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ABSTRACT
Connectivity is a multifaceted concept that has important implications for the management and conservation of marine and 
freshwater fishes. We developed a conceptual framework that encompasses multiple, interrelated categories of connectedness, 
including landscape (e.g., structural, functional) connectivity and ecological (e.g., trophic, genetic, demographic) connectivity, 
that together shape the flow of organisms, energy and information across ecosystems. We also synthesised six key methods 
that can be used to study connectivity of fishes: (1) telemetry, including satellite, acoustic, radio and passive integrated tran-
sponders (PIT), (2) mark-recapture, (3) environmental tracers, including stable isotopes and otolith-microchemistry, (4) genet-
ics, (5) community structure analysis and (6) emerging technologies and tools (e.g., remote sensing and artificial intelligence). 
For each method, we describe the categories of connectivity it can assess and provide real-world examples where they have 
been effectively used. We also identify limitations of each method. This article highlights the diverse and evolving toolbox 
of methods used to assess fish connectivity, underscoring the need for continued collaboration, innovation and integration 
of new approaches to refine our understanding and address remaining challenges in this critical area of aquatic ecology and 
fisheries management.
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1   |   Introduction

Effective management of fish populations necessitates a com-
prehensive understanding and consideration of connectivity 
(Gibson et al. 2011), which is a complex concept that links eco-
system elements to spatial and temporal dimensions (Lapointe 
et al. 2014). Connectivity includes the spatial movement of in-
dividuals as well as the flow of genetic materials, energetic re-
sources and nutrients (Calabrese and Fagan  2004). In aquatic 
ecosystems, interconnectedness across habitats influences the 
distribution and abundance of fishes, along with their evolu-
tionary trajectories (Arthington et  al.  2016). Additionally, fish 
often undertake movements across habitat types to access dif-
ferent resources (e.g., spawning and overwintering habitat, refu-
gia, food) or may transition to new habitats during ontogenetic 
shifts (Lucas and Baras 2008; Brönmark et al. 2014; Secor 2015; 
Cooke et al. 2022). Fish face a suite of anthropogenic stressors, 
including habitat deterioration and loss, river engineering and 
damming of rivers, river flow regulation and overfishing, that 
fragment connectivity and impair species movements and eco-
system function (Rolls et al. 2014; Crook et al. 2015; Arthington 
et al. 2016; Lennox, Birnie-Gauvin, et al. 2025). Reduced connec-
tivity can profoundly affect fish by minimising or eliminating 
access to critical habitats, decreasing gene flow and altering nu-
trient and energy pathways (Jeffrey et al. 2015). As the panoply 
of stressors that threaten the persistence of wild fish populations 
increases, it is essential that we better understand, and expand 
upon, the pros, cons and limitations of the methods in our con-
nectivity toolbox to conserve biodiversity, fish populations, and 
the ecosystem services they provide (Lapointe et al. 2014).

While fish connectivity research and the tools used to evalu-
ate connectivity have advanced, there is currently no compre-
hensive summary of those tools along with their benefits and 
limitations. Accordingly, we undertake a review to detail con-
temporary field and analytical methods to study fish connec-
tivity, first providing an in-depth overview of connectivity and 
defining the hierarchical elements that contribute to this mul-
tifaceted concept. Next, we identify six key methods to assess 
connectivity including telemetry, mark–recapture, environmen-
tal tracers, genetics, community structure analysis and emerg-
ing tools and technologies to help us better understand how 
fishes, and the energy and information they bring with them, 
move across landscapes. For each method, we provide examples 
of successful implementation to highlight real-world scenarios 
that supported the management of fishes. We also consider lim-
itations for each method. We conclude by identifying and dis-
cussing knowledge gaps in the evidence base that may hinder 
the management of fishes in relation to connectivity.

2   |   What Is Connectivity?

Connectivity is the flow of materials, energy and organisms 
across space and time (Ward 1989; Beger et al. 2022). In aquatic 
ecosystems, connectivity is a hierarchical process that links el-
ements within ecosystems and can be divided into landscape 
and ecological connectivity (Lapointe et al. 2014). First, land-
scape connectivity refers to the degree to which a landscape 
facilitates or impedes the movement of organisms among spa-
tially distinct entities or resource patches, emphasising the 

physical structure of the landscape and an organism's response 
to structure. Landscape connectivity can be further refined 
to structural and functional connectivity (Tischendorf and 
Fahrig  2000). Structural connectivity is defined by the quan-
tity and spatial arrangement of landscape features serving as 
habitat patches and potential movement routes (corridors) be-
tween habitat patches, focusing on the physical characteristics 
of aquatic environments such as the presence and arrangement 
of different habitats. Importantly, structural connectivity in-
cludes ecohydraulic attributes, such as flow velocity, discharge 
patterns and water-level fluctuations, which directly affect 
habitat continuity (Katopodis  2012; Cooke et  al.  2025). The 
analysis of structural connectivity has been well established 
in landscape ecology and is largely dependent on foundational 
metrics like patch size, geometry, corridor patterns, and the 
study of extinction-colonisation dynamics (i.e., Metapopulation 
Theory, Theory of Island Biogeography) which can be inte-
grated into aquatic ecosystems (MacArthur and Wilson 1967; 
Levins 1969). Next, functional connectivity describes an organ-
ism's behavioural response to these landscape features and the 
outcome of those responses in terms of survival and reproduc-
tion (Taylor et  al.  1993, 2007; Tischendorf and Fahrig  2000). 
Functional connectivity reflects how organisms actually use 
space, capturing their ability to navigate, survive and repro-
duce across habitats based on their behaviour and interactions 
with landscape/seascape features (e.g., Turgeon et al. 2010; Roy 
and Le Pichon 2017).

Second, ecological connectivity encompasses trophic, genetic 
and demographic connectivity (Soulé et al. 2004; Bryan-Brown 
et al. 2017). Trophic connectivity describes the movement and 
transfer of energy and nutrients through different levels of the 
food web, linking primary producers to top predators and cap-
turing how different trophic levels are linked through migra-
tion, subsidy flows and consumption (Polis et  al.  1997; Talley 
et  al.  2006). The trophic connection can be formed through 
the movement of either consumers or resources between hab-
itats and affects ecosystem structure, stability and function 
(Talley et  al.  2006). This includes vertical linkages between 
different trophic levels, such as primary producers, herbivores 
and predators, and horizontal exchanges across habitats and 
within trophic levels. Second, genetic connectivity refers to the 
movement of genetic material between nearby or distant hab-
itat regions over multiple generations and can occur through 
processes such as dispersal and reproduction, facilitating gene 
flow across the landscape (Carr et al. 2017; Xuereb et al. 2021). 
Finally, demographic connectivity emerges from variation in 
organismal movement through space and time, shaping food 
web structure at both the population and community levels. At 
the population scale, the movement of individuals among sites 
drives immigration and emigration, colonisation of new habi-
tats, and source-sink dynamics, ultimately influencing per-
sistence, abundance and population dynamics (Pulliam 1988). 
At the community scale, these dispersal processes govern differ-
ences in species composition and interaction networks, mani-
festing as variations in alpha, beta and gamma diversity (Tonkin 
et al. 2016). Moreover, sites that are highly disconnected will be 
more strongly constrained by dispersal limitations, leading to 
reduced population resilience and altered community assem-
bly relative to more connected systems (Sale 2004; Brown and 
Swan 2010; Heino et al. 2015). Variations in scale, ranging from 
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an individual's genetic composition to a global landscape, across 
the five subcategories of connectivity (structural, functional, 
trophic, genetic, demographic) dictates which methods are most 
appropriate to define connectivity relationships. A glossary of 
connectivity terms is provided in Table 1.

