches demands quantification, in order to investigate and reveal the extent of fishery decline 
attributed to dam construction (Biswas & Tortajada, 2012). Meanwhile, due to rapid urbanization and indus-
trialization, nutrient supply to downstream river reaches and estuaries has largely increased (A. J. Oczkowski 
et al., 2009), leading to rebounds of estuarine fisheries after river damming. It is essential to understand whether 
this effect is sustainable or brings new challenges. Most current studies have focused on endangered or major 
commercial fish species in order to prevent extinction or sustain fishery economies. However, fish diversity plays 
an irreplaceable role in the aquatic food web and its integrity, as well as the stability of river ecosystems. There-
fore, we highlight the necessity for future investigations on the impacts of river damming on more fish species 
and fish communities.

4.  Fish Conservation Measures in Dammed Rivers
To offset or mitigate the impacts of river damming on fish, a variety of conservation measures, including fish 
passage facilities, artificial breeding and release, ecological reservoir operation, and habitat compensation in trib-
utaries, have been proposed and implemented. Each measure has its own advantages and limitations, application 
conditions, efficiency, and cost-effectiveness, and thus should be selected according to the specific situations of 
a given dammed river. Of course, policies concerning fishery conservation play an essential role, but are outside 
the scope of the present review. These policies include, but are not limited to, setting up nature reserves and 
germplasm resources reserves, implementing policies and laws for no-catch measures, and navigation restrictions 
during fish-sensitive seasons such as the spawning season (S. Huang & He, 2019; Maxwell et al., 2020; H. Zhang, 
Kang, et al., 2020).

4.1.  River Connectivity Restoration and Fish Passage Facilities

Restoring longitudinal and lateral connectivity, such as river-floodplain reconnection and fish passage facilities, 
could be the most direct approach to rehabilitate physical habitat and migration routes of fish in dammed rivers.

In recent decades, there have been increasing efforts to restore fish floodplain habitats in riverine rehabilitation 
practices, as floodplain channels that are lost or disconnected from the main river have demonstrated visible 
impacts on river ecosystems. Establishing the connectivity of floodplain channels to the main channel and restor-
ing lateral connectivity of river can provide essential nursery areas for fish and mitigate the loss of fish diversity 
(Stoffers et al., 2022). The restored floodplain channels in the Rhine River, Netherlands, have served as suitable 
nursery areas for rheophilic fish species (Stoffers et al., 2021). The restoration of hydrologic linkages between 
the main channel and floodplain in the Kissimmee River, USA, has demonstrated positive effects on food web 
structure and ecosystem functioning (Jordan & Arrington, 2014). In the upper Danube River, a secondary flood-
plain channel has been artificially created following a nature-based construction scheme, which has provided 
additional habitats and restored migration routes, thereby making an important contribution to restoring the 
population of endangered fishes (Pander et al., 2015). The restoration on a tributary of the upper South Esk River, 
Scotland, has reconstructed a natural meandering channel guided by historical maps, which reinstates floodplain 
connectivity and habitat for Atlantic salmon and trout (Addy et al., 2016).

Fish passage is potentially an effective engineering approach to reconnect fragmented ecological corridor due 
to river damming and restore river longitudinal connectivity. It is the earliest, and also the most widely used, 
measure to conserve migratory fish in dammed rivers (Schilt, 2007). Fish passage mainly includes fishway, fish 
lift, fish collection, and transportation, turbine passage, juvenile bypass, and other engineering transport meas-
ures (Figure 12). The earliest fishway can be dated to the mid-18th century in Europe (Clay, 1995). In the early 
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20th century, field and laboratory experiments on different fishway designs were performed. Denil (1909, 1938) 
created the unique Denil fishway to reduce the flow velocity inside the path (Figures 12a and 13a). In 1946, 
a vertical slot fishway (Figures 12b and 13b) was constructed on both sides of Hells Gate in the Fraser River, 
Canada, to allow salmonids to successfully cross the channel barrier caused by a landslide (Jackson, 1950). Monk 
et al. (1989) proposed a fishway configuration of pool and weir, in which nearly 100% of shad and almost all 

Figure 12.  Different types of fish passage facilities. (a) Denil fishway. (b) Vertical-slot fishway. (c) Nature-based bypass system. (d) Fish lift. (e) Fish collection and 
transport system. (f) Fish-friendly turbine. Panel (a)–(c) are redrawn from Thorncraft & Harris (2000).

Figure 13.  Different types of fishways. (a) Denil fishway for Arctic grayling in the Big Hole River watershed in Montana, 
Canada (source: Montana State University, photo by Matt Blank, 2015; https://www.montana.edu/ecohydraulics/research/). 
(b) Vertical-slot fishway in the Mosel River in Koblenz, Germany (source: The Federal Waterways Engineering and Research 
Institute (BAW); https://www.baw.de/en/die_baw/wasserbau/umwelt/umwelt.html). (c) Pool-weir fishway for migrating pink 
and coho salmon to spawning grounds in Anderson Creek, Canada (source: McElhanney Company; https://www.mcelhanney.
com/project/anderson-creek-fishway/). (d) Nature-based bypass fishway beside the Se San River of Cambodia (source: the 
Xinhua News Agency; https://new.qq.com/rain/a/20191026A099LC00).

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.montana.edu/ecohydraulics/research/
https://www.baw.de/en/die_baw/wasserbau/umwelt/umwelt.html
https://www.mcelhanney.com/project/anderson-creek-fishway/
https://www.mcelhanney.com/project/anderson-creek-fishway/
https://new.qq.com/rain/a/20191026A099LC00


Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

29 of 64

other species could successfully pass through (Figure 13c). These early efforts were mostly oriented at salmon 
species, with only a small number of studies aiming at shad. Recent legislation for endangered species in the 
United States, Canada, and Europe has re-emphasized the importance of fishways for migratory species other 
than salmonids and shad; meanwhile, some successful initiatives have been taken for migratory species in other 
parts of the world (Katopodis & Williams, 2012).

With the rapid growth of large dams, the applicability of fishway has been facing great challenges due to high 
cost, low efficiency and engineering complexity, which promotes the exploration of other types of fish passage. 
Fish lift has a design principle similar to an elevator, which can actively move and release fish from the down-
stream reach of the dam to the upstream reservoir (Figure 12d). These lifts induce fishes into a hopper that is 
raised from the bottom to the upstream side of the dam (Santos et al., 2021). Barry and Kynard (1986) found 
that the tailrace lift was more efficient than the early fish lift for American shad. It has been reported that the 
combination of an Archimedes screw and fish lift can significantly improve the efficiency of fish lift (McNabb 
et al., 2003; Zielinski et al., 2022). In some cases of high dams, where the construction of fishway and fish lift 
is unfeasible, a fish collection and transportation system could be an appropriate alternative (Figure 12e). Fish 
collection and transportation is a special form of fish passage facility, which is mainly adopted in high dams or 
in projects where fish need to climb several steps continuously. It attracts fishes into cabins or other boxes, and 
then transports the fish over the dam by ships or vehicles (Figure 14). In 1981, massive collection and transpor-
tation was implemented as an operational program by the United States Army Corps of Engineers (USACE) to 
reduce losses of juvenile salmonids during their seaward migration. Fish collection and transportation systems 
can improve the survival rate of fish passing through dams and has proved to be more effective than other fish 
passage facilities in some contexts (D. L. Ward et al., 1997).

Traditional turbines are extremely harmful for fish to pass through, thus fish-friendly turbines such as Archi-
medes screw turbines and blunt blade turbines have been gradually used (Figure 12f). Fish-friendly turbines 
have slowed rotational speeds and large openings, which can allow safe passage of small objects (Bracken & 
Lucas, 2013; YoosefDoost & Lubitz, 2020). Bypass systems (Figures 12c and 13d), such as the curved-bar rack 
bypass and the horizontal rod rack bypass, can guide downstream-moving fish toward a reasonably safe corridor 
around water intakes, and thus effectively reduce the mortality of fish passing through dams (Beck et al., 2020; 
Meister et al., 2022). In the eight dams of the lower Snake River and lower Columbia River, USA, most of the fish 
entering the powerhouse are diverted to a juvenile bypass system, providing safe and efficient passage for juvenile 
salmon to migrate downstream (Faulkner et al., 2019). River-like side channels are constructed in some dammed 
rivers, which serve as a bypass for fish migration and even as a supplementary habitat for fish reproduction (L. 
Zhang et al., 2023). In the Don River, Russia, a natural-type channel has been constructed to allow sturgeon to 
bypass the Konstantinovskiy Dam. Stellate sturgeon (Acipenser stellatus) eggs are found in the bypass channel, 
indicating that the bypass channel has been used as a spawning habitat (Pavlov & Skorobogatov, 2014).

