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ABSTRACT

Connectivity is a multifaceted concept that has important implications for the management and conservation of marine and
freshwater fishes. We developed a conceptual framework that encompasses multiple, interrelated categories of connectedness,
including landscape (e.g., structural, functional) connectivity and ecological (e.g., trophic, genetic, demographic) connectivity,
that together shape the flow of organisms, energy and information across ecosystems. We also synthesised six key methods
that can be used to study connectivity of fishes: (1) telemetry, including satellite, acoustic, radio and passive integrated tran-
sponders (PIT), (2) mark-recapture, (3) environmental tracers, including stable isotopes and otolith-microchemistry, (4) genet-
ics, (5) community structure analysis and (6) emerging technologies and tools (e.g., remote sensing and artificial intelligence).
For each method, we describe the categories of connectivity it can assess and provide real-world examples where they have
been effectively used. We also identify limitations of each method. This article highlights the diverse and evolving toolbox
of methods used to assess fish connectivity, underscoring the need for continued collaboration, innovation and integration
of new approaches to refine our understanding and address remaining challenges in this critical area of aquatic ecology and
fisheries management.
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1 | Introduction

Effective management of fish populations necessitates a com-
prehensive understanding and consideration of connectivity
(Gibson et al. 2011), which is a complex concept that links eco-
system elements to spatial and temporal dimensions (Lapointe
et al. 2014). Connectivity includes the spatial movement of in-
dividuals as well as the flow of genetic materials, energetic re-
sources and nutrients (Calabrese and Fagan 2004). In aquatic
ecosystems, interconnectedness across habitats influences the
distribution and abundance of fishes, along with their evolu-
tionary trajectories (Arthington et al. 2016). Additionally, fish
often undertake movements across habitat types to access dif-
ferent resources (e.g., spawning and overwintering habitat, refu-
gia, food) or may transition to new habitats during ontogenetic
shifts (Lucas and Baras 2008; Bronmark et al. 2014; Secor 2015;
Cooke et al. 2022). Fish face a suite of anthropogenic stressors,
including habitat deterioration and loss, river engineering and
damming of rivers, river flow regulation and overfishing, that
fragment connectivity and impair species movements and eco-
system function (Rolls et al. 2014; Crook et al. 2015; Arthington
etal. 2016; Lennox, Birnie-Gauvin, et al. 2025). Reduced connec-
tivity can profoundly affect fish by minimising or eliminating
access to critical habitats, decreasing gene flow and altering nu-
trient and energy pathways (Jeffrey et al. 2015). As the panoply
of stressors that threaten the persistence of wild fish populations
increases, it is essential that we better understand, and expand
upon, the pros, cons and limitations of the methods in our con-
nectivity toolbox to conserve biodiversity, fish populations, and
the ecosystem services they provide (Lapointe et al. 2014).

While fish connectivity research and the tools used to evalu-
ate connectivity have advanced, there is currently no compre-
hensive summary of those tools along with their benefits and
limitations. Accordingly, we undertake a review to detail con-
temporary field and analytical methods to study fish connec-
tivity, first providing an in-depth overview of connectivity and
defining the hierarchical elements that contribute to this mul-
tifaceted concept. Next, we identify six key methods to assess
connectivity including telemetry, mark-recapture, environmen-
tal tracers, genetics, community structure analysis and emerg-
ing tools and technologies to help us better understand how
fishes, and the energy and information they bring with them,
move across landscapes. For each method, we provide examples
of successful implementation to highlight real-world scenarios
that supported the management of fishes. We also consider lim-
itations for each method. We conclude by identifying and dis-
cussing knowledge gaps in the evidence base that may hinder
the management of fishes in relation to connectivity.

2 | What Is Connectivity?

Connectivity is the flow of materials, energy and organisms
across space and time (Ward 1989; Beger et al. 2022). In aquatic
ecosystems, connectivity is a hierarchical process that links el-
ements within ecosystems and can be divided into landscape
and ecological connectivity (Lapointe et al. 2014). First, land-
scape connectivity refers to the degree to which a landscape
facilitates or impedes the movement of organisms among spa-
tially distinct entities or resource patches, emphasising the

physical structure of the landscape and an organism's response
to structure. Landscape connectivity can be further refined
to structural and functional connectivity (Tischendorf and
Fahrig 2000). Structural connectivity is defined by the quan-
tity and spatial arrangement of landscape features serving as
habitat patches and potential movement routes (corridors) be-
tween habitat patches, focusing on the physical characteristics
of aquatic environments such as the presence and arrangement
of different habitats. Importantly, structural connectivity in-
cludes ecohydraulic attributes, such as flow velocity, discharge
patterns and water-level fluctuations, which directly affect
habitat continuity (Katopodis 2012; Cooke et al. 2025). The
analysis of structural connectivity has been well established
in landscape ecology and is largely dependent on foundational
metrics like patch size, geometry, corridor patterns, and the
study of extinction-colonisation dynamics (i.e., Metapopulation
Theory, Theory of Island Biogeography) which can be inte-
grated into aquatic ecosystems (MacArthur and Wilson 1967;
Levins 1969). Next, functional connectivity describes an organ-
ism's behavioural response to these landscape features and the
outcome of those responses in terms of survival and reproduc-
tion (Taylor et al. 1993, 2007; Tischendorf and Fahrig 2000).
Functional connectivity reflects how organisms actually use
space, capturing their ability to navigate, survive and repro-
duce across habitats based on their behaviour and interactions
with landscape/seascape features (e.g., Turgeon et al. 2010; Roy
and Le Pichon 2017).

Second, ecological connectivity encompasses trophic, genetic
and demographic connectivity (Soulé et al. 2004; Bryan-Brown
et al. 2017). Trophic connectivity describes the movement and
transfer of energy and nutrients through different levels of the
food web, linking primary producers to top predators and cap-
turing how different trophic levels are linked through migra-
tion, subsidy flows and consumption (Polis et al. 1997; Talley
et al. 2006). The trophic connection can be formed through
the movement of either consumers or resources between hab-
itats and affects ecosystem structure, stability and function
(Talley et al. 2006). This includes vertical linkages between
different trophic levels, such as primary producers, herbivores
and predators, and horizontal exchanges across habitats and
within trophic levels. Second, genetic connectivity refers to the
movement of genetic material between nearby or distant hab-
itat regions over multiple generations and can occur through
processes such as dispersal and reproduction, facilitating gene
flow across the landscape (Carr et al. 2017; Xuereb et al. 2021).
Finally, demographic connectivity emerges from variation in
organismal movement through space and time, shaping food
web structure at both the population and community levels. At
the population scale, the movement of individuals among sites
drives immigration and emigration, colonisation of new habi-
tats, and source-sink dynamics, ultimately influencing per-
sistence, abundance and population dynamics (Pulliam 1988).
At the community scale, these dispersal processes govern differ-
ences in species composition and interaction networks, mani-
festing as variations in alpha, beta and gamma diversity (Tonkin
et al. 2016). Moreover, sites that are highly disconnected will be
more strongly constrained by dispersal limitations, leading to
reduced population resilience and altered community assem-
bly relative to more connected systems (Sale 2004; Brown and
Swan 2010; Heino et al. 2015). Variations in scale, ranging from
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TABLE1 | Glossary of connectivity terms. References are provided in-text.

Connectivity

The flow of materials, energy and organisms across space and time

Landscape connectivity

The degree to which the landscape facilitates

or impedes movement among resource patches,
emphasising the physical structure of the landscape
with an organism’s response to that structure

Ecological connectivity

Includes propagule dispersal, adult movement, species

migrations, species interactions and ontogenetic linkages,

with the associated flows of energy and matter

Structural connectivity Functional Trophic Genetic Demographic
connectivity connectivity connectivity connectivity
The quantity and spatial The behavioural The flow of energy The movement of The movement of
arrangement of landscape responses of animals and nutrients genetic material individuals, through
features serving as habitat to landscape features through different between nearby immigration and
patches and potential and the outcome of levels of the food or distant habitat emigration, that
movement routes (corridors) those responses in web, linking various  regions over multiple shapes population
between habitat patches terms of survival organisms from generations dynamics and

and reproduction

primary producers

community diversity

to top predators

an individual's genetic composition to a global landscape, across
the five subcategories of connectivity (structural, functional,
trophic, genetic, demographic) dictates which methods are most
appropriate to define connectivity relationships. A glossary of
connectivity terms is provided in Table 1.

While each subcategory of connectivity is distinct, they are
inherently interrelated and interdependent. For example, tro-
phic, genetic and demographic connectivity rely on functional
connectivity. Functional connectivity is particularly relevant in
terms of the persistence of fish populations as it facilitates es-
sential life processes such as migration, breeding and dispersal
(Flecker et al. 2010; Lake 2011) and is particularly important in
systems subject to environmental disturbances or human mod-
ifications. Functional connectivity enhances ecological connec-
tivity on trophic, genetic and demographic scales by enabling
fish movement and the subsequent transfer of nutrients and en-
ergy across disparate habitats. These movements facilitate sur-
vival and reproduction, supporting gene flow, enhancing genetic
diversity and ultimately contributing to population and commu-
nity stability (Bruckerhoff et al. 2019).

Connectivity is highly contextual, varying by species, geogra-
phy, life stage and environmental conditions, as fishes differ
in their ability to navigate obstacles separating habitats (Gido
et al. 2015). Within open ecosystems (e.g., pelagic areas in
oceans, lentic systems in freshwaters), connectivity can be af-
fected by hydrological features like currents and upwelling
(i.e., structural and trophic connectivity; O'Dwyer et al. 2021),
reducing available habitat and creating barriers between fish
populations and communities (i.e., functional and demographic
connectivity; Franklin et al. 2024; Heino et al. 2015). Marine
connectivity can be altered by energy (tidal and wind turbines)
and transportation (bridges, causeways, harbours, docks) infra-
structure (Bice et al. 2023; Lennox, Birnie-Gauvin, et al. 2025).
Loss of natural habitats, like coral reefs, through natural distur-
bance events or climate-induced mortality events can also alter
connectivity, particularly for smaller reef-associated species

(Syms and Jones 2000). Additionally, changes in freshwater dis-
charges that empty into marine environments can alter salinity
levels or lead to droughts in low-lying aquatic environments, ul-
timately disrupting connections between important nearshore
and estuarine foraging and nursery habitats (Gillanders and
Kingsford 2002; Danylchuk et al. 2023).