While each subcategory of connectivity is distinct, they are 
inherently interrelated and interdependent. For example, tro-
phic, genetic and demographic connectivity rely on functional 
connectivity. Functional connectivity is particularly relevant in 
terms of the persistence of fish populations as it facilitates es-
sential life processes such as migration, breeding and dispersal 
(Flecker et al. 2010; Lake 2011) and is particularly important in 
systems subject to environmental disturbances or human mod-
ifications. Functional connectivity enhances ecological connec-
tivity on trophic, genetic and demographic scales by enabling 
fish movement and the subsequent transfer of nutrients and en-
ergy across disparate habitats. These movements facilitate sur-
vival and reproduction, supporting gene flow, enhancing genetic 
diversity and ultimately contributing to population and commu-
nity stability (Bruckerhoff et al. 2019).

Connectivity is highly contextual, varying by species, geogra-
phy, life stage and environmental conditions, as fishes differ 
in their ability to navigate obstacles separating habitats (Gido 
et  al.  2015). Within open ecosystems (e.g., pelagic areas in 
oceans, lentic systems in freshwaters), connectivity can be af-
fected by hydrological features like currents and upwelling 
(i.e., structural and trophic connectivity; O'Dwyer et al. 2021), 
reducing available habitat and creating barriers between fish 
populations and communities (i.e., functional and demographic 
connectivity; Franklin et  al.  2024; Heino et  al.  2015). Marine 
connectivity can be altered by energy (tidal and wind turbines) 
and transportation (bridges, causeways, harbours, docks) infra-
structure (Bice et al. 2023; Lennox, Birnie-Gauvin, et al. 2025). 
Loss of natural habitats, like coral reefs, through natural distur-
bance events or climate-induced mortality events can also alter 
connectivity, particularly for smaller reef-associated species 

(Syms and Jones 2000). Additionally, changes in freshwater dis-
charges that empty into marine environments can alter salinity 
levels or lead to droughts in low-lying aquatic environments, ul-
timately disrupting connections between important nearshore 
and estuarine foraging and nursery habitats (Gillanders and 
Kingsford 2002; Danylchuk et al. 2023).

In lotic ecosystems, especially river corridors, water flows play 
a key role in connecting landscape patches where structural 
connectivity operates across four dimensions, including lon-
gitudinal, lateral, vertical and temporal, collectively forming a 
‘riverscape’ (Amoros and Bornette 2002; Fagan 2002). The term 
riverscape was coined by Leopold and O'Brien Marchand (1968) 
as a contraction of the terms ‘river’ and ‘landscape’, and has been 
broadly adopted to describe the complex mosaic of perennially 
interacting river and floodplain conditions (Erős and Campbell 
Grant  2015; Torgersen et  al.  2022; Garvey and Whiles  2023). 
It extends to ‘coastal riverscapes’ influenced by downstream 
factors like tidal intrusion and coastal wetlands (Garvey and 
Whiles 2023). The branching structure of river networks plays 
a key role in shaping demographic connectivity; for example, 
Campbell Grant et  al. (2007) demonstrate how dendritic net-
work geometry influences structural, functional, genetic and 
demographic connectivity among fish populations by affect-
ing movement pathways, dispersal limitations and population 
dynamics. Seasonal reductions in structural connectivity can 
isolate fish in suboptimal habitats (e.g., dry periods can strand 
fish in shrinking pools, limiting movement to refugia; Sedell 
et  al.  1990) and restrict access to essential energy resources, 
limiting trophic connectivity (Chessman 2013). Anthropogenic 
modifications like dams, road crossings and water withdrawals 
can further disrupt connectivity and remain among the great-
est threats to freshwater fishes (Gido et  al.  2015). Conversely, 
dynamic discharge events like floods or spring freshets can en-
hance structural connectivity in fragmented systems, promoting 
recolonisation and genetic exchange (i.e., functional and genetic 
connectivity, respectively; Pringle 2003). Floods may also form 
or restore lateral connections between rivers and floodplains, 

TABLE 1    |    Glossary of connectivity terms. References are provided in-text.

Connectivity

The flow of materials, energy and organisms across space and time

Landscape connectivity Ecological connectivity

The degree to which the landscape facilitates 
or impedes movement among resource patches, 
emphasising the physical structure of the landscape 
with an organism's response to that structure

Includes propagule dispersal, adult movement, species 
migrations, species interactions and ontogenetic linkages, 

with the associated flows of energy and matter

Structural connectivity Functional 
connectivity

Trophic 
connectivity

Genetic 
connectivity

Demographic 
connectivity

The quantity and spatial 
arrangement of landscape 
features serving as habitat 
patches and potential 
movement routes (corridors) 
between habitat patches

The behavioural 
responses of animals 
to landscape features 
and the outcome of 
those responses in 
terms of survival 
and reproduction

The flow of energy 
and nutrients 

through different 
levels of the food 

web, linking various 
organisms from 

primary producers 
to top predators

The movement of 
genetic material 
between nearby 

or distant habitat 
regions over multiple 

generations

The movement of 
individuals, through 

immigration and 
emigration, that 

shapes population 
dynamics and 

community diversity

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.70058 by C

arleton U
niversity, W

iley O
nline L

ibrary on [23/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 Fish and Fisheries, 2026

facilitating nutrient and organism movement and providing 
nursery habitat for juvenile fish, though such flood dynamics 
are increasingly influenced by both human modifications to 
river systems and climate change-driven shifts in flow regimes 
and precipitation (Tockner et al. 2000; Jacobson et al. 2022).

In cases where a permeable in-river barrier (e.g., navigation 
locks) provides a new movement corridor in a system where 
fish movements were historically restricted by waterfalls or rap-
ids, the functional connectivity of native species may instead 
be elevated, or their ranges expanded (Rahel  2007; Bergman 
et  al.  2024). Note, however, that these in-river barriers have 
also inadvertently facilitated the dispersal of nonnative species 
by altering natural flow patterns and creating new aquatic con-
nections between previously isolated ecosystems (Rahel 2007). 
For example, the Welland Canal resulted in the infamous sea 
lamprey (Petromyzon marinus) and alewife (Alosa pseudoharen-
gus) invasions across the Laurentian Great Lakes (Smith 1968; 
Hartman 1972), and to date, 45 non-Indigenous macroinverte-
brates have been introduced to the river Rhine via the large-scale 
Eurasian network of inland waterways (Leuven et  al.  2009). 
Today, rivers and waterways with semi-permeable dams 
and navigation locks are considered an ‘ecological paradox’ 
(Bergman et  al.  2021) or ‘connectivity conundrum’ (Zielinski 

et al. 2020) because they may both limit and promote connec-
tivity depending on structural aspects and species capabilities 
(Piczak, Bzonek, et al.  2023; Piczak, Theÿsmeÿer, et al.  2023). 
Given the complexity and potential conflicts among riverine 
landscape management goals, practitioners must evaluate trade-
offs and prioritise strategies that balance wildlife and ecosystem 
conservation with human use (Fullerton et al. 2010; Rahel and 
McLaughlin 2018).