Overall, fish passage facilities can assist fish to pass through the barrier of dams and mitigate the impact of habitat 
fragmentation. The efficiency of fish passages differs significantly between different types of fish passages. On 
average, the efficiency of downward passage is slightly higher than that of upward passage; pool-weir, vertical 
slot and naturalized fish passages have higher efficiency than Denil fishways and fish lifts (Noonan et al., 2012).

Figure 14.  Fish collection and transportation system in Fengman hydropower station in Jilin, China (source: the Xinhua 
News Agency; https://www.gov.cn/xinwen/2021-08/31/content_5634534.htm#10). (a) Fish collection from the box of fish lift. 
(b) Transportation of collected fish to upstream.
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Fishways are used mostly in low dams, which are usually built in low gradient rivers, to improve river longitudinal 
connectivity. The Denil and nature-based fishways are the most efficient fish passages (Baumgartner et al., 2018; 
Bunt et al., 2001). These fish passages can remain effective even when significant fluctuations in upstream or 
downstream water level occur (Quaranta et al., 2019). The Vianney-Legendre vertical slot fishway in the Riche-
lieu River, Canada, has shown to be successful for passing a variety of fish species, including lake sturgeon 
(Marriner et al., 2016). The Denil fishways of the 63 diversion dams in the Big Hole River basin in southwestern 
Montana provide opportunities for Arctic grayling (Thymallus arcticus) and other fish for year-round access to 
critical habitats (Triano et al., 2022). The nature-based fishway installed at a low dam in Indian Creek, Canada, 
has proven effective for multiple fish species to traverse the dam (Steffensen et al., 2013). However, fishways 
may have a poor effectiveness for some fish. The effectiveness of a fish weir at Foster Dam in the Santiam River, 
USA, is low to moderate for the downward passage of juvenile Chinook salmon, while it is consistently high for 
steelhead trout, indicating that fish weirs may not be a suitable solution for all species (J. S. Hughes et al., 2021). 
Overall, the passage efficiency of fishway is dependent on the slope, baffle and other characteristics affecting 
the flow field inside the pools, the water head drop between the pools, as well as the turbulence levels and flow 
velocities (Quaranta et al., 2019).

Fish lifts, fish collection and transportation systems are regarded as the most cost-effective fish passage facil-
ities for high dams. The fish lift of large hydropower dams on the Lima River, Portugal, effectively prevented 
fragmentation of potamodromous populations between different reaches (Mameri et al., 2019). Fish collection 
and transportation systems have the advantages of high flexibility, no interference to the structural layout of the 
dam, suitability to large variations in reservoir water level, and small occupation of space for fish to cross the 
dam. In the 1940s, a temporary collection and transportation system successfully transferred thousands of adult 
salmonids at the Rock Island Dam on the lower Columbia River. Fish collection and transportation systems have 
also been used to transport shad successfully at the Mactaquac Dam on the St. John River, Canada, and Essex 
Dam on the Merrimack River, USA (Clay, 1995). D. L. Ward et al. (1997) reviewed studies conducted by the 
US National Marine Fisheries Service from 1968 to 1989 concerning the efficiency of using trucks and barges 
to transport migrating juvenile Chinook salmon from the Snake River around dams to reservoirs in the lower 
Snake and Columbia rivers, and suggested that the use of barges to transport juvenile Chinook salmon could 
improve their survival rate. However, only 47% of Atlantic salmon succeeded in passing through the fish lift of 
the Golfech-Malause hydroelectric complex on the Garonne River, France. In the Gezhouba dam, it has proven 
successful to lure the bottom fishes by releasing jet flow during the collecting procedure (Y. Liang et al., 2014). 
The main difficulty specific to fish lifts involves fish trapping, as the V-shaped entrance of fish lift may inhibit 
salmonids entering the holding pool and cannot guarantee that the entered fishes will not return back to the river 
(Croze et al., 2008).

The passage efficiency of different fish species under different hydraulic conditions in passage facilities varies 
greatly from case to case (Bunt et al., 2016; Nieminen et al., 2016; Williams & Katopodis, 2016). Salmonids 
and clupeids have been found to efficiently pass through the vertical slot, pool-weir fishway, and Denil fishway, 
with an efficiency of 63%, 45%, and 51%, respectively (Castro et  al.,  2016; Mallen-Cooper & Stuart,  2007; 
Noonan et al., 2012). Brown bullhead (Ameiurus nebulosus) and striped bass (Morone saxatilis), which have a 
smaller body size than adult carp, prefer nature-based fishways, and have a passage efficiency of up to 70% (Bunt 
et al., 2012). Fish lifts are the most effective up-migration measure for lamprey and brown trout, but the difficulty 
is to capture small-sized individuals (Castro et al., 2016; Pompeu & Martinez, 2007). Tummers et al. (2016) high-
lighted that the physical characteristics of baffles and high turbulence may inhibit lamprey ascending the passage, 
and Moser et al.  (2019) proposed a novel modification of fishway entrance for Pacific lamprey. The passage 
efficiency of fishways is also related to the behavior of fishes (Shahabi et al., 2021), as their swimming direction 
in fishways is dependent on their experience with the flow field (Goodwin et al., 2014). Inadequate attractiveness 
for fish is recognized to be a major factor limiting the efficiency of fish passages (David et al., 2022). According 
to Laine (1995), fish often need to become acquainted with the passage entrances before they start to climb the 
passage facilities. Mensinger et al. (2021) suggested that fish may segregate at barriers based on their personality 
and sizes, and this could be alleviated by increasing fishway attraction and maximizing passage opportunity, 
leading to more exploratory eels passing through successfully. Generally, the functionality of fish passages in 
alleviating dam barrier effects on fish is limited, and requires both good design of the facilities and good swim-
ming ability of fishes (Noonan et al., 2012).

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

31 of 64

Fish passage has demonstrated to be an effective way in many cases to reconnect fragmented fish habitats in 
dammed rivers. However, it is argued that moving fish preferring a lotic environment from downstream reaches 
to reservoirs could cause further damage to these fish species, as the lentic environment of reservoirs may form 
an ecological trap that makes the transferred fish unable to find their migration path or suitable habitats. Fish-
ways are mostly favorable to the fish species with strong swimming ability, which could potentially change the 
structure of fish communities both upstream and downstream of a dam, and hence further impair fish biodiversity 
in the dammed river. There are also plenty of fish passages that have not achieved their expected functionality. 
Their low effectiveness could be attributed to insufficient considerations of fish swimming ability and hydraulic 
characteristics in the design of the facilities. This demands renewed efforts to develop innovative solutions, at 
the core of which is the need for engineers and biologists to work together and design passages based on the 
preferred hydraulic conditions of multiple fish species. In addition, nature-based solutions and application of 
natural materials, instead of concrete and metal, in fish passage constructions are an important aspect. The lack 
of long-term monitoring and prompt assessment of the effectiveness of the operational fish passages also restricts 
the modification and improvement of such facilities.

4.2.  Artificial Breeding and Release

Artificial breeding and release of target fish species in dammed rivers is a viable conservation measure to replen-
ish the populations of endangered fish species in the wild and restore fishery resources (Molony et al., 2003; 
Naish et al., 2007; J. Yang et al., 2013), although the evidence base for effectiveness is incomplete (Rytwinski 
et al., 2021). Artificial breeding and release can be categorized into two main types: “ecological restoration” 
and “resource restoration.” “Ecological restoration” aims to conserve the endangered native fish populations 
and prevent extinction by releasing hatchery-reared fish into the original habitats of dammed rivers. “Resource 
restoration” aims to recover fishery resources and improve the economic fishery in dammed rivers by artificial 
breeding and release (L. Wang, 2016).