In lotic ecosystems, especially river corridors, water flows play
a key role in connecting landscape patches where structural
connectivity operates across four dimensions, including lon-
gitudinal, lateral, vertical and temporal, collectively forming a
‘riverscape’ (Amoros and Bornette 2002; Fagan 2002). The term
riverscape was coined by Leopold and O'Brien Marchand (1968)
as a contraction of the terms ‘river’ and ‘landscape’, and has been
broadly adopted to describe the complex mosaic of perennially
interacting river and floodplain conditions (Erés and Campbell
Grant 2015; Torgersen et al. 2022; Garvey and Whiles 2023).
It extends to ‘coastal riverscapes’ influenced by downstream
factors like tidal intrusion and coastal wetlands (Garvey and
Whiles 2023). The branching structure of river networks plays
a key role in shaping demographic connectivity; for example,
Campbell Grant et al. (2007) demonstrate how dendritic net-
work geometry influences structural, functional, genetic and
demographic connectivity among fish populations by affect-
ing movement pathways, dispersal limitations and population
dynamics. Seasonal reductions in structural connectivity can
isolate fish in suboptimal habitats (e.g., dry periods can strand
fish in shrinking pools, limiting movement to refugia; Sedell
et al. 1990) and restrict access to essential energy resources,
limiting trophic connectivity (Chessman 2013). Anthropogenic
modifications like dams, road crossings and water withdrawals
can further disrupt connectivity and remain among the great-
est threats to freshwater fishes (Gido et al. 2015). Conversely,
dynamic discharge events like floods or spring freshets can en-
hance structural connectivity in fragmented systems, promoting
recolonisation and genetic exchange (i.e., functional and genetic
connectivity, respectively; Pringle 2003). Floods may also form
or restore lateral connections between rivers and floodplains,
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FIGURE 1 | Conceptual diagram of connectivity categories linked with methods for evaluating fish connectivity. Researchers often separate
connectivity into ecological and landscape, focusing on demographic-level differences among fish communities, trophic linkages or genetics when
studying ecological connectivity, and structural or functional movements when evaluating landscape connectivity. In most cases, there are sev-
eral methods (icon boxes) to study each form of connectivity. Details of linkages between methods and connectivity subcategories are as follows:
Telemetry can evaluate demographic, trophic, structural and functional connectivity; environmental tracers can help elucidate trophic, structural
and functional connectivity; genetics may offer insights into demographic, genetic, structural and functional connectivity; mark-recapture and
emerging technologies can provide information on demographic, structural and functional connectivity; community structure analysis can contrib-
ute to the understanding of demographic connectivity; the emerging tools and technologies we discuss can provide information on demographic,
structural and functional connectivity. A glossary of connectivity terms is provided in Table 1 and examples of research that evaluated each category

of connectivity are presented in Table 2.

facilitating nutrient and organism movement and providing
nursery habitat for juvenile fish, though such flood dynamics
are increasingly influenced by both human modifications to
river systems and climate change-driven shifts in flow regimes
and precipitation (Tockner et al. 2000; Jacobson et al. 2022).

In cases where a permeable in-river barrier (e.g., navigation
locks) provides a new movement corridor in a system where
fish movements were historically restricted by waterfalls or rap-
ids, the functional connectivity of native species may instead
be elevated, or their ranges expanded (Rahel 2007; Bergman
et al. 2024). Note, however, that these in-river barriers have
also inadvertently facilitated the dispersal of nonnative species
by altering natural flow patterns and creating new aquatic con-
nections between previously isolated ecosystems (Rahel 2007).
For example, the Welland Canal resulted in the infamous sea
lamprey (Petromyzon marinus) and alewife (Alosa pseudoharen-
gus) invasions across the Laurentian Great Lakes (Smith 1968;
Hartman 1972), and to date, 45 non-Indigenous macroinverte-
brates have been introduced to the river Rhine via the large-scale
Eurasian network of inland waterways (Leuven et al. 2009).
Today, rivers and waterways with semi-permeable dams
and navigation locks are considered an ‘ecological paradox’
(Bergman et al. 2021) or ‘connectivity conundrum’ (Zielinski

et al. 2020) because they may both limit and promote connec-
tivity depending on structural aspects and species capabilities
(Piczak, Bzonek, et al. 2023; Piczak, Theysmeyer, et al. 2023).
Given the complexity and potential conflicts among riverine
landscape management goals, practitioners must evaluate trade-
offs and prioritise strategies that balance wildlife and ecosystem
conservation with human use (Fullerton et al. 2010; Rahel and
McLaughlin 2018).

The resilience of aquatic populations to environmental distur-
bances is tightly coupled with the degree of connectivity within
and between ecosystems (Timpane-Padgham et al. 2017;
Young et al. 2018; Thieme et al. 2023). Understanding, main-
taining and restoring connectivity is essential to enhance
the resilience of aquatic species and reverse biodiversity
loss trends (Beger et al. 2022; Tickner et al. 2020; Thieme
et al. 2023). Effective conservation depends on a clear under-
standing and integration of connectivity into management
frameworks (Crooks and Sanjayan 2006). Below, we describe
methods for studying fish connectivity for each of the five
subcategories of connectivity (functional, structural, trophic,
genetic, demographic). See Figure 1 for a conceptual diagram
of connectivity categories linked with methods for evaluating
fish connectivity.
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3 | Methods to Study Fish Connectivity
3.1 | Telemetry
3.1.1 | Satellite Telemetry

Over the past four decades, satellite telemetry has emerged
as a powerful tool for tracking broad-scale and long-distance
movements of oceanic fishes, especially large-bodied pe-
lagic species whose migrations extend beyond the detection
range of coastal acoustic telemetry networks (Hammerschlag
et al. 2011; Hussey et al. 2015; Renshaw et al. 2023; Robichaud
et al. 2025). First applied to fish in the 1980s, satellite telem-
etry leveraged earlier advancements in terrestrial wildlife
tracking that led to the development of miniaturised, water-
proof tags (Hockersmith and Beeman 2012). These tags are af-
fixed to each animal externally and can transmit positioning
data through the ARGOS satellite system in real time or ar-
chive data over the course of a set deployment for batch trans-
mission, depending on the tag type. The first iteration of the
modern ‘Smart Position or Temperature Transmitting’ (SPOT)
tag was used to track a basking shark (Cetorhinus maximus)
off the coast of Scotland for 17 days using ARGOS satellites in
1982 (Priede 1984). Since then, the use of SPOT tags (which
transmit real-time position data when the animal surfaces)
has expanded significantly, aided by advances in towed and
fin-attached designs that enable tracking of individuals for
months to years depending on the tag model and program-
ming (Patterson and Hartmann 2011; Hays et al. 2021). A
second type of satellite tag, the ‘pop-up satellite archival
tag’ (PSAT), was developed in the 1990s to allow tracking
of species that rarely surface, such as Atlantic bluefin tuna
(Thunnus thynnus thynnus) (Block et al. 1998). In PSAT tags,
a battery-powered electrolysis process causes a pin to dissolve
at a preprogrammed time to release the tag from the animal
and ‘pop up’ to the surface to transmit light level, temperature
and depth data to satellites. Satellite telemetry can provide
insights into connectivity across spatially disparate habitats,
capturing broad horizontal movements (e.g., structural and
functional connectivity; Weng et al. 2007; Lea et al. 2015)
and/or vertical dynamics (e.g., depth changes; Andrzejaczek
et al. 2019, 2022).

Satellite telemetry is best used to answer broad spatial ques-
tions. Both SPOT and PSAT tags have positioning errors,
with SPOT errors ranging from under 250 m to unbounded
estimates depending on the number of messages transferred
between the tag and satellite (i.e., more messages result in in-
creasing spatial accuracy, but require more time at the surface
for the tag) (ARGOSweb 2017). PSAT tags generate a position
estimate, influenced by movement, light levels, and tem-
perature, making them unsuitable for finer-scale movement
studies. Fast GPS-integrated tags, first used on ocean sunfish
(Mola mola; Sims et al. 2009), offer more accurate position-
ing (< 100m; ARGOSweb 2017) by deriving locations through
Fastloc-GPS and relaying those locations through the ARGOS
system (Thomson et al. 2017). Similar to SPOT tags, these
tags require surfacing to transmit, limiting their use to large-
bodied, surfacing fishes (Meyer et al. 2018), although one study
used a floating towed tag on benthic stingrays in shallow water
(Martins et al. 2019). In recent decades, the proliferation of

satellite tagging in marine environments (Renshaw et al. 2023)
has substantially improved our ability to delineate fish stocks
(Gatti et al. 2020; Arostegui et al. 2024), identify species over-
lap with fishing effort (Queiroz et al. 2019), and explore the
spatial ecology of highly mobile fish species for which other
forms of telemetry were not feasible (Hussey et al. 2015). For
example, PSAT tagging of Atlantic halibut (Hippoglossus hip-
poglossus) in the Gulf of St. Lawrence revealed convergence
of all individuals during the spawning season despite being
tagged in disparate locations during the nonspawning sea-
son, suggesting a single stock management structure in the
Canadian Northwestern Atlantic (Gatti et al. 2020). Satellite
tags can also provide information on Marine Protected Area
(MPA) use by highly mobile species. Satellite telemetry and
photo-ID data revealed that reef manta rays (Mobula alfredi)
regularly moved between two of Australia's UNESCO World
Heritage Areas, the Ningaloo Reef and Shark Bay, demon-
strating long-range movements of up to 700km in addition
to smaller-scale movements more associated with site fidelity
(Armstrong et al. 2020—Table 2). These findings highlighted
the role of satellite tracking in identifying movement corridors
and informing the effective design and management of MPAs
to ensure they encompass the full spatial range of migratory
species like manta rays.

Despite expanding our ability to study highly mobile fishes,
satellite telemetry has several limitations. While PSAT tags
store data, allowing for continuous archiving until the prepro-
grammed pop-off date, they do not allow for real-time tracking
like SPOT and Fastloc-GPS tags can. Researchers must then
balance the benefits of long-term deployment duration with the
cons of battery drain, since the tag must have enough energy
left to transmit its data at the deployment end (battery failures
canresult in all data being lost). In contrast, the PSAT's strength
is the SPOT and Fastloc-GPS tags' weakness; they do not ar-
chive time series data. Unlike marine mammals and sea turtles,
which are commonly tracked with this tagging technology, fish
are not obligated to surface for any length of time. Differences
in individual level and overall species behaviours can lead to
no transmissions from SPOT tags or transmissions that are too
brief to generate a geolocation. Location error is also a challenge
for PSAT tags, whose geolocation calculations are based on light
level, which can be quite coarse especially in deep or turbid wa-
ters (Nielsen et al. 2023). Satellite tags are also large compared
to other tagging methods, so researchers must consider tag bur-
den, battery life and the regional scale of their research ques-
tions when selecting a tag model and applying this technology to
study the movements of large marine (Block et al. 2011; Matley
et al. 2025) and anadromous fishes (e.g., sturgeon; Erickson
et al. 2011).