The resilience of aquatic populations to environmental distur-
bances is tightly coupled with the degree of connectivity within 
and between ecosystems (Timpane-Padgham et  al.  2017; 
Young et al. 2018; Thieme et al. 2023). Understanding, main-
taining and restoring connectivity is essential to enhance 
the resilience of aquatic species and reverse biodiversity 
loss trends (Beger et  al.  2022; Tickner et  al.  2020; Thieme 
et al. 2023). Effective conservation depends on a clear under-
standing and integration of connectivity into management 
frameworks (Crooks and Sanjayan 2006). Below, we describe 
methods for studying fish connectivity for each of the five 
subcategories of connectivity (functional, structural, trophic, 
genetic, demographic). See Figure 1 for a conceptual diagram 
of connectivity categories linked with methods for evaluating 
fish connectivity.

FIGURE 1    |    Conceptual diagram of connectivity categories linked with methods for evaluating fish connectivity. Researchers often separate 
connectivity into ecological and landscape, focusing on demographic-level differences among fish communities, trophic linkages or genetics when 
studying ecological connectivity, and structural or functional movements when evaluating landscape connectivity. In most cases, there are sev-
eral methods (icon boxes) to study each form of connectivity. Details of linkages between methods and connectivity subcategories are as follows: 
Telemetry can evaluate demographic, trophic, structural and functional connectivity; environmental tracers can help elucidate trophic, structural 
and functional connectivity; genetics may offer insights into demographic, genetic, structural and functional connectivity; mark–recapture and 
emerging technologies can provide information on demographic, structural and functional connectivity; community structure analysis can contrib-
ute to the understanding of demographic connectivity; the emerging tools and technologies we discuss can provide information on demographic, 
structural and functional connectivity. A glossary of connectivity terms is provided in Table 1 and examples of research that evaluated each category 
of connectivity are presented in Table 2.
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3   |   Methods to Study Fish Connectivity

3.1   |   Telemetry

3.1.1   |   Satellite Telemetry

Over the past four decades, satellite telemetry has emerged 
as a powerful tool for tracking broad-scale and long-distance 
movements of oceanic fishes, especially large-bodied pe-
lagic species whose migrations extend beyond the detection 
range of coastal acoustic telemetry networks (Hammerschlag 
et al. 2011; Hussey et al. 2015; Renshaw et al. 2023; Robichaud 
et al. 2025). First applied to fish in the 1980s, satellite telem-
etry leveraged earlier advancements in terrestrial wildlife 
tracking that led to the development of miniaturised, water-
proof tags (Hockersmith and Beeman 2012). These tags are af-
fixed to each animal externally and can transmit positioning 
data through the ARGOS satellite system in real time or ar-
chive data over the course of a set deployment for batch trans-
mission, depending on the tag type. The first iteration of the 
modern ‘Smart Position or Temperature Transmitting’ (SPOT) 
tag was used to track a basking shark (Cetorhinus maximus) 
off the coast of Scotland for 17 days using ARGOS satellites in 
1982 (Priede 1984). Since then, the use of SPOT tags (which 
transmit real-time position data when the animal surfaces) 
has expanded significantly, aided by advances in towed and 
fin-attached designs that enable tracking of individuals for 
months to years depending on the tag model and program-
ming (Patterson and Hartmann  2011; Hays et  al.  2021). A 
second type of satellite tag, the ‘pop-up satellite archival 
tag’ (PSAT), was developed in the 1990s to allow tracking 
of species that rarely surface, such as Atlantic bluefin tuna 
(Thunnus thynnus thynnus) (Block et al. 1998). In PSAT tags, 
a battery-powered electrolysis process causes a pin to dissolve 
at a preprogrammed time to release the tag from the animal 
and ‘pop up’ to the surface to transmit light level, temperature 
and depth data to satellites. Satellite telemetry can provide 
insights into connectivity across spatially disparate habitats, 
capturing broad horizontal movements (e.g., structural and 
functional connectivity; Weng et  al.  2007; Lea et  al.  2015) 
and/or vertical dynamics (e.g., depth changes; Andrzejaczek 
et al. 2019, 2022).

Satellite telemetry is best used to answer broad spatial ques-
tions. Both SPOT and PSAT tags have positioning errors, 
with SPOT errors ranging from under 250 m to unbounded 
estimates depending on the number of messages transferred 
between the tag and satellite (i.e., more messages result in in-
creasing spatial accuracy, but require more time at the surface 
for the tag) (ARGOSweb 2017). PSAT tags generate a position 
estimate, influenced by movement, light levels, and tem-
perature, making them unsuitable for finer-scale movement 
studies. Fast GPS-integrated tags, first used on ocean sunfish 
(Mola mola; Sims et  al.  2009), offer more accurate position-
ing (< 100 m; ARGOSweb 2017) by deriving locations through 
Fastloc-GPS and relaying those locations through the ARGOS 
system (Thomson et  al.  2017). Similar to SPOT tags, these 
tags require surfacing to transmit, limiting their use to large-
bodied, surfacing fishes (Meyer et al. 2018), although one study 
used a floating towed tag on benthic stingrays in shallow water 
(Martins et  al.  2019). In recent decades, the proliferation of 

satellite tagging in marine environments (Renshaw et al. 2023) 
has substantially improved our ability to delineate fish stocks 
(Gatti et al. 2020; Arostegui et al. 2024), identify species over-
lap with fishing effort (Queiroz et  al.  2019), and explore the 
spatial ecology of highly mobile fish species for which other 
forms of telemetry were not feasible (Hussey et al. 2015). For 
example, PSAT tagging of Atlantic halibut (Hippoglossus hip-
poglossus) in the Gulf of St. Lawrence revealed convergence 
of all individuals during the spawning season despite being 
tagged in disparate locations during the nonspawning sea-
son, suggesting a single stock management structure in the 
Canadian Northwestern Atlantic (Gatti et al. 2020). Satellite 
tags can also provide information on Marine Protected Area 
(MPA) use by highly mobile species. Satellite telemetry and 
photo-ID data revealed that reef manta rays (Mobula alfredi) 
regularly moved between two of Australia's UNESCO World 
Heritage Areas, the Ningaloo Reef and Shark Bay, demon-
strating long-range movements of up to 700 km in addition 
to smaller-scale movements more associated with site fidelity 
(Armstrong et al. 2020—Table 2). These findings highlighted 
the role of satellite tracking in identifying movement corridors 
and informing the effective design and management of MPAs 
to ensure they encompass the full spatial range of migratory 
species like manta rays.