This measure has been adopted as an essential conservation strategy for more than 20 vulnerable fish species in 
China (J. Yang et al., 2013). For instance, Chinese sturgeon are preferentially distributed in the lower reaches of 
the Yangtze River; however, their spawning migration route is blocked and spawning grounds are damaged by 
hydropower dams on the upper Yangtze River, which reduces the length of natural spawning ground from 600 to 
7 km and causes their gonads to degenerate (L. Wang & Huang, 2020; Xie, 2003; Y. Zheng et al., 2022). Since 
1984, artificial breeding and release of larvae and juveniles (Figure 15) into the natural environment has become 
an important approach to conservation efforts of the Chinese sturgeon (Chang et al., 2021; Gao et al., 2009; Qin 
et al., 2020; Stone, 2008; Wei et al., 2004). From 1983 to 1998, approximately 6 million Chinese sturgeon fry 
and juveniles were released into the Yangtze River (H. Wang et al., 2019). About 500 to 1,500 adult sturgeons 
were released each year into the spawning ground of the Yichang section of the Yangtze River from 1997 to 2003 
(J. Li et al., 2021; P. Zhuang et al., 1997). In addition, a breakthrough in artificial breeding technology for the 
two sturgeon species has been made, so that the artificially bred Yangtze sturgeons can be developed to a third 
generation in the laboratory (D. Li, Prinyawiwatkul, et al., 2021).

The first stock enhancement program by breeding and release in Brazil was carried out for non-native fishes in the 
northwest region, which improved fishery yields significantly (Paiva et al., 1994). Nowadays, stock enhancement 

Figure 15.  Artificial breeding and releasing of Chinese sturgeon. (a) Artificially bred fry and juveniles of Chinese sturgeon. 
(b) Release of artificially bred fry and juveniles of Chinese sturgeon into the Yangtze River. Photos are provided by China 
Three Gorges Corporation.
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has become a mandatory management action, which is considered a primary measure to mitigate the impacts of 
reservoirs on fish populations and protect ichthyofauna in Brazil (F. P. Arantes et al., 2011; Casimiro et al., 2022). 
In China, dam construction in the Yangtze River basin has significantly affected natural reproduction processes 
and decreased the fishery resources of FMCCs (Q. Peng et  al.,  2012). After impoundment of the TGR, the 
resources of FMCCs have decreased by more than 90%, compared to that in the 1960s (Y. Yi & Wang, 2009). 
The development of artificial breeding techniques and large-scale implementations of stock enhancement have 
significantly recovered the FMCCs resources in the Yangtze River basin. The annual release of over 10,000 kg of 
bloodstock of FMCCs has been carried out in the Shishou and Jianli sections of the middle Yangtze River since 
2010, which has brought substantial economic, social, and ecological benefits (H. J. Chen, 2019). The improved 
FMCCs fishery has alleviated limitations depending only on the catches of natural FMCCs resources (H. J. 
Chen, 2019; J. Yang et al., 2013). In the Lancang River, China, fish breeding and release has been introduced for 
almost all the dams, which has proven effective in recovering fish resources (H. Xu & Pittock, 2018).

Overall, artificial breeding and release of target fish species is an important measure to recover endangered fish 
species, maintain genetic diversity, support population expansion, and further preserve the ecosystem integrity of 
dammed rivers (Le Luyer et al., 2017; Leinonen et al., 2020). However, monitoring data shows that the number of 
juvenile Chinese sturgeon in the estuary of the Yangtze River has not shown a visible increase (Wei et al., 2004), 
as there are only small-scale natural breeding activities in the spawning grounds below the Gezhouba Dam 
(P. Zhuang et al., 2016). Thus, artificial breeding and release has not recovered the natural reproductive processes 
of wild Chinese sturgeon, but only maintains their populations to some extent and prevents them from extinction.

In the artificial breeding process, the selection and renewal of breeding fishes are sometimes overlooked during 
artificial reproduction, leading to parent fishes with inferior genetic characteristics arising from inbreeding. The 
genetic introgression of the released populations has the potential to reduce the genetic diversity and impair the 
performance of wild populations due to genetic drift (Lin et al., 2022). For instance, artificially bred FMCCs 
with inferior genetic characteristics escaping from tributaries and connected lakes, have affected the natural 
high-quality germplasm resource of FMCCs in the mainstream Yangtze River, further leading to a decrease in 
the quality of the germplasm resource and adaptation ability to the wild environment of the wild FMCCs (H. J. 
Chen, 2019). Fish stocking activities can introduce exotic diseases and parasites into the water body, which is 
potentially harmful to the endangered populations (J. Yang et al., 2013). Therefore, the genetic admixture between 
artificially bred fishes and wild fishes could cause genetic contamination and affect the genetic structure as well 
as the stability of wild populations, leading to genetic and ecological risks (Abdolhay et al., 2011). In addition, 
there is competition between large-scale released hatchery fish and wild recipient fish, squeezing the population 
of wild species (J. D. Bell et al., 2008). It is necessary to understand the carrying capacity of the receptor envi-
ronment and the size of the wild population before conducting artificial stocking and release, in order to reduce 
the negative impacts and maximize the benefits (Agostinho et al., 2016). In particular, artificial breeding and 
release of non-native species can lead to biological invasions, which will result in changes and declines in native 
fish diversity (Bernery et al., 2022). For instance, tilapia, which possess a wide environmental adaptive ability, 
have become the dominant species in reservoirs and lakes due to artificial enhancement of stocking, threatening 
the survival of native fish species (Cucherousset & Olden, 2011).

Long-term field monitoring has shown that most artificially bred fishes cannot reproduce naturally in the wild, 
but merely maintain the size of the target fish population. Failure to reproduce a second generation naturally 
leads to the challenge that the wild population of the fish species cannot increase, and thus the stability of the 
wild population is vulnerable in the long-term. Therefore, it is important to investigate the mechanisms of natural 
reproduction of the target fish species in dammed rivers, including both artificially bred and wild individuals, for 
restoring populations. Moreover, due to the lack of long-term and continuous monitoring data, the quantitative 
impacts of artificial breeding and release on river ecosystems remain unclear. It is essential to establish a risk 
assessment system on genetic admixture and species invasion to evaluate quantitatively the negative effects of 
artificial breeding and release. This could help improve conservation measures to increase the target fish popula-
tion and protect river biodiversity.

4.3.  Nature-Based Solutions and Reservoir Ecological Operation

Nature-based Solutions (NbS) have been recognized as an umbrella concept to capture eco-friendly strategies 
that mimic nature with broad public acceptance (Cohen-Shacham et al., 2016; Y. A. Song et al., 2019). NbS 
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follows the laws of nature to protect and restore degraded ecosystems as a whole, which can be applied in various 
domains (Maes & Jacobs, 2017; Nesshöver et al., 2017; Raymond et al., 2017). After the first appearance in the 
official report from the World Bank (2008), the idea has gained increasing attention in scientific communities, 
governmental agencies and non-governmental organizations worldwide (Cohen-Shacham et al., 2016; Griscom 
et al., 2017; Krull et al., 2015). NbS is particularly suitable for watershed ecosystem protection and river ecosys-
tem remediation so as to preserve and restore the functions and valuable services that nature provides.

Conventional reservoir operations aim predominantly to maximize social-economic benefits, which may cause 
severe damage to the ecological structure and functioning of river ecosystems. By contrast, ecological reser-
voir operations follow the idea of NbS, which aims to balance social-economic benefits and river ecosystem 
requirements (X. Xia et al., 2009). Studies on reservoir ecological operation have spanned several decades, since 
Schlueter (1971) proposed that reservoir operation schemes should take the habitat diversity of river ecosystems 
into account when meeting the social-economic water demand. Many studies have been dedicated to developing 
optimization models for reservoir ecological operation (D. A. Hughes & Ziervogel, 1998; C. Liu et al., 2019; 
Suen & Eheart, 2006). The United States and Australia are two countries that have undertaken relatively early 
implementations of reservoir ecological operation (Higgins & Brock, 1999; A. J. King et al., 2010). In recent 
years, China has made great efforts in reservoir ecological operations, which have made visible contributions to 
restoring fish resources in dammed rivers (Q. Chen et al., 2021; C. Ma et al., 2020).