3.1.2 | Acoustic Telemetry

Like satellite telemetry, the use of acoustic telemetry has
expanded over the last few decades and is primarily used to
examine functional connectivity (Cooke et al. 2013; Hussey
et al. 2015). Acoustic tags emit a sonic pulse, sending unique
identification codes and time-stamped data from tagged fish
that is detected and logged by underwater receivers (hydro-
phones) for later retrieval and analysis of animal presence
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FIGURE 2 | Photo mosaic representing examples of methods for evaluating fish connectivity. (A) Acoustic telemetry: A nonnative common carp
(Cyprinus carpio) being surgically implanted with an acoustic tag in the Great Lakes to study movement patterns and effectiveness of an exclusion
barrier (Piczak, Brooks, et al. 2023); (B) Mark-recapture: A bonefish (Albula vulpes) study in the Bahamas Archipelago assessing site fidelity and
connectivity between homesites and prespawning sites to inform protected area designation (Boucek et al. 2019); (C) Environmental tracers: Otolith
biogeochemistry elucidated effects of a climate event on population connectivity of Spanish mackerel (Scomberomorus niphonius) along China's coast
(Pan et al. 2024); (D) Genetics: Spatial patterns of allelic variation showed that coastal cutthroat trout (Oncorhynchus clarkii clarkii) in western North
America found above natural waterfall barriers were highly differentiated from populations below (Whiteley et al. 2010); (E) Boat electrofishing in
the Lower Boardman (Ottaway) River, USA was used to sample fish community structure and support assessments of species likely to encounter an
in-development fish passage structure (‘FishPass’; www.glfc.org/fishpass.php), contributing to understanding demographic connectivity and sea-
sonal patterns of fish movements (Swanson et al. 2023); (F) Sentinel-2 satellite imagery was used to identify the onset of the ice-on period within a
Freshwater Protected Area (‘FPA’; outlined in red), after which fish appeared unable to move in to, or out of, FPA boundaries (Bergman et al. 2025).
Photo credits: (A) Morgan Piczak; (B) Aaron J. Adams; (C) Pan et al. (2024); (D) USFWS—Pacific Region, Wikimedia Commons; (E) Reid Swanson;

(F) The Copernicus Data Space Ecosystem Browser. All photos used with permission.

(Heupel et al. 2006; Crossin et al. 2017). Tracking can be con-
ducted manually, using a vessel to locate or follow an acoustic
tag, or by positioning autonomous receivers at fixed locations
in configurations (e.g., arrays, gates, curtains; overlapping
detection zones for 2D or 3D position analysis) that allow
researchers to answer specific questions related to regional
connectivity, residency and boundary crossing (reviewed in
Crossin et al. 2017). In recent years, advances in acoustic tag
technology have enabled researchers to collect additional data
on variables such as temperature, depth and locomotor activity
(Cooke et al. 2013; Matley et al. 2022; Jacoby and Piper 2023).
Technological improvements have also made acoustic telem-
etry more affordable and accessible, broadening its applica-
tion across various disciplines (Hussey et al. 2015). With
respect to studying fish connectivity, acoustic telemetry has
been successfully applied in studies on migration (Aarestrup
et al. 2014; Larocque et al. 2020), habitat use (Piczak,
Brooks, et al. 2023—Figure 2A), Marine (Lédée et al. 2021)
and Freshwater Protected Areas (Bergman et al. 2025), and
demographic connectivity (Faulks et al. 2011; Espinoza
et al. 2015—Table 2). It is a valuable tool for identifying barri-
ers to functional connectivity caused by anthropogenic struc-
tures like hydro-dams and navigation locks (Fritts et al. 2021;
Bergman et al. 2022, 2024) and assessing restoration efforts
after barriers are removed (Roday et al. 2024). The use of

predation-style acoustic tags (Halfyard et al. 2017), which
transmit a predation code when consumed by a predator, can
provide details on trophic and demographic connectivity.

The typical stationary receiver array used for acoustic te-
lemetry (Figure 3A) offers a less-time intensive alternative
compared to active tracking methods, like radio telemetry, or
traditional sampling methods, such as in-person observations
(e.g., snorkelling, SCUBA diving) or fish collection techniques
(e.g., netting, trapping, electrofishing), which may be limited
by the time and effort researchers can dedicate and the spatial
area they can physically cover (Kraus et al. 2018). Once an
acoustic telemetry array is deployed and maintained, it will
continuously store data without requiring the presence of
researchers. This capability makes acoustic telemetry a pow-
erful tool for studying animal movement patterns on scales
previously unattainable with traditional fisheries techniques
(Lennox et al. 2017).

Acoustic telemetry is primarily limited by the spatial coverage
of receiver arrays and the challenges associated with main-
tenance. These limitations are partially addressed through
large-scale telemetry data-sharing networks such as the
Riverine Acoustic Fish Telemetry Network (RAFT), Great
Lakes Acoustic Telemetry Observation System (GLATOS),
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http://www.glfc.org/fishpass.php

Genetics

FIGURE 3 | Depiction of methods used to study connectivity of fishes: (1) telemetry (example shown is acoustic telemetry, where an active acous-

tic transponder is implanted in the fish and a coded acoustic signal is received by submerged hydrophones); (2) mark-recapture (example shown is
a downstream migrant trap where tagged or marked individuals are physically recaptured); (3) environmental tracers (example shown is otolith
microchemistry, where the otolith of a fish is extracted and individual growth rings are analysed for isotopic content like Sr.:Ca; fish movement is
determined by comparing isotopic ratios found in the environment to those in the otolith); (4) genetics (example shown is genetic tissue extracted
from fish and sequenced; sequence data are then used to assign individuals to particular groups); (5) community structure analysis (example shown
is an evaluation of fish community composition above and below a barrier to determine upstream and downstream connectedness); (6) emerging
tools and technologies (example shown is airborne Light Detection and Ranging [lidar] used to create digital elevation maps with high resolution

topography and shallow water bathymetry).

Ocean Tracking Network (OTN), the European Tracking
Network (ETN) and the Integrated Marine Observing System
(IMOS). These networks foster collaboration and enable re-
searchers to extend their studies across larger, shared arrays
maintained by multiple users (e.g., Griffin et al. 2018; Piczak,
Brooks, et al. 2023). Acoustic detection data are also affected
by environmental noise, high tag densities, habitat complex-
ity and/or other environmental factors, reducing detection
accuracy (Payne et al. 2010; Selby et al. 2016). As with any
study attempting to implant tags to monitor fish movements

(especially small individuals), there can be physiological stress
associated with tag implantation (Sandford et al. 2020; Vollset
et al. 2020), including cortisol responses (Zake$ et al. 2022)
and tag shedding (by tag size and species—Kimball and Mace
IIT 2020; by procedure—Moore and Brewer 2021). For both
satellite and acoustic telemetry transmitters, there is an un-
avoidable trade-off among tag size, sampling capacity and bat-
tery life, such that the smallest tags do not have a long battery
life even when sampling (detection) rates are less frequent.
New technological developments and further miniaturisation

Fish and Fisheries, 2026

35101 SUOLLLIOD BANER.D 3|ea!dde ) Aq pauLRAOB a2 SO WO ‘98N J0 S [N 10} A1 BUIIUO /B]1M UO (SUONIPUOD-PUR-SLLLBY W00 AB 1M ARe.q1pUIUO//STNY) SUONIPUOD PUe SUWLB | aU) 385 - [920Z/T0/EZ] U0 AReiq TauIluO AB|IM *A1SieAlun uoR (e Aq 85002 Y/TTTT 0T/10p/W00 5| 1M Areiq1 Ul uo//Sdy WOJY papeojumod 0 ‘6.62.9vT



have offered the chance to successfully tag very small and
laterally and vertically compressed individuals, though these
tags typically have a short battery life (at most a few months)
(Lennox, Mastrodimitropoulos, et al. 2025). As such, data can-
not be collected on connectivity across life stages. Advances
in positioning systems have improved detection precision
(Guzzo et al. 2018), which is particularly important for un-
derstanding movement barriers; however, the effectiveness of
these systems remains limited to areas with sufficiently dense
receiver arrays.

3.1.3 | Radio Telemetry

Radio transmitters have long been used to assess functional
connectivity of aquatic animals and to track migratory species
over long distances in freshwater systems. These devices trans-
mit radio signals (uniquely coded transmissions, or over fre-
quencies unique to an individual) to a receiver with an antenna
that is either stationary (Ostergren and Rivinoja 2008; Sullivan
et al. 2020) or mobile, including actively held by a human (Gilroy
et al. 2010) or mounted to a plane, boat, vehicle, or aerial drone
(McCleave et al. 1978; Koehn et al. 2009; Munakata et al. 2021).
Radio signals travel well in the air and can emit signals across
the air-water interface (Kuechle and Kuechle 2012), but lim-
ited transmitting capacity occurs as depth increases (>10m).
Further, radio transmission is almost completely inhibited in
saltwater and is best used in freshwater environments (Kuechle
and Kuechle 2012). Other important factors that can influence
radio signal strength include vegetation density, rock walls,
mountains, buildings and electronics (e.g., sonar, hand-held
radios). Unlike acoustic telemetry, radio transmitters perform
well in ‘noisy’ environments such as turbulent waters of streams
or near dams. Radio tags can be surgically implanted into the
body cavity, gastrically inserted or attached externally (Jepsen
et al. 2015) for a range of fish body sizes given that the weights
of these tags range between 1 to 30g. Overall, radio telemetry
is an excellent tool to elucidate landscape connectivity in fresh-
water systems in cases where aquatic animals primarily occupy
shallow streams, littoral areas or limnetic zones allowing for the
unidirectional radio signal to be registered by the receiver an-
tenna (Lucas and Baras 2000).