Despite expanding our ability to study highly mobile fishes, 
satellite telemetry has several limitations. While PSAT tags 
store data, allowing for continuous archiving until the prepro-
grammed pop-off date, they do not allow for real-time tracking 
like SPOT and Fastloc-GPS tags can. Researchers must then 
balance the benefits of long-term deployment duration with the 
cons of battery drain, since the tag must have enough energy 
left to transmit its data at the deployment end (battery failures 
can result in all data being lost). In contrast, the PSAT's strength 
is the SPOT and Fastloc-GPS tags' weakness; they do not ar-
chive time series data. Unlike marine mammals and sea turtles, 
which are commonly tracked with this tagging technology, fish 
are not obligated to surface for any length of time. Differences 
in individual level and overall species behaviours can lead to 
no transmissions from SPOT tags or transmissions that are too 
brief to generate a geolocation. Location error is also a challenge 
for PSAT tags, whose geolocation calculations are based on light 
level, which can be quite coarse especially in deep or turbid wa-
ters (Nielsen et al. 2023). Satellite tags are also large compared 
to other tagging methods, so researchers must consider tag bur-
den, battery life and the regional scale of their research ques-
tions when selecting a tag model and applying this technology to 
study the movements of large marine (Block et al. 2011; Matley 
et  al.  2025) and anadromous fishes (e.g., sturgeon; Erickson 
et al. 2011).

3.1.2   |   Acoustic Telemetry

Like satellite telemetry, the use of acoustic telemetry has 
expanded over the last few decades and is primarily used to 
examine functional connectivity (Cooke et  al.  2013; Hussey 
et al. 2015). Acoustic tags emit a sonic pulse, sending unique 
identification codes and time-stamped data from tagged fish 
that is detected and logged by underwater receivers (hydro-
phones) for later retrieval and analysis of animal presence 
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(Heupel et al. 2006; Crossin et al. 2017). Tracking can be con-
ducted manually, using a vessel to locate or follow an acoustic 
tag, or by positioning autonomous receivers at fixed locations 
in configurations (e.g., arrays, gates, curtains; overlapping 
detection zones for 2D or 3D position analysis) that allow 
researchers to answer specific questions related to regional 
connectivity, residency and boundary crossing (reviewed in 
Crossin et al. 2017). In recent years, advances in acoustic tag 
technology have enabled researchers to collect additional data 
on variables such as temperature, depth and locomotor activity 
(Cooke et al. 2013; Matley et al. 2022; Jacoby and Piper 2023). 
Technological improvements have also made acoustic telem-
etry more affordable and accessible, broadening its applica-
tion across various disciplines (Hussey et  al.  2015). With 
respect to studying fish connectivity, acoustic telemetry has 
been successfully applied in studies on migration (Aarestrup 
et  al.  2014; Larocque et  al.  2020), habitat use (Piczak, 
Brooks, et  al.  2023—Figure  2A), Marine (Lédée et  al.  2021) 
and Freshwater Protected Areas (Bergman et  al.  2025), and 
demographic connectivity (Faulks et  al.  2011; Espinoza 
et al. 2015—Table 2). It is a valuable tool for identifying barri-
ers to functional connectivity caused by anthropogenic struc-
tures like hydro-dams and navigation locks (Fritts et al. 2021; 
Bergman et  al.  2022, 2024) and assessing restoration efforts 
after barriers are removed (Roday et  al.  2024). The use of 

predation-style acoustic tags (Halfyard et  al.  2017), which 
transmit a predation code when consumed by a predator, can 
provide details on trophic and demographic connectivity.

The typical stationary receiver array used for acoustic te-
lemetry (Figure  3A) offers a less-time intensive alternative 
compared to active tracking methods, like radio telemetry, or 
traditional sampling methods, such as in-person observations 
(e.g., snorkelling, SCUBA diving) or fish collection techniques 
(e.g., netting, trapping, electrofishing), which may be limited 
by the time and effort researchers can dedicate and the spatial 
area they can physically cover (Kraus et  al.  2018). Once an 
acoustic telemetry array is deployed and maintained, it will 
continuously store data without requiring the presence of 
researchers. This capability makes acoustic telemetry a pow-
erful tool for studying animal movement patterns on scales 
previously unattainable with traditional fisheries techniques 
(Lennox et al. 2017).

Acoustic telemetry is primarily limited by the spatial coverage 
of receiver arrays and the challenges associated with main-
tenance. These limitations are partially addressed through 
large-scale telemetry data-sharing networks such as the 
Riverine Acoustic Fish Telemetry Network (RAFT), Great 
Lakes Acoustic Telemetry Observation System (GLATOS), 

FIGURE 2    |    Photo mosaic representing examples of methods for evaluating fish connectivity. (A) Acoustic telemetry: A nonnative common carp 
(Cyprinus carpio) being surgically implanted with an acoustic tag in the Great Lakes to study movement patterns and effectiveness of an exclusion 
barrier (Piczak, Brooks, et al. 2023); (B) Mark–recapture: A bonefish (Albula vulpes) study in the Bahamas Archipelago assessing site fidelity and 
connectivity between homesites and prespawning sites to inform protected area designation (Boucek et al. 2019); (C) Environmental tracers: Otolith 
biogeochemistry elucidated effects of a climate event on population connectivity of Spanish mackerel (Scomberomorus niphonius) along China's coast 
(Pan et al. 2024); (D) Genetics: Spatial patterns of allelic variation showed that coastal cutthroat trout (Oncorhynchus clarkii clarkii) in western North 
America found above natural waterfall barriers were highly differentiated from populations below (Whiteley et al. 2010); (E) Boat electrofishing in 
the Lower Boardman (Ottaway) River, USA was used to sample fish community structure and support assessments of species likely to encounter an 
in-development fish passage structure (‘FishPass’; www.​glfc.​org/​fishp​ass.​php), contributing to understanding demographic connectivity and sea-
sonal patterns of fish movements (Swanson et al. 2023); (F) Sentinel-2 satellite imagery was used to identify the onset of the ice-on period within a 
Freshwater Protected Area (‘FPA’; outlined in red), after which fish appeared unable to move in to, or out of, FPA boundaries (Bergman et al. 2025). 
Photo credits: (A) Morgan Piczak; (B) Aaron J. Adams; (C) Pan et al. (2024); (D) USFWS—Pacific Region, Wikimedia Commons; (E) Reid Swanson; 
(F) The Copernicus Data Space Ecosystem Browser. All photos used with permission.
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Ocean Tracking Network (OTN), the European Tracking 
Network (ETN) and the Integrated Marine Observing System 
(IMOS). These networks foster collaboration and enable re-
searchers to extend their studies across larger, shared arrays 
maintained by multiple users (e.g., Griffin et al. 2018; Piczak, 
Brooks, et al. 2023). Acoustic detection data are also affected 
by environmental noise, high tag densities, habitat complex-
ity and/or other environmental factors, reducing detection 
accuracy (Payne et  al.  2010; Selby et  al.  2016). As with any 
study attempting to implant tags to monitor fish movements 