Flow regulation can create suitable hydrological conditions for fish to acquire their demand environment at 
critical life stages, especially during spawning periods (Yin et al., 2011). The NFR, which shapes river species 
community and ecosystem structure and function (Poff, 2018), is crucial to riverine biodiversity and healthy 
(Bower et al., 2022; Poff et al., 1997). Releasing ecological flow (Maavara et al., 2020; Poff, 2018) is an impor-
tant measure of reservoir ecological operation (Y. Miao et al., 2020; X. Xia et al., 2009; Y. Xia et al., 2019). Q. 
Chen et al. (2012), D. Chen, Chen, et al. (2016) proposed an operation scheme for the Qingshitan Reservoir in the 
Lijiang River, China, to maintain a quasi-NFR in the downstream reach for fish conservation when meeting the 
demands of irrigation, cruise navigation and water supply. Creating artificial floods through reservoir operation 
has been used to stimulate spawning of drifting eggs in dammed rivers (C. Ma et al., 2020; Zhou et al., 2019). In 
the Colorado River, artificial flood experiments have been conducted at the Glen Canyon Dam for many years, 
which have successfully restored the endangered humpback chub (Gila cypha) and maintained populations of 
other native fish species (Jacobson & Galat, 2008; Melis et al., 2015; Yao et al., 2015). The Hume Reservoir in 
the Murray River, Australia, rebuilds some small-to-medium floods, which modifies the timing of peaks to trig-
ger the spawning of native golden and silver perch, and increase the duration of floods to extend the recruitment 
of species from mid-October to mid-December 2005 (A. J. King et al., 2010). In China, ecological operation of 
the TGR has substantially increased the spawning of the FMCCs (Figure 16). During the 4-day experiment of 
ecological operation of TGR conducted in mid-June 2018, an initial outflow of 11,000 m 3/s and a flow increment 
in the range of 1,000 to 1,500 m 3/(s d) was implemented, which formed a concentrated egg spawning activ-
ity of FMCCs in the Yichang section of the Yangtze River (C. Ma et al., 2020). In Brazil, reservoir operators 
have recently proposed a flow regime that could restore flooding for 32 fish breeding sites in the Xingu River 
(Moutinho, 2023).

Discharge regulation alone is sometimes insufficient to meet the demand of fish reproduction, since fish spawn-
ing also requires suitable water temperature. Controlling the selective withdrawal device to adjust the water 
temperature of the outflow from temperature-stratified reservoirs can improve the water temperature rhythm to 
some extent for fish reproduction downstream of dammed rivers (Saadatpour et al., 2021). A selective-withdrawal 
device was installed at the Shasta Dam in 1997 to manage the water temperature regime in the downstream reach 
of the dam to meet the year-round thermal requirements of salmonid while fulfilling the obligation on water deliv-
ery, power generation and flood control. Its use resulted in a significant increase in the salmonid fish population 
(Bartholow et al., 2001; Hanna et al., 1999). A water temperature regulation experiment was conducted in the 
Xiluodu-Xiangjiaba cascade reservoirs in the Yangtze River in May 2017, which increased outflow temperature 
and thereby facilitated fish spawning in the reaches downstream of the Xiangjiaba dam. About 10 million and 100 
million fish eggs were monitored in the Yibin and Jiangjin section of the Yangtze River, respectively. In particu-
lar, the annual peak in fish spawning occurred during the period of the experiment (Ren et al., 2020).

Sediment regulation of reservoirs can change the morphology of the downstream reaches, and this potentially 
affects the location and quality of fish habitats (W. Wang et al., 2012; H. Zhang, Jarić, et al., 2021). Sediment 

 19449208, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000819 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Reviews of Geophysics

CHEN ET AL.

10.1029/2023RG000819

34 of 64

regulation has been implemented at the Xiaolangdi Reservoir in the Yellow River since 2002, resulting in the main 
channel of the lower reach of the dam being fully scoured (C. Miao et al., 2016). The regulation also brings abun-
dant nutrients and hence plankton blooms downstream, providing suitable feeding sites for pelagic and epipelagic 
fish that congregate in the Yellow River estuary (L. Zheng et al., 2014). Some studies show that sediment flushing 
could erode the areas of spawning and feeding grounds of fish, and even lead to fish mortality (Kong et al., 2017). 
However, proper design of sediment flushing could control suspended sediment concentration and reduce adverse 
effects on fish in the downstream reaches (Cattaneo et al., 2021). In addition, fish can possess a certain resistance 
to the negative impacts caused by sediment flushing operations (Grimardias et al., 2017). The three-year field 
investigation conducted from 2009 to 2011 concerning the controlled sediment flushing of a small reservoir on 
the Adda River in Italy showed that fish resources in the downstream reach were not affected significantly (Espa 
et al., 2015). Similarly, fish density showed no significant impairment during controlled sediment flushing oper-
ations conducted in 2016 at the Verbois Reservoir in Switzerland (Cattaneo et al., 2021).

Control of intermittent reservoir discharges is possible to reduce the damage of TDG supersaturation on fish. 
Modeling results illustrate that intermittent discharges from the Bala Reservoir could diminish TDG supersatura-
tion and reduce the negative effects on fish in the Zumuzu River, China (J. Feng et al., 2014). Based on numerical 
modeling of TDG, Wan et al.  (2021) found that a proper discharge scheme for the Xiluodu Reservoir on the 
Yangtze River could reduce the level and maximum residence time of TDG in downstream waters, thereby alle-
viating negative impacts on fish. The mixing of tail water and spill discharge can create areas of low TDG level, 
providing shelter zones for fish to avoid damage from high TDG levels (Wan et al., 2020).

Reservoir ecological operation has developed from single factors to the coupling of multiple factors of fish phys-
ical habitat. W. He et al. (2020) proposed an operation model for the Sanbanxi Reservoir in the Yuanjiang River, 
China, to meet the demand of outflow water temperature and downstream ecological flow. Z. Xu et al. (2017) 
proposed an eco-friendly operation scheme considering flow velocity and water temperature demands of target 
fish, which significantly facilitated the spawning of this fish species. In South Africa, an experiment has been 
conducted at the Clanwilliam Dam on the Olifants River by creating small pulses of high flow and making the 
water temperature at the spawning site reach above 19°C, which has resulted in a visible increase of successful 
spawning activities of yellowfish (Barbus capensis) downstream of the dam (J. King et al., 1998). In the USA, a 

Figure 16.  Effect of reservoir ecological operation on fish spawning in dammed river. Adapted from Q. Chen et al. (2021). (a) The proposed ecological operation of 
the Three Gorges Reservoir (TGR) for improving the spawning of four major Chinese carps (FMCCs) in the downstream river of the TGR. (b) The changes of spawned 
eggs of FMCCs in the downstream river of the TGR before and after the proposed ecological operation. Data are available from China Three Gorges Corporation and 
China National Environmental Monitoring Center. There was no measurement of spawned eggs during the TGR ecological operation in 2020 due to COVID-19.
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flow pulse has been released from the Gavins Point Dam, together with the improvement of water temperature, to 
promote spawning of pallid sturgeon in the lower Missouri River (Jacobson & Galat, 2008).

The effect of ecological operation of a single reservoir is sometimes limited. Joint operations of multiple reser-
voirs, which can be in a cascade along one river or are distributed on multiple rivers within the same watershed, 
can better coordinate the social-economic interests and ecological requirements. Dalcin et al. (2022) reported a 
methodological framework to guide operations of cascade reservoirs for rebuilding expected flow regimes. The 
application to the reach between Porto Primavera Reservoir and the Itaipu Reservoir in the upper Paraná River 
basin in Brazil provided suitable conditions for the successful recruitment of migratory fish species. Q. Chen 
et al. (2013), D. Chen et al. (2015) proposed an adaptive operation scheme for two cascade reservoirs, Jinping-I 
and Jinping-II, in the Yalong River, China, to meet the requirements of daily ecological flow and water tempera-
ture for the conservation of the indigenous fish species Schizothorax chongi in the dewatered river reach between 
the two dams. D. Chen, Leon, et al. (2016), D. Chen, Leon, Engle, et al. (2017), and D. Chen, Leon, Hosseini, 
et al. (2017) optimized the operation of 10 reservoirs in the Columbia River to maximize total power revenue 
and fulfill the ecological flow requirements of fish, providing an important reference to ecological operation 
of multiple reservoirs. Z. Jiang et al. (2019) developed a multi-objective optimization model to balance flood 
control, power production, and ecological flow requirement of a large-scaled cluster of reservoirs with mixed 
types in the Pearl River basin, China. The model results played a significant role in the operations to improve both 
social-economic benefits and fish conservation.

Although there are studies and engineering practices of reservoir ecological operation concerning multiple 
factors, such as flow and water temperature, the spatiotemporal matching of different factors with regards to 
habitat requirements of different fish species and their life cycles remain challenging. In the joint operation of 
cascade reservoirs, available studies mostly use water balance methods to link the reservoirs. In future, it is better 
to adopt hydrodynamic models, which can simulate the distribution of flow fields, water temperature, and TDG 
to achieve refined operation strategies for more effective conservation of fish. In addition, climate change could 
bring large uncertainties to the inflow of reservoirs (Y. Wang et al., 2019), which implies that current reservoir 
ecological operations based on historical data and deterministic models must be updated to incorporate inflow 
uncertainties under future climate changes.