Radio telemetry can identify functional connectivity of aquatic
animals including movement corridors, habitat use and be-
haviour. For example, radio telemetry has been used to as-
sess diadromous fish migrations in riverine systems (Knight
et al. 1977; Gelder et al. 2024) or to learn about home ranges
of fishes (Ebner et al. 2011) and habitats used within aquatic
systems (Ebner et al. 2011; Hahn et al. 2011). Importantly,
radio tracking can assess structural connectedness between
spawning tributaries and a main river (Tummers et al. 2016),
or between canals and wetlands (Parkos III and Trexler 2014),
and has helped identify important spawning habitat locations
(Weller et al. 2016) and nursery habitats (Weller and Chow-
Frazer 2019). This technology can also be used to assess inter-
actions of fish with anthropogenic barriers in rivers that hinder
functional connectivity (e.g., dams, Monan and Liscom 1973; hy-
dropower stations, Grimardias et al. 2022), providing vital data
to improve management of fishes that may be blocked by such
in-river barriers. For example, in the Savannah River (USA),

radio telemetry was used to track American shad (Alosa sapidis-
sima) as they interacted with and navigated past a lock-and-dam
structure. Although previous studies on fish passage through
navigation locks often concluded that locks are poor movement
corridors (see Fritts et al. 2021), Bailey et al. (2004) discovered
that approximately 30% of tagged American shad used a navi-
gation lock to successfully move upstream during conservation
locking operations (i.e., the strategic use and operation of navi-
gation locks to facilitate fish movements), suggesting that con-
servation locking may offer a viable solution for enhancing fish
connectivity in regulated rivers (Table 2).

Manual radio tracking does have limitations and can require
considerable labour and a consistent schedule, unlike acoustic or
satellite telemetry, which are typically passive. Similar to acous-
tic and satellite transmitters, there is a size limitation of tags that
can be used in small individuals. In addition, while stationary
antenna stations may require less effort overall, they still require
routine maintenance for data retrieval and battery replacement,
much like acoustic receiver networks. However, radio teleme-
try systems can be deployed as fixed monitoring networks, with
some configurations allowing for permanent power and remote
data transmission. Finally, radio telemetry is most feasible in
freshwater due to the attenuation of radio signals to practically
zero in brackish and sea water (due to dissolved salts; Kuechle
and Kuechle 2012) and, in addition, is only applicable to mon-
itoring fish residing near the surface of rivers, streams and/or
shallow lakes given depth limitations (Lucas and Baras 2000).

3.1.4 | Passive Integrated Transponders

Passive integrated transponders (PIT) are biocompatible, plas-
tic- or glass-encased, microchip-based tags that are implanted
internally into individual fish and have been used to track fish
movements (i.e., functional connectivity) since 1983 (Prentice
and Park 1983; Gibbons and Andrews 2004). Modern PIT tags
are relatively small, ranging in sizes from 8 to 32mm long and
1-4mm in diameter, are inexpensive (<10 USD/tag) compared
to other telemetry tag types, and are not limited by battery life
because they only transmit when energised by a receiver (Smyth
and Nebel 2013). PIT tags are detected using Radio Frequency
Identification (RFID) which detects an individualised identi-
fication code from a tag (typically at a frequency of 134.2kHz;
Bégout et al. 2016) when within range of a receiver to specify
individuals (Zentner et al. 2021). PIT tags come in two vari-
eties, full-duplex (FDX) and half-duplex (HDX), each having
different benefits. First, FDX tags can receive and send signals
simultaneously, allowing for a more efficient tag reading. These
devices lack a capacitor, and thus can be smaller than HDX, al-
lowing for use on smaller species and/or juvenile fishes (Watson
et al. 2019), though they have a shorter transmission range than
HDX tags. HDX tags contain a capacitor that allows it to alter-
nate between reading and receiving transmissions, providing a
stronger signal in both directions, and increasing the transmis-
sion range at the expense of a larger size and lower read effi-
ciency (Hill et al. 2006).

Functional connectivity is often studied using PIT tags and ar-
rays to track movements of key species between interconnected
lotic habitats. These types of data analyses require networks of

10
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antennae that can be fixed (Booth et al. 2013) or mobile (Booth
et al. 2014; Curtis et al. 2024) and offer meter-scale resolution
which works well in narrow, shallow systems and in proximity
to structures, though they are more limited in open, marine en-
vironments. In boreal river systems, where resource availabil-
ity varies seasonally and spatially, a transponder antenna array
was used to track kilometre-scale movements of arctic grayling
(Thymallus arcticus) and rainbow trout (Oncorhynchus mykiss)
across a network of connected tributaries to target favourable
foraging grounds and elucidate aspects of trophic and functional
connectivity (Bentley et al. 2015). Researchers have also used
PIT to uncover hidden patterns of population-specific life histo-
ries and demographic connectivity across freshwater networks;
Snow and Goodman (2021) discovered two distinct populations
of mountain whitefish (Prosopium williamsoni) with differing
life histories—one migratory and one resident—an important
finding for managers intending to target or protect specific pop-
ulations (Table 2). Across smaller spatial ranges, PIT arrays can
be strategically used to determine passage success for tagged
species to evaluate engineering efforts that support structural
connectivity (Weibel and Peter 2013; Jensen et al. 2024). PIT
tags are also commonly used to compare the timing of migration
events across multiple age classes of wild and hatchery-reared
diadromous fishes, especially salmonids (Achord et al. 1996).
PIT tagging methods can be used in tandem with mark-recap-
ture frameworks or model simulations (Sabal et al. 2020) to sup-
port additional research objectives like estimating abundance,
analysing behavioural responses, tracking growth through time
or understanding apparent survival (Rudershausen et al. 2019;
Kimball and Mace III 2020). In addition, since PIT tags are
not limited by battery power, they are often used in parallel
with other telemetry methods to efficiently identify individu-
als during a recapture event in situ and allow for the tracking
of animals tagged with other telemetry devices following bat-
tery death.

Broadly, there are two main types of limitations associated with
PIT tags to study fish connectivity related to performance and
welfare. First, there can be issues stemming from feasibility and
efficacy associated with detectability, including the need to in-
stall and maintain antennas (Bridnnds et al. 1994), recapturing
individuals (Gibbons and Andrews 2004), variable detection
probabilities (Zentner et al. 2021) and environmental fluctua-
tions (e.g., flow rate, O'Donnell et al. 2010). Although PIT is gen-
erally considered a less invasive tagging method compared to
acoustic and radio telemetry, there has been effort to account for
the survival and tag shedding issues that stress can cause by cre-
ating predictive models that adjust for tag loss and fish mortality
over time (McCutcheon et al. 2025). Despite these drawbacks,
PIT tags are still highly successful if appropriately implemented
in experimental studies and continue to be widely used in fresh-
water (Ficke et al. 2012), estuarine (Kimball and Mace III 2020)
and marine ecosystems (Calo et al. 2013) because of the relative
risk-to-benefit ratio (e.g., no surgery needed) when compared to
other tagging technologies.

3.2 | Mark-Recapture

Collecting fish movement data can be challenging and expen-
sive due to difficulties in accessing (often remote) fish habitats,

expensive technologies and time and cost commitments from
personnel and capture success (Metcalfe and Craig 2012; Ogburn
et al. 2017). Researchers have long turned to the capture-mark-
recapture method (dating back to 1886; Walton 1886), a widely
used technique for estimating movements and migrations
among other parameters (e.g., population sizes, survival rates),
to mitigate these challenges. Capture-mark-recapture, or sim-
ply ‘mark-recapture’, involves capturing a sample of individuals
from a population, marking them in a minimally invasive man-
ner and releasing them back into their environment (Figure 3B).
A second sample is then taken to recapture marked individuals,
noting information like recapture location to assess distances
travelled over time or biometric data like fish size for growth
estimates. Usually, a small external tag, labelled with a unique
ID and contact information, is attached to the fish so that if a
member of the public recaptures a tagged individual, they can
report their catch to the respective researchers. Indeed, many
studies have reported participatory science (sometimes referred
to as ‘community’ or ‘citizen’ science), a form of collaboration
between professional scientists and amateur volunteers or inter-
ested participants (Fan and Chen 2019), to be a low-cost method
of collecting high-quality data to support research (Stettrup
et al. 2018; Fulton et al. 2019). Today, tagging programmes have
been implemented globally, engaging the public in movement
data collection on an array of marine (Ortiz et al. 2003; Maggs
et al. 2019) and freshwater (Howe et al. 2006; Garrone Neto
et al. 2014; Keplinger 2021) species.

In cases where the study species may not be suitable for partic-
ipatory science (e.g., if the species is not recreationally import-
ant and therefore may not be captured by anglers; too small for
external tags), researchers may carry out both mark and recap-
ture (e.g., Midwood and Chow-Fraser 2015). In these cases, re-
searchers may use conventional external tags, Visible Implant
Elastomer (VIE) tags or coded-wire tags (CWTs) to name a few.
VIE tags are biocompatible, coloured marks injected subder-
mally but visible externally and may be more appropriate for
tracking small species or individuals that cannot handle the
burden of external tags (Leblanc and Noakes 2012). By using
unique colour(s) and injection positions, individuals can be
coded to provide unique identifiers (Booth and Shipley 2012).
A CWT is a small piece of stainless-steel wire approximately
1mm long that contains a specific alphanumeric code, iden-
tifying an individual or group (containing up to thousands of
individuals) of fish released at the same place and time. CWTs
have become the cornerstone of one of the world's largest fish
tagging programs to monitor Pacific salmonid migrations, sur-
vival and hatchery contributions, with millions of individuals
tagged since the 1970s (Jensen et al. 2023). This program is
managed by a network of US and Canadian federal, state and
Tribal/Indigenous agencies, offering an example of a network
for understanding the functional and demographic connectiv-
ity of salmon across oceans, rivers and international boundar-
ies. CWTs (in conjunction with other methods) have also been
used to quantify salmon straying, a phenomenon in which in-
dividuals migrate and attempt reproduction at non-natal sites
(Quinn 1993). In the context of hatcheries or other anthropo-
genic interventions, straying may be considered negative as a
‘failure to home’ (Keefer and Caudill 2014). However, in wild
populations, it is a critical evolutionary feature of salmonids
that buffers against spatial and temporal variation in habitat
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quality and can allow for the colonisation of new habitats and
recolonisation after local extinction (reviewed in Keefer and
Caudill 2014). For example, Westley et al. (2025) used long-term
(23years) CWT data from the Columbia River basin, USA to re-
veal that Chinook salmon straying rates are generally low but
can vary among sites and years, with elevated straying linked to
warmer water temperatures, fewer returning local fish and local
dynamics between specific hatcheries and tributaries. Note that
CWTs are not limited to salmonid species and have been used to
track functional and structural connectivity of other species like
paddlefish (Polyodon spathula; Pracheil et al. 2015—Table 2)
and pumpkinseed sunfish (Lepomis gibbosus; Jarvis et al. 2020).