(especially small individuals), there can be physiological stress 
associated with tag implantation (Sandford et al. 2020; Vollset 
et  al.  2020), including cortisol responses (Zakęś et  al.  2022) 
and tag shedding (by tag size and species—Kimball and Mace 
III  2020; by procedure—Moore and Brewer  2021). For both 
satellite and acoustic telemetry transmitters, there is an un-
avoidable trade-off among tag size, sampling capacity and bat-
tery life, such that the smallest tags do not have a long battery 
life even when sampling (detection) rates are less frequent. 
New technological developments and further miniaturisation 

FIGURE 3    |    Depiction of methods used to study connectivity of fishes: (1) telemetry (example shown is acoustic telemetry, where an active acous-
tic transponder is implanted in the fish and a coded acoustic signal is received by submerged hydrophones); (2) mark–recapture (example shown is 
a downstream migrant trap where tagged or marked individuals are physically recaptured); (3) environmental tracers (example shown is otolith 
microchemistry, where the otolith of a fish is extracted and individual growth rings are analysed for isotopic content like Sr.:Ca; fish movement is 
determined by comparing isotopic ratios found in the environment to those in the otolith); (4) genetics (example shown is genetic tissue extracted 
from fish and sequenced; sequence data are then used to assign individuals to particular groups); (5) community structure analysis (example shown 
is an evaluation of fish community composition above and below a barrier to determine upstream and downstream connectedness); (6) emerging 
tools and technologies (example shown is airborne Light Detection and Ranging [lidar] used to create digital elevation maps with high resolution 
topography and shallow water bathymetry).
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have offered the chance to successfully tag very small and 
laterally and vertically compressed individuals, though these 
tags typically have a short battery life (at most a few months) 
(Lennox, Mastrodimitropoulos, et al. 2025). As such, data can-
not be collected on connectivity across life stages. Advances 
in positioning systems have improved detection precision 
(Guzzo et  al.  2018), which is particularly important for un-
derstanding movement barriers; however, the effectiveness of 
these systems remains limited to areas with sufficiently dense 
receiver arrays.

3.1.3   |   Radio Telemetry

Radio transmitters have long been used to assess functional 
connectivity of aquatic animals and to track migratory species 
over long distances in freshwater systems. These devices trans-
mit radio signals (uniquely coded transmissions, or over fre-
quencies unique to an individual) to a receiver with an antenna 
that is either stationary (Östergren and Rivinoja 2008; Sullivan 
et al. 2020) or mobile, including actively held by a human (Gilroy 
et al. 2010) or mounted to a plane, boat, vehicle, or aerial drone 
(McCleave et al. 1978; Koehn et al. 2009; Munakata et al. 2021). 
Radio signals travel well in the air and can emit signals across 
the air–water interface (Kuechle and Kuechle  2012), but lim-
ited transmitting capacity occurs as depth increases (> 10 m). 
Further, radio transmission is almost completely inhibited in 
saltwater and is best used in freshwater environments (Kuechle 
and Kuechle 2012). Other important factors that can influence 
radio signal strength include vegetation density, rock walls, 
mountains, buildings and electronics (e.g., sonar, hand-held 
radios). Unlike acoustic telemetry, radio transmitters perform 
well in ‘noisy’ environments such as turbulent waters of streams 
or near dams. Radio tags can be surgically implanted into the 
body cavity, gastrically inserted or attached externally (Jepsen 
et al. 2015) for a range of fish body sizes given that the weights 
of these tags range between 1 to 30 g. Overall, radio telemetry 
is an excellent tool to elucidate landscape connectivity in fresh-
water systems in cases where aquatic animals primarily occupy 
shallow streams, littoral areas or limnetic zones allowing for the 
unidirectional radio signal to be registered by the receiver an-
tenna (Lucas and Baras 2000).

Radio telemetry can identify functional connectivity of aquatic 
animals including movement corridors, habitat use and be-
haviour. For example, radio telemetry has been used to as-
sess diadromous fish migrations in riverine systems (Knight 
et  al.  1977; Gelder et  al.  2024) or to learn about home ranges 
of fishes (Ebner et  al.  2011) and habitats used within aquatic 
systems (Ebner et  al.  2011; Hahn et  al.  2011). Importantly, 
radio tracking can assess structural connectedness between 
spawning tributaries and a main river (Tummers et  al.  2016), 
or between canals and wetlands (Parkos III and Trexler 2014), 
and has helped identify important spawning habitat locations 
(Weller et  al.  2016) and nursery habitats (Weller and Chow-
Frazer 2019). This technology can also be used to assess inter-
actions of fish with anthropogenic barriers in rivers that hinder 
functional connectivity (e.g., dams, Monan and Liscom 1973; hy-
dropower stations, Grimardias et al. 2022), providing vital data 
to improve management of fishes that may be blocked by such 
in-river barriers. For example, in the Savannah River (USA), 

radio telemetry was used to track American shad (Alosa sapidis-
sima) as they interacted with and navigated past a lock-and-dam 
structure. Although previous studies on fish passage through 
navigation locks often concluded that locks are poor movement 
corridors (see Fritts et al. 2021), Bailey et al. (2004) discovered 
that approximately 30% of tagged American shad used a navi-
gation lock to successfully move upstream during conservation 
locking operations (i.e., the strategic use and operation of navi-
gation locks to facilitate fish movements), suggesting that con-
servation locking may offer a viable solution for enhancing fish 
connectivity in regulated rivers (Table 2).

Manual radio tracking does have limitations and can require 
considerable labour and a consistent schedule, unlike acoustic or 
satellite telemetry, which are typically passive. Similar to acous-
tic and satellite transmitters, there is a size limitation of tags that 
can be used in small individuals. In addition, while stationary 
antenna stations may require less effort overall, they still require 
routine maintenance for data retrieval and battery replacement, 
much like acoustic receiver networks. However, radio teleme-
try systems can be deployed as fixed monitoring networks, with 
some configurations allowing for permanent power and remote 
data transmission. Finally, radio telemetry is most feasible in 
freshwater due to the attenuation of radio signals to practically 
zero in brackish and sea water (due to dissolved salts; Kuechle 
and Kuechle 2012) and, in addition, is only applicable to mon-
itoring fish residing near the surface of rivers, streams and/or 
shallow lakes given depth limitations (Lucas and Baras 2000).