4.4.  Habitat Compensation and Dam Removal in Tributaries

The shift from a lotic to a lentic environment of the reservoir after river damming leads to a permanent loss of 
habitats for the maturation and spawning of fish species (Antonio et al., 2007; Liermann et al., 2012), and such 
loss cannot mostly be remediated through reservoir ecological operations. The situation is more severe in rivers 
with cascade dams, for instance the Lancang River, where an upstream dam is located in the backwater zone of 
the nearest downstream reservoir, and the lentic section stretches for over one thousand kilometers. Under such 
circumstances, relatively unaltered tributaries can provide possible alterative places to conserve indigenous species 
of the dammed mainstream by serving as high-value natural surrogates or supplements that can restore  some 
function of the mainstem ecosystems (Neely et al., 2009; Nunes et al., 2015; Pracheil et al., 2009, 2013). The 
elements of natural flow fluctuations and the availability of food resources and shelter areas could be main-
tained in these tributaries. Moreover, diverse hydraulic conditions exist in the upper, middle, and lower tributary 
reaches, giving the migratory or rheophilic fish species chances to colonize new habitats. In addition, for some 
native fish species, their survival and life history requirements are directly related to intact longitudinal pathways, 
including the possibility of migration into tributaries for reproduction and rearing (Da Silva et al., 2015). There-
fore, the use of unregulated tributaries to alleviate the adverse impact of impoundments in the mainstream has 
recently been forwarded as a key alternative for fish conservation in dammed rivers (Figure 17).

Successful spawning of humpback chub is found to be related to the migration of adult individuals from the 
highly altered Colorado River to a relatively unregulated tributary, which offers necessary spawning habitat 
and hydrological variability (Gorman & Stone, 1999). Adults of American paddlefish prefer to migrate up the 
unaltered Yellowstone River rather than the regulated Missouri River when they move above the confluence of 
the two rivers, probably because the more natural flow pattern in the Yellowstone River tributary provides better 
spawning conditions than the Missouri River (Firehammer & Scarnecchia,  2006). In South America, recent 
findings indicate that at least eight long-distance migratory species utilize alternative spawning and nursery 
habitat in four tributaries of the upper Paraná River, after the construction of Porto Primavera Reservoir (Da Silva 
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et al., 2015, 2019). The Congonhas River in Brazil provides possible reproductive routes and feeding sites for six 
important rheophilic and migratory species, Piaractus mesopotamicus, Megaleporinus obtusidens, Prochilodus 
lineatus, Salminus brasiliensis, Pinirampus pirinampu, and Pseudoplatystoma corruscans, after the construction 
of Capivara Dam. These species are long-distance migrators and represent about 29% of all migratory species 
inhabiting the upper Paraná River basin (Garcia et  al.,  2019). In China, indigenous fish species in the upper 
Yangtze River and Lancang River are facing great threats incurred by the cascade dams. Conservations of the 
indigenous fish in these severely impounded rivers often focus on their large tributaries, which remain natural or 
are lightly dammed and have been recognized as alternative habitats for spawning and larvae development (L. 
Tang et al., 2021). W. Cao (2000) and Park et al. (2003) suggested that three tributaries, the Jialing, Chishui and 
Tuo rivers, in the upper Yangtze River can be a potential refuge for 22 endemic species, including Dabry's stur-
geon that is listed as a first-class protected animal in China. In the Lancang River, its tributary, the Luosuo River, 
serves as an important habitat for the migration and spawning of red mahseer (Tor sinensis), one of the most 
famous economic fishes of Yunnan province in southwest China (Hong et al., 2022; Y. Peng, Hong, et al., 2022). 
These findings demonstrate that unregulated tributaries can provide habitats required by fish at different devel-
opment stages.

Preservation of free flow is essential for tributaries to serve as alternative habitats of fish in dammed mainstreams. 
However, numerous tributaries of large rivers have been developed for individual or cascades of SHPs. In the 
United States, there are more than 75,000 reservoirs, and many of them are impounded by small dams (<10 m in 
height) that are now aged and in disrepair (Ahearn & Dahlgren, 2005). In China, more than 45,000 small dams 
have been built by the end of 2012 to meet rural electricity demand (Ding et al., 2019; Hennig & Harlan, 2018), 
and approximately 6,590 small dams are reported to be out of service due to their age and loss of function 

Figure 17.  Habitat compensation and rehabilitation in dammed river. (a) Laomuhe Dam on the Heishui River, a tributary of upper Yangtze River. (b) The removal 
of the Laomuhe Dam. (c) The Heishui River after the removal of the Laomuhe Dam. Photo by Lei Tang. (d) Habitat restoration measures in dammed river, including 
ecological spur dike construction, creating diverse habitats with large woody debris, big rocks, pool and riffle. (e) Changes of fish diversity and mass per unit effort in 
the Heishui River before and after the removal of Laomuhe Dam. Adapted from S. He et al. (2021).
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(Gao et al., 2018). Removal instead of maintenance of these aged facilities has been growing around the world. 
Since the early 1900s, nearly 1,800 small dams have been removed from rivers in the USA (Fox et al., 2022). In 
Europe, at least 4,000 dams and weirs have been removed since the mid-1990s (Kim & Choi, 2019). Removal of 
small dams in tributaries can open up spawning and rearing habitats in previously inaccessible regions upstream, 
which has shown positive effects on fish diversity of the dammed mainstreams (Barbarossa et al., 2020; Lasne 
et al., 2015; Magilligan, Graber, et al., 2016; O'Connor et al., 2015; Y. Peng, Hong, et al., 2022). Foley, Bellmore, 
et  al.  (2017) reported that anadromous fishes, such as salmonids, passed the former dam site within days to 
weeks after the removal of the Marmot dam in the Sandy River, USA, a tributary of the Columbia River. Simi-
larly, following the removal of small dams in the Jidu River, a tributary of the Lancang River, seven migratory 
species recolonized newly accessible habitats (Hong et al., 2022). In addition to the direct effect of reconnection 
and upstream access, dam removal has strong influences on fish physical habitat by changing sediment regime 
and channel morphology, which increase the heterogeneity of hydraulic features and create new habitats for fish 
species (Hatten et al., 2016; Im et al., 2011; Magilligan, Nislow, et al., 2016). The removal of a small dam in the 
Heishui River (Figures 17a–17c), a tributary of upper Yangtze River, has increased the percentage of suitable 
spawning habitat for Jinshaia sinensis by a factor of four (Figure 17e), due to the change in river morphology and 
hydrological regimes following the removal (L. Tang et al., 2021).

Although removing small dams to restore the natural conditions of rivers is shown effective to conserve fishes 
in dammed rivers, removals of large dams still face great challenges due to social-economic constraints and 
intensive as well as long lasting ecological consequences (O'Connor et al., 2015). To restore the access of salmo-
nids to their spawning grounds in the mainstream of Elwha River, two large dams, the Elwha Dam and Glines 
Canyon Dam, have been removed, resulting in increased species richness and functional stability of the riverine 
ecosystem (Foley, Warrick, et al., 2017; Shaffer et al., 2018; Warrick et al., 2015). Similar achievements have 
been made in the removal of the San Clemente Dam on the Carmel River, USA (Smith et al., 2020), which has 
gradually improved the spawning grounds of steelhead salmon near the original dam site and in its downstream 
reach (Harrison et al., 2018). Despite the visible ecological benefits, removal of large dams often comes at a huge 
cost, and long-term consequence of fish community demands further investigation.

After dam removal, naturalized artificial habitat, following the NbS concept, can be created to expand living spaces 
of fish (Figure 17d). The addition of gravel to rivers, known as gravel augmentation, is an early attempt at artificial 
habitat creation, which has proven to increase the available spawning grounds for Atlantic salmon and brown trout 
in regulated rivers (Barlaup et al., 2008; Pulg et al., 2008). Three types of artificial habitats (straw bales, straw 
tubes and moss tubes) have been implemented to enhance egg production of Galaxias maculatus, an important 
fishery species in New Zealand (Hickford & Schiel, 2013). In the Youjiang River, a tributary of the Pearl River, 
China, artificial habitats made of bamboo and palm slices have been deployed to serve as spawning grounds for 
fish that produce sticky eggs and as refuges that improve the survival rates of juvenile fishes (D. Guo et al., 2020). 
The installation of large woody debris can also restore degraded river ecosystems due to dam construction through 
“rewilding,” which has been proven to significantly improve the abundance of food resources and thereby increase 
the population of fishes in the restored reaches (Thompson et al., 2018). In the lower Mulde River, Germany, fish 
abundance increased nearly 10-fold eight months after the installation of large wood (Anlanger et al., 2022).