Regardless of the tag type, mark-recapture can provide the ev-
idence needed to develop new, or refine current, conservation
policies. For example, a bonefish (Albula vulpes) mark-recap-
ture study in the Bahamas Archipelago assessed site fidelity and
functional connectivity between homesites and prespawning
sites, informing the designation of six National Parks to pro-
tect bonefish habitats (Boucek et al. 2019; Figure 2B). Mark-
recapture can also help assess the functional and structural
connectivity of anthropogenic barriers (e.g., navigation locks,
hydropower dams) to determine species-specific passability
(Klinge 1994; Marson et al. 2006; Garrone Neto et al. 2014) and
has been valuable in evaluating the effectiveness of invasive spe-
cies barriers, like electrical barriers (Verrill and Berry Jr. 1995).
Interestingly, mark-recapture data can also be compounded or
related to telemetry data. For example, telemetry data (including
detections from PIT) can serve a dual purpose by functioning as
pseudo mark-recapture data, where detections at fixed receivers
also act as recapture events (Perry et al. 2012). Similarly, Close-
Kin Mark-Recapture (CKMR) approaches use genetic samples
that can provide information on functional, demographic and
genetic connectivity from the spatial distribution of close rela-
tives (Casas and Saborido-Rey 2023).

Despite the benefits, mark-recapture has limitations, such
as low recapture probabilities (Lees et al. 2021) and assump-
tions that can be difficult to control: a closed population, equal
catchability, lasting marks, no impact on behaviour or survival
and random recapture (Dennis et al. 2024). Thus, while mark-
recapture offers valuable spatial-temporal data on connectivity,
it may not be suitable for studies requiring information on mech-
anisms or specific timing of movements.

3.3 | Environmental Tracers
3.3.1 | Stable Isotopes

Stable isotope analysis (SIA) is an increasingly important tool
for understanding connectivity within and across aquatic sys-
tems (Hobson 2023). Stable isotopes are intrinsic, biogeochemi-
cal chemical markers found in fish tissues that can reflect what
individual fish have been consuming, and where, and therefore
reflect local trophic patterns (Boecklen et al. 2011). In addition,
these markers provide time-integrated information, offering a
record of individual geographical use (Hobson 1999). Naturally
occurring stable isotopes, such as carbon (8§13C), nitrogen
(815N), sulfur (834S) and oxygen (8180), can be measured in
the tissues of animals (e.g., scales, muscle, liver, eye lenses,

otoliths, etc.) or the environment. Among the commonly used
isotopes in fisheries research, carbon, nitrogen and sulfur pro-
vide insights on functional, structural and trophic connectiv-
ity both individually and collectively when analysed together
(Shipley and Matich 2020; Raoult et al. 2024). These isotopes
vary predictably across habitats because environmental con-
ditions, such as primary production sources, nutrient regimes,
salinity and benthic-pelagic coupling, shape distinct baseline
isotope signatures. When consumers feed in those habitats, the
spatially structured environmental isotopic baselines are incor-
porated into their tissues. Thus, comparing fish tissue to these
baselines allows researchers to infer structural connectivity by
identifying which habitats or regions individuals have occupied
and how they move among isotopically distinct environments.
Carbon isotopes can trace primary production in marine sys-
tems (e.g., nearshore seagrass and mangrove-based production
versus offshore phytoplankton sources), nitrogen isotopes can
indicate the relative trophic position of consumers within food
webs, and sulfur isotopes can help differentiate ecosystems
based on their sulfur sources, such as pelagic versus benthic en-
vironments or marine versus freshwater systems (Hobson 2023;
Raoult et al. 2024). Because different prey sources, habitats,
and trophic pathways (e.g., benthic, littoral, pelagic) often have
distinct stable isotope signatures, these isotopic differences can
act as natural biomarkers, allowing researchers to trace the
movements of consumers in response to seasonal migrations,
ontogenetic shifts and habitat disturbances (Fry 2006). Indeed,
SIA has been widely applied to trophic connectivity studies in
fishes across estuaries (Herzka 2005; Reis-Santos et al. 2015),
lakes and rivers (Hesslein et al. 1991; Shibata et al. 2011; O'Mara
et al. 2021) and marine environments (Rooker et al. 2008; Logan
et al. 2020). Moreover, SIA may be more efficient or appropriate
in some cases because it does not require marking and recapture
(or detecting) of individuals, and it requires only a small amount
of animal material, making it an effective method for small indi-
viduals (Durbec et al. 2010).

Fundamentally, STA can help determine the energy pathways
and the habitats animals rely on (Boecklen et al. 2011) and an-
swer applied questions related to stock structure and the timing
and locations of ontogenetic shifts and migrations (Hobson 1999;
Rubenstein and Hobson 2004; Shipley et al. 2021). Stable isotope
mixing models have traditionally been used for trophic con-
nectivity when quantifying dietary contributions in foodscapes
(Fry 2006; Farly et al. 2019; Stewart et al. 2022). At larger spatial
scales, ‘isoscapes’ (i.e., gradients of isotopic baselines) allow the
probabilistic determination of origins based on geographic iso-
tope variability (Bowen et al. 2005; Bowen 2010). By comparing
tissue samples from fish to the isotopic composition of an isos-
cape, its migration or origin can be estimated and, thus, provide
a means to also examine structural and functional connectiv-
ity (Hobson et al. 2010). For example, within the marine envi-
ronment, isotopic variation influenced structural connectivity;
including oceanographic processes, such as temperature and
productivity gradients, has informed the geographic origins and
movement patterns in migratory teleosts and elasmobranchs
(Trueman et al. 2012). Integrating SIA with complementary
approaches is also expanding its utility to understand other
types of connectivity. In the Florida Keys, USA, Brownscombe
et al. (2023) used a telemetry-based regional isoscape to examine
structural and functional connectivity of permit (Trachinotus
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falcatus), resulting in a median reliance of 70% on seagrass-
based prey (range: 29%-100%). Despite frequent and extensive
movements to and from the Florida Reef Tract, permit primarily
relied on seagrass flats as their main energy channel. In con-
trast, permit associated with artificial reefs exhibited higher
residence periods and reliance on pelagic and offshore energy
channels, such as planktonic sources. As advances continue, the
integration of SIA and complementary methodologies will play
an increasingly important role in determining fish habitat and
trophic connectivity with greater precision and broader appli-
cability, enabling more advanced spatial ecological paradigms.

Foodscapes, which encompass the spatial and trophic connec-
tions between habitats, play a critical part in shaping consumer—
resource interactions across ecosystems (Rossi et al. 2024). While
there is considerable historical literature on predator (consumer)
movements facilitating cross-system trophic connectivity, prey
(or resource) movements across ecosystem boundaries repre-
sent a ‘second axis’ of trophic connectivity, which can affect
demographic connectivity. For example, recent research high-
lighted the importance of small amphidromous fishes in trans-
porting marine-derived resources into lowland streams and
rivers, thereby contributing to freshwater food webs (Engman
etal. 2021). Stewart et al. (2022) further demonstrated with §13C
and 615N that amphidromous fish prey serve as an important
trophic subsidy for the threatened New Zealand endemic long-
fin eel (Anguilla dieffenbachii), emphasising the need for con-
servation efforts to extend beyond upstream riverine habitats to
include coastal barrier beach lagoons, key ‘food-producing hab-
itats’ (Table 2). Even within foodscapes, prey movements can
serve as an important determinant of trophic connectivity and
the ultimate source of energy supporting fisheries production.
For example, along the US Atlantic coast, the consumption of
mysids (small shrimp-like crustaceans that undergo diel vertical
migrations) by epibenthic fishes resulted in bottom-associated
fishes having tissue 813C stable isotope values comparable to
small pelagic forage fishes in the same region (Woodland and
Secor 2013). In this region, the movement of mysids serves as a
biological vector transporting fresh pelagic production to ben-
thic pathways, contributing an estimated 32%-55% to the growth
of certain epibenthic fishes based on two-end member stable iso-
tope modelling (Woodland and Secor 2013). In the Baltic Sea,
Kiljunen et al. (2020) used stable isotopes to identify a similar,
albeit inverse, trophic interaction between mysids and Atlantic
herring (Clupea harengus) in which mysids served as a vector of
benthic production to the pelagic zone. In both instances, prey
movements provided a mechanism for the transport of biomass
and energy between habitats, enhancing trophic connectivity
within the foodscape and yielding an important trophic subsidy
to consumers.

STA is not without limitations as interpretation can be con-
founded by preservation techniques, overlapping isotope values
among habitats or prey resources, temporal variability in base-
line values and uncertainty in trophic discrimination factors,
all of which may reduce ecological inferences (Kelly et al. 2006;
Bond and Diamond 2011; Shipley and Matich 2020). Further,
while stable isotopes have been used to describe spatial pat-
terns of movement at various scales as noted in the examples
listed above, studies are most typically conducted at larger spa-
tial scales (e.g., continental; Durbec et al. 2010) with relatively

few studies conducting finer spatial scale analysis (e.g., within a
few kilometres, though see Haas et al. 2009; Cunjak et al. 2005;
Harrod et al. 2005). A promising development in SIA for un-
derstanding fish connectivity is Compound-Specific Isotope
Analysis (CSIA), using individual amino acids or fatty acids
rather than bulk tissue. While the cost of CSIA can be prohib-
itive, it allows clearer separation of baseline and trophic pro-
cesses, reducing uncertainty in trophic enrichment estimates
(McMahon and McCarthy 2016).

3.3.2 | Otoliths

Otoliths are calcified structures located within the inner ear
of teleost fishes that accrete layers over time, incorporating
trace elements and isotopes from the surrounding environment
(Thorrold et al. 2001). The shape, chemical signatures (stable
isotopes) and/or trace elements (most frequently Strontium [Sr],
Barium [Ba], Manganese [Mn] and Magnesium [Mg]) found
in otoliths can be used to reconstruct environment or habi-
tat use histories and infer associated movement patterns and
natal origin, providing a useful tool to assess functional and
demographic connectivity (reviewed in Secor 1999 and S. E.
Campana 2005; Elsdon et al. 2008). In freshwater, estuarine and
marine systems, otoliths and/or other calcified structures (e.g.,
statoliths of cephalopods, vertebrae of elasmobranchs, fin rays
and fin spines in bony fishes) have been widely used to inves-
tigate connectivity of organisms (Gillanders 2002; Reis-Santos
et al. 2015; Zampatti et al. 2021; Figure 3C). Otoliths have the
advantage in that all fish are inherently ‘marked’ from an early
age (i.e., relative to other manual methods such as biotelemetry),
whereby information in the form of isotopes and trace elements
is usually permanently stored in the otolith and is related to the
age of the fish (Elsdon et al. 2008). The simplest approach fo-
cuses on examining otolith shape (Ferguson et al. 2011) or whole
otolith elemental and SIA to assess population associations
(Campana 1999). The premise is that differences in otolith shape
and/or chemistry among populations or communities suggest a
lack of ecological connectivity, although similar otoliths do not
necessarily imply connectivity (Campana et al. 2000).