3.1.4   |   Passive Integrated Transponders

Passive integrated transponders (PIT) are biocompatible, plas-
tic- or glass-encased, microchip-based tags that are implanted 
internally into individual fish and have been used to track fish 
movements (i.e., functional connectivity) since 1983 (Prentice 
and Park 1983; Gibbons and Andrews 2004). Modern PIT tags 
are relatively small, ranging in sizes from 8 to 32 mm long and 
1–4 mm in diameter, are inexpensive (< 10 USD/tag) compared 
to other telemetry tag types, and are not limited by battery life 
because they only transmit when energised by a receiver (Smyth 
and Nebel 2013). PIT tags are detected using Radio Frequency 
Identification (RFID) which detects an individualised identi-
fication code from a tag (typically at a frequency of 134.2 kHz; 
Bégout et al. 2016) when within range of a receiver to specify 
individuals (Zentner et  al.  2021). PIT tags come in two vari-
eties, full-duplex (FDX) and half-duplex (HDX), each having 
different benefits. First, FDX tags can receive and send signals 
simultaneously, allowing for a more efficient tag reading. These 
devices lack a capacitor, and thus can be smaller than HDX, al-
lowing for use on smaller species and/or juvenile fishes (Watson 
et al. 2019), though they have a shorter transmission range than 
HDX tags. HDX tags contain a capacitor that allows it to alter-
nate between reading and receiving transmissions, providing a 
stronger signal in both directions, and increasing the transmis-
sion range at the expense of a larger size and lower read effi-
ciency (Hill et al. 2006).

Functional connectivity is often studied using PIT tags and ar-
rays to track movements of key species between interconnected 
lotic habitats. These types of data analyses require networks of 
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antennae that can be fixed (Booth et al. 2013) or mobile (Booth 
et al. 2014; Curtis et al. 2024) and offer meter-scale resolution 
which works well in narrow, shallow systems and in proximity 
to structures, though they are more limited in open, marine en-
vironments. In boreal river systems, where resource availabil-
ity varies seasonally and spatially, a transponder antenna array 
was used to track kilometre-scale movements of arctic grayling 
(Thymallus arcticus) and rainbow trout (Oncorhynchus mykiss) 
across a network of connected tributaries to target favourable 
foraging grounds and elucidate aspects of trophic and functional 
connectivity (Bentley et  al.  2015). Researchers have also used 
PIT to uncover hidden patterns of population-specific life histo-
ries and demographic connectivity across freshwater networks; 
Snow and Goodman (2021) discovered two distinct populations 
of mountain whitefish (Prosopium williamsoni) with differing 
life histories—one migratory and one resident—an important 
finding for managers intending to target or protect specific pop-
ulations (Table 2). Across smaller spatial ranges, PIT arrays can 
be strategically used to determine passage success for tagged 
species to evaluate engineering efforts that support structural 
connectivity (Weibel and Peter  2013; Jensen et  al.  2024). PIT 
tags are also commonly used to compare the timing of migration 
events across multiple age classes of wild and hatchery-reared 
diadromous fishes, especially salmonids (Achord et  al.  1996). 
PIT tagging methods can be used in tandem with mark–recap-
ture frameworks or model simulations (Sabal et al. 2020) to sup-
port additional research objectives like estimating abundance, 
analysing behavioural responses, tracking growth through time 
or understanding apparent survival (Rudershausen et al. 2019; 
Kimball and Mace III  2020). In addition, since PIT tags are 
not limited by battery power, they are often used in parallel 
with other telemetry methods to efficiently identify individu-
als during a recapture event in situ and allow for the tracking 
of animals tagged with other telemetry devices following bat-
tery death.

Broadly, there are two main types of limitations associated with 
PIT tags to study fish connectivity related to performance and 
welfare. First, there can be issues stemming from feasibility and 
efficacy associated with detectability, including the need to in-
stall and maintain antennas (Brännäs et al. 1994), recapturing 
individuals (Gibbons and Andrews  2004), variable detection 
probabilities (Zentner et  al.  2021) and environmental fluctua-
tions (e.g., flow rate, O'Donnell et al. 2010). Although PIT is gen-
erally considered a less invasive tagging method compared to 
acoustic and radio telemetry, there has been effort to account for 
the survival and tag shedding issues that stress can cause by cre-
ating predictive models that adjust for tag loss and fish mortality 
over time (McCutcheon et al. 2025). Despite these drawbacks, 
PIT tags are still highly successful if appropriately implemented 
in experimental studies and continue to be widely used in fresh-
water (Ficke et al. 2012), estuarine (Kimball and Mace III 2020) 
and marine ecosystems (Calò et al. 2013) because of the relative 
risk-to-benefit ratio (e.g., no surgery needed) when compared to 
other tagging technologies.

3.2   |   Mark–Recapture

Collecting fish movement data can be challenging and expen-
sive due to difficulties in accessing (often remote) fish habitats, 

expensive technologies and time and cost commitments from 
personnel and capture success (Metcalfe and Craig 2012; Ogburn 
et al. 2017). Researchers have long turned to the capture–mark–
recapture method (dating back to 1886; Walton 1886), a widely 
used technique for estimating movements and migrations 
among other parameters (e.g., population sizes, survival rates), 
to mitigate these challenges. Capture–mark–recapture, or sim-
ply ‘mark-recapture’, involves capturing a sample of individuals 
from a population, marking them in a minimally invasive man-
ner and releasing them back into their environment (Figure 3B). 
A second sample is then taken to recapture marked individuals, 
noting information like recapture location to assess distances 
travelled over time or biometric data like fish size for growth 
estimates. Usually, a small external tag, labelled with a unique 
ID and contact information, is attached to the fish so that if a 
member of the public recaptures a tagged individual, they can 
report their catch to the respective researchers. Indeed, many 
studies have reported participatory science (sometimes referred 
to as ‘community’ or ‘citizen’ science), a form of collaboration 
between professional scientists and amateur volunteers or inter-
ested participants (Fan and Chen 2019), to be a low-cost method 
of collecting high-quality data to support research (Støttrup 
et al. 2018; Fulton et al. 2019). Today, tagging programmes have 
been implemented globally, engaging the public in movement 
data collection on an array of marine (Ortiz et al. 2003; Maggs 
et  al.  2019) and freshwater (Howe et  al.  2006; Garrone Neto 
et al. 2014; Keplinger 2021) species.