Tributaries cannot offer an identical replacement for the degraded habitats of previously undammed mainstreams, 
as the former have lower discharge, longitudinal distance, morphological variability, and habitat complexity than 
the latter. Discharge and its variability are essential to provide flow-related cues that initiate fish maturation and 
spawning, or create conditions for recruitment of larvae and juveniles. The longitudinal distance is critical for 
fish species that require long egg-drifting distances for survival. To date, quantitative methods for determining 
suitable tributaries for fish spawning, foraging and refuging have not been established. Future studies should 
attempt to coordinate the relations between conservation efforts in the mainstream channel and its tributaries to 
help achieve maximum effectiveness. In addition, despite the removal of a large number of dams worldwide over 
the past decades, our knowledge concerning these effects is still limited due to the lack of long-term monitoring 
data, which is critical to quantify the rate, magnitude and sequence of tributary habitat recovery to dam removal.

4.5.  Efficiency Assessment on Conservation Measures

A variety of measures to conserve fish species impacted by river damming are available and each measure can 
be effective under specific conditions. However, a challenge is to select appropriate measures based on real 
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situations and cost-effectiveness. Table 2 summarizes the major conservation measures and their advantages, 
disadvantages as well as applicable conditions. We acknowledge that environmental decisions are complex and 
require a nuanced understanding of local context and will almost always involve trade-offs.

Fishways are of benefit to fish species with strong swimming ability, but are mainly suitable for dams where 
the water head is <60 m. Fish lifts are space saving and mainly suitable for concrete gravity dams where the 

Conservation measures Advantages Disadvantages Suitability of applications

Fish passage facilities Fishway 1. Promote timely fish passage Only effective for fish species 
with strong swimming 

abilities

All types of dams with a water 
head between upstream and 

downstream within 60 m
2. Reduce damage to fish bodies

Fish lifts 1. Space-saving 1. Complex mechanical facilities Concrete gravity dams with 
a water head between 

upstream and downstream 
over 60 m

2. Higher possibility of failure

2. Easy to arrange in the dams 3. Limited number of passed 
fishes

Fish collection and 
transportation system

1. Flexible 1. High power consumption All types of dams with a water 
head between upstream and 

downstream over 60 m
2. Adjust the replenishment 

flow according to the fish 
preference

2. Complex operation and 
management

3. Fish mortality during 
transportation

Fish-friendly turbine passage Ecological friendly turbines can 
allow for the safe passage of 

small objects

Physically damage or traumatize 
fishes

Low and medium water head 
hydropower plants

Juvenile bypass system 1. Long length, with good 
ecological landscape function

1. Need more space All types of dams with a water 
head between upstream 
and downstream within 

30 m, and rely on tributary 
projects

2. Effectively reduce the mortality 
rate of fish passing through 

the dam

2. High requirements of local 
terrain conditions

3. Easy to adjust and expand the 
trial run after completion

Artificial breeding and release 1. More convenient operation and 
management

1. Longer exploration time All dammed rivers, especially 
for conservation of 

endangered or economic 
fish species

2. Relatively mature technology 2. Reducing survival chance of 
wild individuals

3. Protect fish species and increase 
fish populations

3. Dilution of genetic diversity in 
wild populations

Reservoir ecological operation 1. Restore the structure and 
function of river ecosystems;

1. Loss of social and economic 
benefits;

All types of dams with large or 
medium-sized reservoirs

2. Difficulties in coordinating 
departments;

2. Promote the fish spawning 3. Difficult to meet the needs 
of different fish species 

simultaneously

Habitat compensation in tributaries 1. Provide compensatory 
habitat for fish affected by 

hydropower in the mainstream;

1. Limited compensation ability 
of the tributaries without 

sufficient free-flowing length;

The presence of tributaries 
with high habitat similarity 
to the dammed mainstream

2. Restore the natural connectivity 
of the river;

3. Promote changes in 
the diversity of river 

characteristics;

2. Demolition of small dams 
in tributaries causes fish 
casualties and adenosis

4. Promote fish reproduction

Table 2 
Summary of Advantages, Disadvantages and Applicable Conditions of Fish Conservation Measures
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water head is >60 m, but they are mechanically complex and have limited passage capacity. Fish collection and 
transportation systems are flexible in space and time, and suitable for dams with water head >60 m, but they are 
complicated to operate and usually cause a high mortality rate during transportation. Fish-friendly turbines are 
designed for low and medium water head hydropower plants, which can decrease the mortality and mechanical 
damage to fish (Hogan et al., 2014; Pracheil et al., 2016; Watson et al., 2022). Juvenile bypass systems are mostly 
used where the water head is <30 m and there is a tributary present. Artificial breeding and release are effective to 
protect endangered fish species and restore the resources of economic fish species, but it could affect the survival 
and genetic diversity of the wild population. Reservoir ecological operation is an effective non-engineering 
method for fish conservation in dammed rivers and is particularly applicable to large and medium-sized reser-
voirs, but it may cause certain loss of social-economic benefits. Habitat compensation in tributaries can be a 
potential approach to conserve fish species that permanently lose their original habitats in the impounded main-
stream upstream of high dams, but their effectiveness depends on the ecological status of the tributaries and the 
future development of the mainstream.

Quantitative evaluation on the effects of conservation measures is essential to select proper approaches and 
improve their efficiencies. Table 3 summarizes the major indicators and methods to assess these different conser-
vation measures.

Passage effectiveness and efficiency are the main indicators to evaluate the capability of fish passage facilities 
(Bravo-Córdoba et al., 2021). Passage effectiveness is used to describe qualitatively the potential effect of fish 
passage facilities on fish proliferation by checking that the passage facility is capable of letting all target species 
pass through within the range of environmental conditions observed in nature during the migration period. 
Passage efficiency is a quantitative evaluation indicator of fish passage effectiveness, which is defined as the 
ratio of the number of species and quantities of fish individuals that migrate upstream through the fish passage 
facility to the number of species and quantities of fish individuals that demand to pass the dam in a specific period 
(Larinier, 2008). The average efficiency of fish passage facilities is 50–60% (Hershey, 2021). Evaluation of the 
effectiveness of artificial breeding and release depends on the specific objectives of the measure, and generally 
focuses on the growth of fry and the contribution to target fish resources as well as the related economic, ecolog-
ical and social benefits (Rytwinski et al., 2021). Ecological restoration aims at conserving endangered species, 
and the evaluation mainly focuses on the survival rate and natural reproduction of artificially hatched fry after 

Conservation measures Evaluation indicators Description and calculation

Fish passage facilities Fish passage effectiveness The potential effect of fish passage facilities on fish proliferation by checking that 
the passage facility is capable of letting all target species pass through within the 

range of environmental conditions observed in nature during the migration period. 
Calculations are based on the monitoring data of fish species, numbers, sizes, life 
stages, and behavior under the specific conditions of the operating fish passage

Fish passage efficiency The ratio of the number of fish species and quantities of fish individuals that migrate 
upstream through the fish passage facility to the number of fish species and 

quantities of fish individuals that demand to pass the dam in a specific period

Artificial breeding and releasing Survival rate after releasing Mark the fry to be released using marking techniques, and calculate the percentage of 
fish containing the number of marks in the fish catch by recapture

Catch rate The percentage of the catch in a certain water body and a certain period of time to the 
total resource of the fishing object in the water body during the same period

Reservoir ecological operation Ecological flow replenishment Replenishing the flow through reservoir operations to meet the minimum flow 
demand of downstream ecosystems

Spawning volume The spawning volume that is monitored for the spawning grounds during the reservoir 
ecological operation

Habitat compensation in tributaries Habitat diversity The overall richness of various types of habitats that accommodate various organisms

Fish diversity Biodiversity of indigenous fish species, including species richness, species 
abundance, and phylo genetic diversity

Fish populations The total number of fishes that inhabits a certain area

Table 3 
Summary of Evaluation Indicators for Fish Conservation Measures
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release (Lyu et al., 2021). Resource restoration aims at restoring fishery resources and improving the economic 
benefits of fisheries, and thus the evaluation has mainly focused on the catch rate. The evaluation indicators for 
reservoir ecological operation include replenishment of ecological flow and spawning volume of target fish in the 
downstream reach of the dam (J. Li et al., 2019), particularly, the amount of spawning volume during reservoir 
operation can well evaluate the effectiveness of ecological dispatch. The primary objective of habitat compen-
sation in tributaries is to protect the biodiversity of indigenous fish species, and the indicators for effectiveness 
evaluation include habitat diversity, fish diversity and fish populations.