Increasingly, lifetime movements and life-history patterns are
extracted based on different ‘signatures’ being incorporated
as fish move throughout environments. For example, Sr and
Ba tend to be positively and negatively related to salinity, re-
spectively; if a fish moved from freshwater to marine waters
it would likely have lower Sr:Ca and higher Ba:Ca associated
with freshwater compared to when it was in marine waters
(Sr and Ba are usually ratioed to Ca). Chronological informa-
tion in relation to age and growth can then be extracted and
used to better understand aspects of landscape and ecologi-
cal connectivity. For example, Brophy et al. (2020) used 13C
and 6180 values derived from Atlantic bluefin tuna otoliths to
infer natal origins and assess the timing and degree of mixing
between individuals from geographically separated spawning
stocks (i.e., functional and demographic connectivity). In an-
other example, Tulp et al. (2013) evaluated otolith strontium
(®8Sr) patterns of European smelt (Osmerus eperlanus) col-
lected from the Wadden Sea (marine) and landlocked lakes
IJsselmeer and Markermeer (freshwater) in the Netherlands,
regions fragmented by a large dam (Table 2). They found
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significantly higher 88Sr concentrations in marine fish, with
no indication of mixing between the marine and landlocked
populations. Given declines in the landlocked stocks and their
important ecological role as key prey for piscivorous birds,
this study shows how otolith chemistry confirmed that an
artificial barrier is disrupting ecological and trophic linkages
and reducing demographic connectivity.

Several methods exist for determining fish movement and mi-
gration using otoliths, varying based on the number of fish
groups studied, the use of chemical profiles across otoliths,
and whether natural environmental signatures or applied
chemical tags are evaluated (Elsdon et al. 2008; Walther and
Limburg 2012; Thomas and Swearer 2019). Much of the work
has focused on natural tags (information naturally acquired in
otoliths) but several studies also demonstrate ecological con-
nectivity among groups using applied tags such as tetracycline
(Jones et al. 1999) or an unnatural isotopic ratio of a common
element (Almany et al. 2007). For example, Jones et al. (1999)
marked embryos in the field with tetracycline, subsequently
collected larvae settling onto a reef, and examined their oto-
liths to determine if they were marked. Using this approach,
researchers were able to examine functional and demographic
connectivity by demonstrating return to natal reefs and self-
recruitment of 15%-60%. Almany et al. (2007) used a differ-
ent marking approach whereby they marked mothers with
enriched 37Ba isotopes that were transmitted to offspring
before hatching. Two months after marking, recently settled
fish were collected and researchers examined daily growth
increments in otoliths to confirm they were born after moth-
ers were marked and then examined the core of the otolith to
determine if the fish were tagged. Using this approach, they
demonstrated return of larval fish to natal reefs with 17%-60%
returning depending on the species. Other approaches trace
juvenile or adult fish back to their larval (in the case of juve-
niles) or juvenile (in the case of adults) habitats (Gillanders
and Kingsford 1996; McMahon et al. 2012) based on natu-
rally occurring elements or isotopes in otoliths. For example,
Gillanders and Kingsford (1996) demonstrated functional
connectivity between estuarine nursery habitats and adult
rocky reef habitats by analysing trace elements in otoliths of
juvenile fish from estuarine seagrass and rocky reef habitats.

Similarly, naturally occurring elements or isotopes can be an-
alysed in profiles across otoliths with variation used to iden-
tify functional connectivity among different water bodies.
For example, Elsdon and Gillanders (2005) assessed whether
freshwater occupancy of black bream (Acanthopagrus butch-
eri) could be inferred from otolith Ba:Ca ratios whereby oto-
lith Ba:Ca of fish was correlated with ambient Ba:Ca. They
discovered a strong correlation, with fish caught in freshwater
showing roughly double the Ba:Ca of fish captured in saltwa-
ter. These ratios successfully identified fish residency patterns
and revealed multiple migratory behaviours of fish within
the same estuary. This approach has also been used to deter-
mine partial migration in fish whereby some individuals in a
population moved and others remained resident (Gillanders
et al. 2015). Interestingly, a study by Pan et al. (2024) used
otolith biochemistry to assess effects of a climate event—
El Nifio—on population connectivity of Spanish mackerel
(Scomberomorus niphonius) along China's coast during the

2015-2016 event (Figure 2C). They analysed elemental ratios
(Ba:Ca, Mg:Ca) in otoliths from age-1 individuals across three
consecutive years (2016-2018), observing significant increases
in these ratios during the El Nifio year. Their results indicated
that during the El Nifio year, there was large-scale movement
of mackerel between the East China Sea and the Yellow Sea,
but in the following years, local spawning groups appeared
to be more self-sustaining, suggesting that extreme climate
events like El Nifio can profoundly affect the functional con-
nectivity of migratory fish populations. Collectively, these
studies demonstrate the importance of otolith chemistry for
spatially reconciling population structures, life histories and
movement patterns of fishes. However, researchers have cau-
tioned that otolith chemistry can come with limitations like
overlapping chemical signatures in similar habitats and that
data interpretation requires assumptions about water chemis-
try stability that may not capture movements if environmental
gradients are ephemeral or weak (Elsdon et al. 2008; Sturrock
et al. 2012).

3.4 | Genetics

Genetic connectivity among populations is imperative for
the maintenance of genetic diversity and adaptive poten-
tial in wild populations of fish (Rubidge et al. 2012; Klingler
et al. 2021; Figure 3D). Habitat fragmentation erodes struc-
tural connectivity and can ultimately affect functional and
genetic connectivity, resulting in isolation and acceleration of
the loss of genetic variation through demographic and genetic
stochasticity within populations (Pfliiger et al. 2019; Klingler
et al. 2023). Genetic data collection, beginning with protein
electrophoresis and continuing into the present genomic se-
quencing era, has allowed biologists to genotype individuals
at specific loci within populations and characterise the gene
pool. Statistical comparison of alleles and allele frequency
across multiple loci within and among populations provides
an estimate of gene flow (Hamilton 2021). Subsequent breed-
ing among immigrant and resident individuals acts to in-
crease genetic connectivity and similarity among populations
and provide novel genotype combinations that may increase
fitness. By comparing genetic similarity and structure, re-
searchers can determine whether fish from different locations
are mixing, isolated, or have restricted movements, offering
insights into genetic connectivity among wild and/or farmed
populations (e.g., Spies et al. 2018; Fazzi-Gomes et al. 2021;
O'Dwyer et al. 2021). Allozymes, mitochondrial DNA, and
nuclear microsatellites were the genetic marker systems that
dominated the conservation and population genetic field for
the past 20-30years (Grover and Sharma 2016); today, whole
genome sequencing, RADseq approaches and the develop-
ment of GTseq panels have increased our ability to charac-
terise all or significant portions of the genome of individuals,
whole populations, watersheds, regions and entire manage-
ment units (Saglam et al. 2017; Supple and Shapiro 2018;
Amish et al. 2019; Bohling et al. 2021; Chang et al. 2021). With
the advent of genomic sequencing methodology, we can now
characterise large portions of the entire genome at both neu-
tral genetic and adaptive trait loci to more accurately quantify
gene flow and connectedness and estimate genetic diversity
and adaptive potential.
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Patterns of genetic variation provide statistical power to under-
stand the effects of anthropogenic changes that may be impeding
the ability of fishes to move among habitats and fulfil their life
history. This is a comparatively powerful framework, as track-
ing physically tagged individuals in real time can be logistically
challenging and provides no information on subsequent breed-
ing or historical patterns of movement. In addition to Wright's
F statistics (Weir and Hill 2002), which measure the extent of
genetic differentiation through allele frequency differences and
the presence of unique variants, Bayesian genotype clustering
analysis (Pritchard et al. 2000; Gompert et al. 2014) uses the
probability of specific genotypes based upon allele frequencies
and assumptions of Hardy-Weinberg equilibrium to identify
groups (clusters) of interbreeding individuals. Bayesian analy-
sis assigns individuals to a genotype cluster (population) of ori-
gin. Genetically identified populations overlaid onto landscapes
can identify real boundaries and reveal generational movement
(Brown et al. 2016; Neville et al. 2016; Peacock et al. 2016). In
cases of individuals with mixed ancestry (i.e., proportional
membership in multiple genotype clusters), the parents reflect
different genotype clusters and therefore interbreeding and
admixture.

Landscape genetics/genomics combines population genetics
and landscape ecology to help elucidate genetic connectivity, as
well as effects of habitat fragmentation and other human distur-
bances on functional connectivity. The literature is replete with
studies using genetic data to characterise movement patterns of
fish species and the landscape correlates of these patterns. For
example, Whiteley et al. (2010) used spatial patterns of allelic
variation to show that coastal cutthroat trout (Oncorhynchus
clarkii clarkii) above natural waterfall barriers in western North
America were highly differentiated from populations below the
barriers, therefore demonstrating natural inhibition of func-
tional and genetic connectivity (Figure 2D). Geological evidence
suggests that above-barrier populations have been isolated from
downstream populations for 8000-12,500years and that gene
flow was also unidirectional from upstream to downstream with
the isolated upstream populations having lower levels of genetic
variation. In another example, Neville et al. (2006) used genetic
data to characterise the functional connectivity of the endan-
gered Lahontan cutthroat trout (O. c. henshawi) in one of the last
large, interconnected stream systems it inhabits (Table 2). They
identified both resident and migratory life histories, with spatial
genetic structure in tributaries indicating isolation by barriers or
distance. Evidence of extirpation and recolonisation supported
a metapopulation dynamic, dependent on the connectivity and
habitat diversity of large watersheds. Migratory individuals play
akey role in recolonising extirpated tributary populations, while
tributaries act as refugia during droughts. Similar genetic pat-
terns supporting the historical importance of large, connected
watersheds have been documented in other inland cutthroat
trout subspecies (e.g., O. c. lewisi, O. c. utah, O. c. bouvieri; Eaton
et al. 2018; Budy et al. 2017, 2020; Kaeding 2023).