In cases where the study species may not be suitable for partic-
ipatory science (e.g., if the species is not recreationally import-
ant and therefore may not be captured by anglers; too small for 
external tags), researchers may carry out both mark and recap-
ture (e.g., Midwood and Chow-Fraser 2015). In these cases, re-
searchers may use conventional external tags, Visible Implant 
Elastomer (VIE) tags or coded-wire tags (CWTs) to name a few. 
VIE tags are biocompatible, coloured marks injected subder-
mally but visible externally and may be more appropriate for 
tracking small species or individuals that cannot handle the 
burden of external tags (Leblanc and Noakes  2012). By using 
unique colour(s) and injection positions, individuals can be 
coded to provide unique identifiers (Booth and Shipley  2012). 
A CWT is a small piece of stainless-steel wire approximately 
1 mm long that contains a specific alphanumeric code, iden-
tifying an individual or group (containing up to thousands of 
individuals) of fish released at the same place and time. CWTs 
have become the cornerstone of one of the world's largest fish 
tagging programs to monitor Pacific salmonid migrations, sur-
vival and hatchery contributions, with millions of individuals 
tagged since the 1970s (Jensen et  al.  2023). This program is 
managed by a network of US and Canadian federal, state and 
Tribal/Indigenous agencies, offering an example of a network 
for understanding the functional and demographic connectiv-
ity of salmon across oceans, rivers and international boundar-
ies. CWTs (in conjunction with other methods) have also been 
used to quantify salmon straying, a phenomenon in which in-
dividuals migrate and attempt reproduction at non-natal sites 
(Quinn  1993). In the context of hatcheries or other anthropo-
genic interventions, straying may be considered negative as a 
‘failure to home’ (Keefer and Caudill  2014). However, in wild 
populations, it is a critical evolutionary feature of salmonids 
that buffers against spatial and temporal variation in habitat 
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quality and can allow for the colonisation of new habitats and 
recolonisation after local extinction (reviewed in Keefer and 
Caudill 2014). For example, Westley et al. (2025) used long-term 
(23 years) CWT data from the Columbia River basin, USA to re-
veal that Chinook salmon straying rates are generally low but 
can vary among sites and years, with elevated straying linked to 
warmer water temperatures, fewer returning local fish and local 
dynamics between specific hatcheries and tributaries. Note that 
CWTs are not limited to salmonid species and have been used to 
track functional and structural connectivity of other species like 
paddlefish (Polyodon spathula; Pracheil et  al.  2015—Table  2) 
and pumpkinseed sunfish (Lepomis gibbosus; Jarvis et al. 2020).

Regardless of the tag type, mark–recapture can provide the ev-
idence needed to develop new, or refine current, conservation 
policies. For example, a bonefish (Albula vulpes) mark–recap-
ture study in the Bahamas Archipelago assessed site fidelity and 
functional connectivity between homesites and prespawning 
sites, informing the designation of six National Parks to pro-
tect bonefish habitats (Boucek et  al.  2019; Figure  2B). Mark–
recapture can also help assess the functional and structural 
connectivity of anthropogenic barriers (e.g., navigation locks, 
hydropower dams) to determine species-specific passability 
(Klinge 1994; Marson et al. 2006; Garrone Neto et al. 2014) and 
has been valuable in evaluating the effectiveness of invasive spe-
cies barriers, like electrical barriers (Verrill and Berry Jr. 1995). 
Interestingly, mark–recapture data can also be compounded or 
related to telemetry data. For example, telemetry data (including 
detections from PIT) can serve a dual purpose by functioning as 
pseudo mark–recapture data, where detections at fixed receivers 
also act as recapture events (Perry et al. 2012). Similarly, Close-
Kin Mark–Recapture (CKMR) approaches use genetic samples 
that can provide information on functional, demographic and 
genetic connectivity from the spatial distribution of close rela-
tives (Casas and Saborido-Rey 2023).

Despite the benefits, mark–recapture has limitations, such 
as low recapture probabilities (Lees et  al.  2021) and assump-
tions that can be difficult to control: a closed population, equal 
catchability, lasting marks, no impact on behaviour or survival 
and random recapture (Dennis et al. 2024). Thus, while mark-
recapture offers valuable spatial–temporal data on connectivity, 
it may not be suitable for studies requiring information on mech-
anisms or specific timing of movements.

3.3   |   Environmental Tracers

3.3.1   |   Stable Isotopes

Stable isotope analysis (SIA) is an increasingly important tool 
for understanding connectivity within and across aquatic sys-
tems (Hobson 2023). Stable isotopes are intrinsic, biogeochemi-
cal chemical markers found in fish tissues that can reflect what 
individual fish have been consuming, and where, and therefore 
reflect local trophic patterns (Boecklen et al. 2011). In addition, 
these markers provide time-integrated information, offering a 
record of individual geographical use (Hobson 1999). Naturally 
occurring stable isotopes, such as carbon (δ13C), nitrogen 
(δ15N), sulfur (δ34S) and oxygen (δ18O), can be measured in 
the tissues of animals (e.g., scales, muscle, liver, eye lenses, 

otoliths, etc.) or the environment. Among the commonly used 
isotopes in fisheries research, carbon, nitrogen and sulfur pro-
vide insights on functional, structural and trophic connectiv-
ity both individually and collectively when analysed together 
(Shipley and Matich  2020; Raoult et  al.  2024). These isotopes 
vary predictably across habitats because environmental con-
ditions, such as primary production sources, nutrient regimes, 
salinity and benthic–pelagic coupling, shape distinct baseline 
isotope signatures. When consumers feed in those habitats, the 
spatially structured environmental isotopic baselines are incor-
porated into their tissues. Thus, comparing fish tissue to these 
baselines allows researchers to infer structural connectivity by 
identifying which habitats or regions individuals have occupied 
and how they move among isotopically distinct environments. 
Carbon isotopes can trace primary production in marine sys-
tems (e.g., nearshore seagrass and mangrove-based production 
versus offshore phytoplankton sources), nitrogen isotopes can 
indicate the relative trophic position of consumers within food 
webs, and sulfur isotopes can help differentiate ecosystems 
based on their sulfur sources, such as pelagic versus benthic en-
vironments or marine versus freshwater systems (Hobson 2023; 
Raoult et  al.  2024). Because different prey sources, habitats, 
and trophic pathways (e.g., benthic, littoral, pelagic) often have 
distinct stable isotope signatures, these isotopic differences can 
act as natural biomarkers, allowing researchers to trace the 
movements of consumers in response to seasonal migrations, 
ontogenetic shifts and habitat disturbances (Fry 2006). Indeed, 
SIA has been widely applied to trophic connectivity studies in 
fishes across estuaries (Herzka  2005; Reis-Santos et  al.  2015), 
lakes and rivers (Hesslein et al. 1991; Shibata et al. 2011; O'Mara 
et al. 2021) and marine environments (Rooker et al. 2008; Logan 
et al. 2020). Moreover, SIA may be more efficient or appropriate 
in some cases because it does not require marking and recapture 
(or detecting) of individuals, and it requires only a small amount 
of animal material, making it an effective method for small indi-
viduals (Durbec et al. 2010).