There are significant differences in the cost-benefits of different fish conservation measures for dammed rivers 
(Table 4). Fish passage has significant variations in cost-benefits, depending on the types of facilities. The Denil 
fishway and fish lift have relatively low cost-benefits, while the juvenile bypass system and fish collection system 
have relatively high cost-benefits. The Denil fishway costs approximately USD 124,000 per vertical meter and 
has low maintenance as well as operation costs, but their average passage efficiency is only 16% (Noonan 
et al., 2012). Fish lifts are expensive to build and operate, and costs roughly USD 2.4 million to install and an 
annual maintenance charge of 5% (Noonan et al., 2012), although it has relatively high passage efficiency. Fish 
collection systems need to temporarily preserve the transferred fish during long-distance transport, leading to 
high mortality loss and operational costs. Juvenile bypass systems have relatively low construction and opera-
tional costs, and the average passage efficiency can reach 70%. However, it demands more space, which limits 
its applicability.

The disposable investment of artificial breeding and release ranges from millions to hundreds of millions of USD, 
and the cost-benefits depends on the bred fish species and scales of release (H. J. Chen, 2019). For instance, 
Chinese sturgeon spawns in the autumn, so they need to be incubated and reared indoor using heating devices to 
promote their growth, which is expensive to maintain (Wei et al., 2004). Ecological restoration for the endangered 

Conservation measures Costs Benefits

Fish passage facilities 1. Denil fishway: approximately US $124,000 per vertical 
meter with low maintenance and operation costs

1. Denil fishway cost: average passage efficiency is only 16%

2. Fish lifts: roughly US $2.4 million to install and annual 
maintenance charge of 5%

2. Fish lifts: relatively high operation efficiency

3. Fish collection systems: high mortality loss and operational 
cost

3. Fish collection systems: high passage efficiency

4. Juvenile bypass system: relatively low construction and 
operation cost

4. Juvenile bypass system: average passage efficiency is 70%

Artificial breeding and releasing 1. Range from millions to hundreds of millions of USD for 
different scales of releasing and different bred fish species 

(H. J. Chen, 2019)

1. “Ecological restoration”: conserved the endangered native 
fish populations and prevent their extinction. “Resource 

restoration”: improved fishery with high economic values

2. A total of 31.55 million endemic fishes, including 24.16 
million economic fishes which cost about US $0.48 billion

2. The number of fish species increased by 18 species in the 
Yangtze River basin, effectively restoring the fishery 
resources of the Yangtze River (Sun & Wang, 2020)

Reservoir ecological operation 1. The power generation of cascade reservoirs decreased by 
1.76%

1. The ecological flow coordination degree increased by 
17.45%, promoting the spawning of the four major carps 

(Dai et al., 2022)

2. The Gezhouba Hydropower Station lost 0.15% of its power 
generation

2. The suitability of the spawning ground for Chinese 
sturgeon increased by 39% (Y. Y. Wang et al., 2013)

3. The loss of power generation benefits is about 2.5% 3. Protect at least 50% of the target fish habitat in the river 
(D. Chen et al., 2014)

Habitat compensation in tributaries 1. The Waterworks Dam was removed at a cost of US $0.214 
million

1. Two years after the removal of the dam, the number of fish 
species at the original site of Waterworks Dam increased 
from the previous 11 to 26 species (Catalano et al., 2007)

2. The Marmot Dam was removed at a cost of US $4.86 million 2. The removal of the dam restored nearly seven miles of 
river to migratory habitat for steelhead, Chinook salmon 

and coho salmon (Xiao, 2021)

Table 4 
Summary of the Costs and Benefits of Conservation Measures
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native fish species can prevent their extinction in dammed rivers, and the value cannot be simply capitalized. 
Resource restoration for fishery improvement in dammed rivers can bring high economic values. From 2005 to 
2018, a total of 31.55 million endemic fishes, including 24.16 million economic fishes that cost about US $0.48 
billion, have been released into the upper Yangtze River. The release of economic fishes has effectively restored 
fishery resources, and the release of rare fishes has increased the number of fish species from 22 in 2006 to 40 
in 2018 (Sun & Wang, 2020).

It is widely perceived that reservoir ecological operations may sacrifice social-economic interests due to the 
dedicated discharge of ecological flow or water head loss for withdrawing temperature stratified water. The 
temperature regulation device on the Shasta Dam resulted in an estimated US $63 million loss of hydropower 
revenue between 1987 and 1996 (Hallnan et al., 2020). However, many studies have shown that by optimizing 
the operation of reservoirs, the ecological benefits can be ensured with a marginal loss, or even an increase of 
socio-economic benefits. Under the optimal operation scheme, the Jinping cascade reservoirs in the Yalong River, 
China, only sacrifice annually 2.5% hydropower production to conserve more than 50% habitat for Schizothorax 
chongi in the dewatered reach (D. Chen et al., 2014). In the upper Yangtze River, under an optimal operation 
scheme, the hydropower production loss of the cascade dams is only 1.76%, while the fulfillment of ecological 
flow increases 17.45%, which greatly promoted the spawning of FMCCs (Dai et al., 2022). X. Wang et al. (2020) 
proposed an optimized operation for the Three Gorges and Gezhouba cascade reservoirs that the total hydro-
power production increased by 250,089.2 MW·h and the area of suitable spawning grounds of Chinese sturgeon 
increased by 2.16%. Cioffi & Gallerano (2012) optimized hydropower production and fish habitat protection for 
the Pieve di Cadore Reservoir in the Piave River, Italy, and the results showed that the area of fish habitat could 
be increased with little loss of power generation. W. Chen & Olden (2017) designed a reservoir release scheme, 
which could create proper conditions to favor native over non-native fish, while human water demands were 
barely sacrificed. In general, reservoir ecological operation is an effective non-engineering conservation measure 
with high cost-benefits.

Studies have shown that the cost of removing small weirs (≤3.0 m in height) is US $69,000 on average or US 
$23,000 per meter height, which is less than 20% of the cost of building a fish passage or less than 12% of the 
cost of building a fish ladder (Garcia de Leaniz, 2008), and dam removal can significantly increase fish species 
richness. The removal of the Waterworks Dam in the Baraboo River, USA, a tributary of the Wisconsin River, 
cost approximately US $0.214 million in 1998. Two years after the removal, the number of fish species increased 
from 11 to 26 at the original dam site (Catalano et al., 2007). The Marmot Dam in the Sandy River, a tributary of 
the Columbia River, was removed at a cost of approximately US $4.86 million. The removal has restored nearly 
seven miles of river habitat for migratory fishes of steelhead, Chinook and coho salmons (Xiao, 2021). In general, 
habitat compensation and removing small dams in tributaries is likely a cost-effective approach to conserve fish 
diversity in dammed mainstreams.

5.  Future Perspectives
5.1.  Strategic Plans for Development and Conservation

Mitigation actions should be taken to minimize the potential impacts on fish during the complete process of 
river damming, including planning and operation. Planning of dams should be conducted at a system level to 
ensure that decisions are made in a more holistic manner. Prior to dam construction, the intensity of hydro-
power development should be determined at a basin scale, in order to balance river ecosystem conservation and 
economic benefits. It is also imperative to develop strategic dam planning, especially at the basin or regional 
scale, by performing multi-criteria optimization schemes (Flecker et al., 2022). Adequate investigations should 
be conducted to identify the siting of dams so as to minimize impacts on fish spawning, feeding and wintering 
grounds within the local hydro-geophysical constraints. Research on the impacts of dam construction on river 
ecosystem services, such as water supply, sediment transport, and biodiversity maintenance, should be strength-
ened. The planning of dams on mainstream and tributary rivers must be collaborative, and consider the optimal 
combination of high dams, low dams and run-of-river dams, which is important to reduce impacts on the river 
ecosystem at a basin scale (Couto and Olden, 2018; Couto et al., 2021; Schmitt et al., 2019). For fish that have 
lost their habitats in a mainstream that has been dammed, it is valuable to investigate the possibility of restoring 
tributaries to provide fish with alternative habitats.
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Although there are plenty of studies concerning native fish conservation in dammed rivers, most focus on a 
specific issue (e.g., such as fish passage or habitat restoration), and comprehensive conservation strategies that 
consider the habitat requirements of fish species throughout their life history are lacking. Existing conservation 
measures that aim at restoring the physical habitats for fish have had limited effectiveness, and there is demand 
for more studies to refine these measures and ensure they better achieve their intended goals. Specifically, the 
effectiveness and efficiency of the measures need to be assessed quantitatively by using long-term monitoring 
data of dammed rivers, so that emerging problems can be identified in a timely manner, and thereby aid improved 
designs for more efficient measures. It is of great value to develop a framework to assess systematically the 
effectiveness and efficiency of conservation measures for target fish species from the genetic to population, 
metapopulation, community, and ecosystem levels. NbS have shown a high potential to conserve fish species in 
dammed rivers and deserve more attention in future studies. Moreover, it is important to incorporate more target 
fish species when investigating and planning a conservation program. Finally, consideration of hydrokinetic 
energy and submerged turbines is valuable, as these can generate electricity without many of the drawbacks of 
dams, although the power yield is less.