Environmental DNA (eDNA) is an additional genetic method
that can be used to monitor fish connectivity by detecting spe-
cies' genetic material in water, indicating where fish are pres-
ent and how/if they move across geographic regions or barriers.
This noninvasive method has improved our ability to detect fish
species while reducing sampling bias, removing the need to

handle animals and has proven useful for assessing functional
connectivity across both marine and freshwater ecosystems
(see Yamanaka and Minamoto 2016). In freshwater ecosystems,
eDNA has been used to track recolonisation after dam removal,
such as in the Elwha River (Washington, USA) where anadro-
mous fishes were newly detected upstream post-barrier removal
(Duda et al. 2021). In marine environments, eDNA has been
used to compare fish community structures (also see Section 3.5:
Community Structure Analysis) across different coastal habi-
tat types to evaluate functional connectedness, indicating key
differences in species present at embayment habitats versus
open coastal regions (Waters et al. 2023). In a different marine
study, Wu et al. (2025) used eDNA to sample fish communities
from three habitat types near Hainan Island (China): a natural
Sargassum seaweed field, an adjacent natural Enhalusacoroi-
des seagrass bed, and a cultivated Eucheumagelatinae seaweed
zone (Table 2). They detected 156 fishes, but only 7% were de-
tected across all habitat types; the fish assemblages in the nat-
ural seaweed and seagrass habitats were analogous, indicating
demographic connectivity; however, the cultivated bed was sig-
nificantly different and had the lowest number of species pres-
ent. This work underscores how habitat type and management
(i.e., natural versus cultivated) can influence fish community
composition and connectedness. Although eDNA provides a
number of benefits, including its ability to detect cryptic species,
capture a greater number of species compared to conventional
methods, and sample at a greater spatial and temporal scale due
to ease of use, it currently has known limitations such as false
positives and its ability to only apply basic species data (i.e., can-
not offer size frequency, sex ratio or absolute abundance data;
discussed in Waters et al. 2023). Regardless, the above exam-
ples provide valuable insights into local biodiversity and how
fish populations are functionally linked across seascapes and
riverscapes.

Levels of genetic variation, measures of effective population
size and extent of genetic differentiation can be used to develop
recovery strategies and for effective monitoring of species at
risk. Although researchers have cautioned the use of genetics
to evaluate fish connectivity given potential lag times in detect-
ing connectivity changes and/or capturing short-term changes
in connectedness (e.g., it may take up to 200 generations for
microsatellite markers to reach equilibrium after isolation be-
gins; Cossu et al. 2022), advances in next-generation genomic
approaches, such as single nucleotide polymorphism (SNP)
analyses, can detect divergences more rapidly. For example,
SNP data have been used to detect the effects of fragmentation
due to dams, and subsequent post-dam removal, on timescales
far less than 200 generations; Fraik et al. (2021) detected signif-
icant shifts in the genetic structure of steelhead (Oncorhynchus
mykiss) populations on the Elwha River within two generations
(< 5years) following dam removal. Regardless, if researchers
require the actual or fine-scale use of specific habitats, genetic
methods may need to be combined with complementary tagging
or behavioural studies (Cooke et al. 2008; Washburn et al. 2020).

3.5 | Community Structure Analysis

Unlike the previously listed methods that directly quantified
fish connectivity, community structure analysis instead offers
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indirect inference based on spatial and/or temporal patterns
in species assemblages to examine demographic connectivity
(Figure 3E). Examples of tools to assess fish community struc-
ture include traditional fisheries approaches (e.g., passive and
active nets), backpack and/or boat electrofishing, eDNA, and
telemetry. These techniques allow researchers to detect spe-
cies presence, relative abundance, community composition or
individual movements across geographic regions and seasons
(Evans et al. 2017; Radinger et al. 2019). Though community
composition metrics, like alpha diversity (a community's species
richness) and beta-diversity (difference in species composition
between two or more sites/habitats) (Whittaker 1972), do not
themselves quantify connectivity, spatial patterns such as a high
composition overlap would suggest landscape and demographic
connectivity among habitats/sites/regions. These inferences
can become more powerful when combined with species traits
like dispersal capacity or life history, abiotic environmental or
habitat data, and hydrological models of movement pathways or
corridors. For example, Felin et al. (2025) investigated the role of
local and whole-basin functional and structural connectivity in
fish species distribution, designing connectivity indices based
on river network characteristics and each species' mobility char-
acteristics, and including them in a species distribution model to
consider habitat suitability and quantify their role in fish distri-
bution patterns. They found that connectivity indices that took
the local context of the area into account performed consistently
better than others, noting that fragmentation caused lower like-
lihood of presence for many non-diadromous river fish species.

Moreover, integrating community structure with comple-
mentary tools can connect compositional patterns with a
mechanistic understanding of movements. For example, fish
community sampling was conducted in the Lower Boardman
(Ottaway) River (Michigan, USA) to provide a baseline assess-
ment and migratory patterns of fishes that may encounter a
fish passage structure being constructed by the Great Lakes
Fishery Commission in North America called “FishPass”
(www.glfc.org/fishpass.php; Figure 2E). The FishPass project
aims to reconnect the Boardman River with Lake Michigan
by replacing a deteriorating dam with a complete barrier (to
all fish) and an adaptable fishway designed to support auto-
mated or semi-automated selective, bidirectional fish passage.
This system would enable native species to pass while block-
ing harmful invaders like sea lamprey. Swanson et al. (2023)
evaluated fish community assemblage and associated fish
movement patterns using a suite of methods (e.g., boat and
backpack electrofishing, PIT and radio telemetry) to deter-
mine which species would encounter FishPass and if seasonal
patterns of occurrences existed. Their study demonstrated
phenological variation in movement patterns across their
study species coinciding with seasonal shifts in the relative
abundance of species observed within the fish community
sampling (i.e., demographic connectivity). A large proportion
of radio telemetered (73%) sea lamprey encountered the dam,
with observations suggesting they challenged the barrier mul-
tiple times. Native species had variable tendencies to encoun-
ter the dam, and their tendency to encounter decreased after
subsequent entry events into the river. This study is an on-
the-ground example of a community structure analysis that
identified species that managers should consider in a manage-
ment intervention and functional aspects of such movements,

offering the evidence necessary for effective management of
a fish passage solution. By leveraging innovative approaches
(i.e., this could also be considered an emerging technology,
see section below), FishPass aims to address one of the great-
est challenges in fisheries management: ensuring the passage
of desirable fish at a barrier while preventing the spread of
invasive fishes (i.e., ‘selective fragmentation’, Rahel and
McLaughlin 2018; Zielinski et al. 2020), with the long-term
goal of fully automated selective passage.

Community structure analyses that integrate species traits can
reveal how habitat fragmentation and flow alteration affect fish
connectivity in regionally specific contexts. Perkin et al. (2015) in-
vestigated fish communities in Great Plains streams (USA), where
intermittent flows and extensive agricultural water use have al-
tered hydrologic regimes (Table 2). They documented declines in
headwater specialists, such as the plains minnow (Hybognathus
placitus) and western silvery minnow (H. argyritis), species par-
ticularly sensitive to fragmentation and dewatering. By combining
beta-diversity metrics with trait data, the researchers showed that
fragmentation and flow reductions disproportionately affected
small-bodied, dispersal-limited fishes, resulting in an altered com-
munity structure downstream of water withdrawals and anthro-
pogenic barriers. Research like this emphasises the critical role of
maintaining hydrological connectivity to support vulnerable spe-
cies and informs water management policies that balance human
use with ecological integrity. Linking shifts in community struc-
ture to species’ functional traits and environmental stressors offers
a nuanced approach for conservation prioritisation in fragmented
river systems that experience dewatering, providing insights be-
yond those obtained through direct movement tracking alone.

Although community structure analysis provides valuable
information about fish connectivity, this method, too, has
limitations. The approach relies heavily on detecting changes
in species presence or relative abundance, which may be af-
fected by numerous confounding factors beyond connectivity
itself, including seasonal variability, sampling biases or hab-
itat heterogeneity (Gotelli and Colwell 2001; Legendre and
Legendre 2012). Moreover, compositional overlaps do not al-
ways differentiate between transient movements and actual
demographic exchange, potentially overestimating true de-
mographic connectivity (Lowe and Allendorf 2010). As such,
community structure analysis may be most powerful when in-
tegrated with other methods such as movement data, genetic
analyses or hydrological modelling to provide a comprehen-
sive and mechanistic understanding of connectivity. Careful
study design and multimethod approaches appear essential
to overcome these limitations and effectively estimate demo-
graphic connectivity to inform conservation and management
decisions.

3.6 | Emerging Tools and Technologies

Recent advances in data analyses and technology have revolu-
tionised the way we can monitor fish connectivity, enhancing
our understanding of fish passage and movements, water flow
and overall ecosystem health. These technologies span remote
sensing, biological monitoring, and data integration and analyt-
ics. In some cases, emerging technologies may be a standalone
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technique to evaluate connectivity, whereas in other examples
they have been blended with the above-mentioned methods to
achieve more comprehensive results.

Remote sensing can be used to evaluate structural connec-
tivity of the land- and water-scape. High-resolution satellite
imagery, freely accessible through services like Google Earth
and Sentinel-2 via the Copernicus browser (https://browser.
dataspace.copernicus.eu/), has been used to identify sea-
sonal hydrologic or geomorphological patterns related to fish
movements that may affect connectivity in freshwater envi-
ronments (Galia et al. 2023). For example, high-resolution
(10m horizontal RGB) Sentinel-2 images were used to deter-
mine ice-on and ice-off periods and combined with acoustic
telemetry data to investigate potential seasonal barriers (i.e.,
ice) to fish movement, providing key information to manag-
ers related to both structural and functional connectivity, as
well as overwintering habitats (Bergman et al. 2023, 2025—
Figure 2F). Similarly, light detection and ranging (lidar) data
can be used to create digital elevation maps (DEMs) or digital
terrain models (DTMs) to study water flow (i.e., reconstruct
stream networks) at basin-wide scales to provide broad scale
information on water-scape features that may hinder struc-
tural connectivity (e.g., water falls, velocity barriers) (Hedger
et al. 2020; Andualem et al. 2024; Figure 3F). Together, these
remote sensing tools can help map and evaluate the impact of
potential natural and artificial disruptions to structural con-
nectivity at broad scales more efficiently than on-the-ground
surveys (Parks et al. 2024—Table 2).

Underwater imagery using ultrasonic sensors (e.g., ARIS,
DIDSON, recreational side-scan, forward-facing sonar, live-
view sonar) or visual spectrum photography are also useful
for monitoring fish passage and community assemblages
(i.e., functional and demographic connectivity, respectively;
Schramm et al. 2020; Haas et al. 2024—Table 2). Baited
Remote Underwater Video Systems (‘BRUVS’) offer a nonin-
vasive, fishery-independent method that can be used to assess
demographic connectivity via fish assemblages and provide
valuable insights into species presence and diversity, relative
abundance and spatial distribution. When BRUVs are de-
ployed strategically across habitats or management zones (e.g.,
protected areas, spatial closures), they can offer information
on functional connectivity by capturing patterns of habitat
use and occurrences over time (Santana-Garcon et al. 2014;
Hall et al. 2021). While underwater cameras provide high-
resolution images of fish in controlled settings (i.e., a fish
counter within a fishway) or automated remote settings, they
can be hindered by high turbidity or low light levels. Sonar
techniques such as hydroacoustics are not impacted by water
clarity or light levels, but object identification can be more dif-
ficult (Le Quinio et al. 2023). For example, Piczak et al. (2025)
used down-looking hydroacoustic surveys and trawls (bottom
and mid-water) to evaluate fish community composition in-
side versus outside harmful algal bloom areas, revealing no
significant differences between areas, and suggest that bloom
zones in their study were not a total barrier or ‘dead zone’ to
fishes. Advances in machine learning and image detection or
recognition software that reduce the need for significant in-
vestment in data storage and analyses have made these tech-
nologies more widespread in their deployment (Barbedo 2022)

and can also be integrated into selective fish passage solutions
(Grasty et al. 2021). Passive acoustic monitoring (‘ecoacous-
tics’) is another emerging technology that has been used more
extensively in marine habitats to record animal sounds or
track movement of vocal animals (Miller 2012), offering in-
sights beyond communication, but also community compo-
sition and functioning of the ecosystem, and is not limited
by turbidity like BRUVs (Stowell and Sueur 2020). In addi-
tion, artificial intelligence and machine learning approaches
have benefited from the analyses of large datasets to identify
patterns in structural connectivity and predict disruptions
(Buchanan et al. 2022). Machine learning techniques have
been applied to the analysis of telemetry data to (1) improve
the accuracy of resource selection functions, which are used
to determine and predict relative habitat selection by animals
(Griffin et al. 2021—Table 2), (2) infer differential movement
and space use patterns by fish in areas where receiver cover-
age is poor (Williamson et al. 2021) and (3) integrate with en-
vironmental data to identify potential spawning aggregation
sites (Brownscombe et al. 2020).

Thanks to the prevalence of smartphones with GPS capabili-
ties, high-resolution cameras and continuous internet connec-
tions, crowdsourcing biological data collection has become a
more common approach to collecting near real-time data on
fish distributions (Radinger et al. 2019). An innovative ap-
plication of crowdsourcing to inform functional connectivity
of freshwater fishes is the ‘fish doorbell’, where people from
around the world are able to monitor a live feed of an under-
water camera for fish and report (i.e., ring the doorbell) fish
presence to fisheries scientists in Utrecht, NL to operate a
gate, allowing fish to pass (https://visdeurbel.nl/en/). Apps
can also provide information to managers and scientists on
distributions of fishes, like ‘Aqualnvaders’ (http://natureloca
tor.org/aquainvaders.html), which focuses on nonnative
aquatic species.

4 | Knowledge Gaps

While current and emerging technologies have provided oppor-
tunities to gain a better understanding of landscape and ecolog-
ical connectivity to effectively manage fish populations, several
knowledge gaps remain. There is often a taxonomic bias with
respect to conservation-related studies with certain species or
groups of species receiving more funding and prioritisation over
others (Donaldson et al. 2016). Whether charismatic megafauna
(e.g., sharks; Mazzoldi et al. 2019), flagship, or umbrella spe-
cies (Kalinkat et al. 2017), or a focus on recreationally or com-
mercially important or invasive species (Landsman et al. 2011;
Rypel et al. 2021; Brown et al. 2025), a lack of understanding of
fish connectivity on all trophic levels undermines comprehen-
sive management strategies. Management paradigms are chang-
ing where ecological knowledge of species across trophic levels
and recreational importance are valued to understand ecosys-
tem functioning.

Similar to taxonomic biases, it is important to be aware of
geographic biases that exist in the literature due to remote-
ness of access and/or limited accessibility of funds/resources/
technologies to researchers in different parts of the world (Kot

Fish and Fisheries, 2026

17

85UB017 SUOWIWIOD BA 81D 3|t dde 8y} Aq peusenob afe Sa(olie YO BSN J0 S3|nI o4 A%iq1T 8UIIUO A3]1M UO (SUO 1 IPUOD-PUR-SWSHLI0O" A3 | IM A e1q 1[ulIUO//SARY) SUORIPUOD PUe SWIS L 843 88S *[9202/T0/c2] Uo Areiq)auljuo A8 |Im ‘AiseAIuN uo D A 85002 4/TTTT OT/I0P/W0D A8 | M AReiq U1 |Uo//SAIY Loy papeojumoq ‘0 ‘6L6229%T


https://browser.dataspace.copernicus.eu/
https://browser.dataspace.copernicus.eu/
https://visdeurbel.nl/en/
http://naturelocator.org/aquainvaders.html
http://naturelocator.org/aquainvaders.html

et al. 2023). These biases present opportunities for capacity and
relationship building and can be mitigated by coordinated pro-
grams such as large tracking networks that could leverage in-
frastructure across regions (e.g., OTN, ETN; Matley et al. 2022).
Despite diverse methodologies for studying connectivity, ac-
cess to understanding deep-water movements in marine and
freshwater environments is limited by logistics and abilities
to sample these areas given the technologies available to date.
Even in more accessible urban areas, knowledge gaps remain;
LaPoint et al. (2015) reviewed ecological connectivity research
conducted in urban areas and discovered strong taxonomic and
geographic biases, with most studies focusing on large mam-
mals and birds in North America and Europe (only 2 of 148
articles evaluated fish). The authors emphasise that these bi-
ases are concerning given urban stressors like fragmentation
and pollution already limit functional connectivity of many
species and that climate change will likely exacerbate negative
effects by increasing species' need to shift ranges or access new
habitats.

Advances in current and emerging technologies for studying
connectivity represent a significant promise for addressing
many of the gaps outlined above. The miniaturisation of bio-
telemetry tags allows for the tagging of younger and smaller
fishes, helping to fill life history, taxonomic and trophic gaps,
while also enabling the tracking of individuals over longer
time periods (Cooke et al. 2022; Lennox, Mastrodimitropoulos,
et al. 2025). The call for a global library of underwater biologi-
cal sounds (Parsons et al. 2022) will enhance the utility of the
emerging technology ecoacoustics by practitioners because
they will no longer need to start from the ground up. In addi-
tion to the ability of machine learning to recognise fish images
(Barbedo 2022), it can also be used to detect and classify fish
sounds (Barroso et al. 2023). Calls for archiving data from peer-
reviewed literature would benefit knowledge exchange in future
studies (Kot et al. 2023), ultimately benefiting fisheries manage-
ment and conservation.

Many opportunities remain to further our understanding of fish
connectivity by working together. An area that is receiving more
attention for filling in gaps for connectivity studies is the use
of participatory science using visual surveys. For example, en-
gaging volunteers in documenting the migration phenology of
various fish species is not only responsible for increased data
collection, but it mobilises a new set of advocates for habitat con-
nectivity for all fish species (e.g., sucker migration phenology,
Murchie et al. 2024; Run Herring Run, Metcalfe et al. 2022).
Similarly, groups such as Redmap (https://www.redmap.org.au/
about/how-you-can-help-redmap/) rely on volunteers to share
observations of marine species to document range extensions,
with data typically shared to researchers via cell phone apps
(Happel et al. 2020). The opportunity to collaborate with others
that have expertise across different technologies, geographies,
and taxa (including terrestrial) for studying animal connectivity
will further enhance our current understanding of fishes. This
includes the Two-Eyed Seeing Approach (Reid et al. 2021) where
Indigenous Knowledge can be paired with Western science in a
complementary and co-existing manner for future studies.

Although the focus of this article was to review methods used to
assess fish connectivity, we acknowledge that there are a number

of fundamental questions that persist. Understanding the degree
of connectivity needed to maintain or restore fish populations in
different contexts (e.g., when installing a fish passage device) is
difficult to assess, but wholly vital to ensure wild populations per-
sist. Moreover, there are fascinating and fundamental questions
about the interplay between structural and functional connectiv-
ity that enable fish to occupy the same site, yet there are also ques-
tions about the extent to which individuals or subpopulations that
come from different areas exchange genetic material. Integrating
methods and disciplines has the potential to reveal novel ecolog-
ical processes while informing management. As such, continued
efforts to address knowledge gaps that span disciplines, organisa-
tions and ways of knowing for researchers to collaboratively work
together will provide critical insight in fish connectivity.

5 | Conclusion

Connectivity is a fundamental concept in aquatic ecosystems
with particular salience to fishes. For decades, researchers have
attempted to understand and document the extent and conse-
quences of connectivity—or its corollary, fragmentation. Many
of the fundamental studies about why and how fish move have
come from applied research focused on addressing issues with
physical barriers (e.g., dams) or to define fisheries management
units (e.g., stocks). Today, connectivity is routinely considered
within an applied context by fisheries managers in decisions
related to stocking, fisheries regulations and planning, inva-
sive species management and habitat management including
restoration and protection (Cooke et al. 2016; Hays et al. 2019).
This article emerged from a conference symposium on ma-
rine and freshwater fish connectivity where the diverse ways
in which different methods were being applied were remark-
able and spanned species, ecosystems, methods and objectives.
Here, we synthesise the diverse toolbox available to assess
fish connectivity which has expanded since previous reviews
(e.g., Lucas and Baras 2000). Despite impressive technological
developments that have revolutionised our understanding of
fish connectivity, many questions remain. To that end, we an-
ticipate and welcome future efforts to develop novel methods
and approaches for combining tools to further refine our un-
derstanding of fish connectivity. Connectivity is of fundamen-
tal importance to ecology and fisheries management; we are
convinced that efforts will continue to unravel the mysteries of
how fish interact with each other, their environment and hu-
mans for many decades to come.
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