5.2.  Long-Term Systematic Observations

One important aspect of the knowledge gap concerning the impacts of river damming on fish and associated 
conservation measures is the lack of long-term monitoring data. Compared to the long-term records of natu-
ral rivers from gauge-stations, similar data for dammed rivers are relatively short-term. Dam construction also 
causes inconsistencies between data before and after impoundment. Changes in river morphology are usually 
slow, and thus the evolution of channel morphology after river damming, and its impacts on fish physical habitats, 
demand longer monitoring periods. Hysteresis exists in the response of river ecosystems to hydro-geophysical 
changes, which also requires sufficiently long observations. TDG supersaturation only occurs during the occa-
sional flood discharge of dams, providing few monitoring opportunities for data collection. It is also difficult, if 
not impossible, to obtain the near-field data of TDG. Moreover, the changes to the physical habitat and adaptation 
of fish species in dammed rivers may interact with each other, and these changes increase the complexity of eval-
uating the impact of dam construction on fish communities and developing conservation measures. Therefore, 
there is an urgent need to establish dedicated monitoring networks in dammed rivers to strengthen the collection 
of long-term and systematic data to improve our understanding of the impacts of river damming on fish. Future 
hydro-geophysical monitoring of large rivers can be revolutionalized by observing from satellites, such as the 
SWOT mission. Emerging technology, such as eDNA, otolith microchemistry, and biotelemetry, can be used 
to characterize the dynamics of fish communities in dammed and undammed rivers, thereby providing useful 
comparisons. Such long-term monitoring data concerning hydro-geophysical conditions and fish communities 
will deepen knowledge on the impacts of river damming on fish, which will then provide a fuller scientific basis 
for developing conservation strategies.

Available information on the impact of dams on fish is based mainly on statistical analyses of data from field 
observations and laboratory experiments concerning the relationships between key hydro-geophysical factors and 
various fish-related endpoints. Some studies examine the behavioral responses of target fish species to variations 
of key hydro-geophysical factors in the laboratory to establish suitability curves, which are then used to develop 
fish habitat models for impact assessment or prediction. These studies have made significant contributions to 
evaluating the impacts of river damming and the design of fish conservation measures. In future, the adoption of 
genomic, transcriptomic, proteomic, metabolomic and bioinformatic methods can be a viable approach to inves-
tigate the physiological mechanisms of how altered hydro-geophysical conditions affect gonad development, sex 
differentiation, gene regulation, and gene expression of target fish species (Natri et al., 2019; Ortega-Recalde 
et al., 2020). In addition, neurotoxic effects of river damming on fish behavior, personality and cognition could, in 
turn, potentially generate feedback loops that may amplify the effects on fish. Therefore, integrative approaches 
that combine field observations with novel technologies (e.g., molecular omics techniques, biotelemetry) are 
recommended to bridge the knowledge gap in assessing river damming impacts on fish. This will enable the 
development of more reliable models to predict long-term consequences, and thus support the implementation of 
effective conservation measures.
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5.3.  Complex Effects of Climate Change and Land Cover Changes

Climate change has dramatic impacts on river hydrology and thermal regimes, and thus affects the migration, 
reproduction, growth and distribution of fish species in various ways. Regional patterns of warming-induced 
changes in surface hydroclimate are complex, with evidence of increases and decreases in the magnitude of 
precipitation and runoff, as well as frequency, depending on the local context (Milly et al., 2005). The mean and 
high water temperature of global rivers are projected to increase under climate change, with the impact varying 
between regions and across seasons. Climate change may thus exacerbate the effect of river damming on fish 
habitats. Reservoir operation has disturbed natural hydrological regimes and riverine hydrodynamic conditions, 
and climate change could bring additional alterations by affecting the patterns of global precipitation and snow-
melt. Climate warming may increase river water temperatures, prolong stratification and decrease vertical mixing 
in reservoirs. Such prolonged stratification intensifies anoxia, which promotes the release of nutrients from sedi-
ment and stimulates eutrophication in reservoir waters, thus affecting fish community structure and food web 
dynamics. Meanwhile, increases in water temperature reduce the dissolved oxygen content of water bodies, and 
the stratification of reservoirs intensifies the deficiency of dissolved oxygen in the bottom layer, which affects 
the survival of benthic fish species. However, reservoir operation can also mitigate impacts of future climatic 
variability and climate change on fish habitats, for example, by releasing cold water to offset impacts of warming 
temperatures on cold-water fish species (Benjankar et al., 2018). Climate change and reservoir retentions jointly 
influence river sediment regime, which affects river morphology and substrate composition, thereby impacting 
on fish habitat (J. Li et al., 2021). Future studies concerning the effects of climate change on fish should take into 
account changes in watershed soil erosion, sediment flux and nutrient loss, which play an increasingly important 
role in river ecosystems, when assessing the impacts of dams on fish (Best et al., 2022; J. Li et al., 2021). Due 
to the lack of integrated data concerning climate change, dam regulation and the evolution of fish communities, 
the interactive multi-stressor impacts of climate change and river damming on fish demand further investigation.

Climate change and dam construction also affect land use, which can directly or indirectly impact river ecosys-
tems. For example, climate change affects the amount and distribution of vegetation, agriculture and forestry, and 
dam construction can promote rapid urbanization along the river. This significantly increases impervious surface 
areas that lead to higher flood flows and earlier flood timing, and thus intensifies the impact on fish in dammed 
rivers. The development of industrial and residential areas results in increased discharge of industrial wastewater 
and domestic sewage, which could change local water temperatures and nutrient levels, and thereby affect fish 
migration, spawning and feeding. Therefore, the impacts of river damming on fish could become extraordinarily 
complex under the effects of climate and land use change. This highlights the need to consider the full range of 
stressors affecting rivers, identify the major factors, and assess both their interactions and timescales of their 
effects in future studies (Best & Darby, 2020). Advances in numerical modeling and data collection could be 
used to develop virtual watersheds, where different climate change forcings can be used to simulate processes in 
river-reservoir systems (Benjankar et al., 2018; Tranmer et al., 2020). Preliminary implementations of this meth-
odology have shown its benefits in understanding the impact of dam operations on fish habitat.

Data Availability Statement
Most of data supporting the figures are available via the cited references. Data of Figures 1a and 1b are avail-
able through Lehner et al. (2011). Data of Figures 1c and 1d are available through Zarfl et al. (2015). Data of 
Figure 3a are calculated from Hydrological Data of Changjiang River Basin in Annual Hydrological Report P. R. 
China, including average monthly discharge data of Pingshan station (2007–2010) and Xiangjiaba hydrological 
station (2016–2020). Data of Figure  3b are available from Hydrological Data of Changjiang River Basin in 
Annual Hydrological Report P. R. China, including average monthly discharge data of Ningnan hydrological 
station in 2015 and 2019. Data of Figure 3c are from the authors (Q. Li, 2023). Data of Figure 3d are available 
from Q. Chen et al. (2021). Data of Figure 5a are calculated from Hydrological Data of Changjiang River Basin 
in Annual Hydrological Report  P.  R. China, including average monthly water temperature data of Pingshan 
station (2007–2010) and Xiangjiaba hydrological station (2016–2020). Data of Figure 5c are available through 
T. Li et al. (2021). Data of Figure 6b are available through Y. Wang et al. (2015). Data of Figure 16 are available 
through Q. Chen et al. (2021). Data of Figure 17e are available through S. He et al. (2021).
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