Fundamentally, SIA can help determine the energy pathways 
and the habitats animals rely on (Boecklen et al. 2011) and an-
swer applied questions related to stock structure and the timing 
and locations of ontogenetic shifts and migrations (Hobson 1999; 
Rubenstein and Hobson 2004; Shipley et al. 2021). Stable isotope 
mixing models have traditionally been used for trophic con-
nectivity when quantifying dietary contributions in foodscapes 
(Fry 2006; Farly et al. 2019; Stewart et al. 2022). At larger spatial 
scales, ‘isoscapes’ (i.e., gradients of isotopic baselines) allow the 
probabilistic determination of origins based on geographic iso-
tope variability (Bowen et al. 2005; Bowen 2010). By comparing 
tissue samples from fish to the isotopic composition of an isos-
cape, its migration or origin can be estimated and, thus, provide 
a means to also examine structural and functional connectiv-
ity (Hobson et al. 2010). For example, within the marine envi-
ronment, isotopic variation influenced structural connectivity; 
including oceanographic processes, such as temperature and 
productivity gradients, has informed the geographic origins and 
movement patterns in migratory teleosts and elasmobranchs 
(Trueman et  al.  2012). Integrating SIA with complementary 
approaches is also expanding its utility to understand other 
types of connectivity. In the Florida Keys, USA, Brownscombe 
et al. (2023) used a telemetry-based regional isoscape to examine 
structural and functional connectivity of permit (Trachinotus 
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falcatus), resulting in a median reliance of 70% on seagrass-
based prey (range: 29%–100%). Despite frequent and extensive 
movements to and from the Florida Reef Tract, permit primarily 
relied on seagrass flats as their main energy channel. In con-
trast, permit associated with artificial reefs exhibited higher 
residence periods and reliance on pelagic and offshore energy 
channels, such as planktonic sources. As advances continue, the 
integration of SIA and complementary methodologies will play 
an increasingly important role in determining fish habitat and 
trophic connectivity with greater precision and broader appli-
cability, enabling more advanced spatial ecological paradigms.

Foodscapes, which encompass the spatial and trophic connec-
tions between habitats, play a critical part in shaping consumer–
resource interactions across ecosystems (Rossi et al. 2024). While 
there is considerable historical literature on predator (consumer) 
movements facilitating cross-system trophic connectivity, prey 
(or resource) movements across ecosystem boundaries repre-
sent a ‘second axis’ of trophic connectivity, which can affect 
demographic connectivity. For example, recent research high-
lighted the importance of small amphidromous fishes in trans-
porting marine-derived resources into lowland streams and 
rivers, thereby contributing to freshwater food webs (Engman 
et al. 2021). Stewart et al. (2022) further demonstrated with δ13C 
and δ15N that amphidromous fish prey serve as an important 
trophic subsidy for the threatened New Zealand endemic long-
fin eel (Anguilla dieffenbachii), emphasising the need for con-
servation efforts to extend beyond upstream riverine habitats to 
include coastal barrier beach lagoons, key ‘food-producing hab-
itats’ (Table  2). Even within foodscapes, prey movements can 
serve as an important determinant of trophic connectivity and 
the ultimate source of energy supporting fisheries production. 
For example, along the US Atlantic coast, the consumption of 
mysids (small shrimp-like crustaceans that undergo diel vertical 
migrations) by epibenthic fishes resulted in bottom-associated 
fishes having tissue δ13C stable isotope values comparable to 
small pelagic forage fishes in the same region (Woodland and 
Secor 2013). In this region, the movement of mysids serves as a 
biological vector transporting fresh pelagic production to ben-
thic pathways, contributing an estimated 32%–55% to the growth 
of certain epibenthic fishes based on two-end member stable iso-
tope modelling (Woodland and Secor 2013). In the Baltic Sea, 
Kiljunen et al. (2020) used stable isotopes to identify a similar, 
albeit inverse, trophic interaction between mysids and Atlantic 
herring (Clupea harengus) in which mysids served as a vector of 
benthic production to the pelagic zone. In both instances, prey 
movements provided a mechanism for the transport of biomass 
and energy between habitats, enhancing trophic connectivity 
within the foodscape and yielding an important trophic subsidy 
to consumers.

SIA is not without limitations as interpretation can be con-
founded by preservation techniques, overlapping isotope values 
among habitats or prey resources, temporal variability in base-
line values and uncertainty in trophic discrimination factors, 
all of which may reduce ecological inferences (Kelly et al. 2006; 
Bond and Diamond  2011; Shipley and Matich  2020). Further, 
while stable isotopes have been used to describe spatial pat-
terns of movement at various scales as noted in the examples 
listed above, studies are most typically conducted at larger spa-
tial scales (e.g., continental; Durbec et al. 2010) with relatively 

few studies conducting finer spatial scale analysis (e.g., within a 
few kilometres, though see Haas et al. 2009; Cunjak et al. 2005; 
Harrod et  al. 2005). A promising development in SIA for un-
derstanding fish connectivity is Compound-Specific Isotope 
Analysis (CSIA), using individual amino acids or fatty acids 
rather than bulk tissue. While the cost of CSIA can be prohib-
itive, it allows clearer separation of baseline and trophic pro-
cesses, reducing uncertainty in trophic enrichment estimates 
(McMahon and McCarthy 2016).

3.3.2   |   Otoliths

Otoliths are calcified structures located within the inner ear 
of teleost fishes that accrete layers over time, incorporating 
trace elements and isotopes from the surrounding environment 
(Thorrold et  al.  2001). The shape, chemical signatures (stable 
isotopes) and/or trace elements (most frequently Strontium [Sr], 
Barium [Ba], Manganese [Mn] and Magnesium [Mg]) found 
in otoliths can be used to reconstruct environment or habi-
tat use histories and infer associated movement patterns and 
natal origin, providing a useful tool to assess functional and 
demographic connectivity (reviewed in Secor  1999 and S. E. 
Campana 2005; Elsdon et al. 2008). In freshwater, estuarine and 
marine systems, otoliths and/or other calcified structures (e.g., 
statoliths of cephalopods, vertebrae of elasmobranchs, fin rays 
and fin spines in bony fishes) have been widely used to inves-
tigate connectivity of organisms (Gillanders 2002; Reis-Santos 
et al. 2015; Zampatti et al. 2021; Figure 3C). Otoliths have the 
advantage in that all fish are inherently ‘marked’ from an early 
age (i.e., relative to other manual methods such as biotelemetry), 
whereby information in the form of isotopes and trace elements 
is usually permanently stored in the otolith and is related to the 
age of the fish (Elsdon et al. 2008). The simplest approach fo-
cuses on examining otolith shape (Ferguson et al. 2011) or whole 
otolith elemental and SIA to assess population associations 
(Campana 1999). The premise is that differences in otolith shape 
and/or chemistry among populations or communities suggest a 
lack of ecological connectivity, although similar otoliths do not 
necessarily imply connectivity (Campana et al. 2000).

Increasingly, lifetime movements and life-history patterns are 
extracted based on different ‘signatures’ being incorporated 
as fish move throughout environments. For example, Sr and 
Ba tend to be positively and negatively related to salinity, re-
spectively; if a fish moved from freshwater to marine waters 
it would likely have lower Sr:Ca and higher Ba:Ca associated 
with freshwater compared to when it was in marine waters 
(Sr and Ba are usually ratioed to Ca). Chronological informa-
tion in relation to age and growth can then be extracted and 
used to better understand aspects of landscape and ecologi-
cal connectivity. For example, Brophy et al. (2020) used δ13C 
and δ18O values derived from Atlantic bluefin tuna otoliths to 
infer natal origins and assess the timing and degree of mixing 
between individuals from geographically separated spawning 
stocks (i.e., functional and demographic connectivity). In an-
other example, Tulp et al.  (2013) evaluated otolith strontium 
(88Sr) patterns of European smelt (Osmerus eperlanus) col-
lected from the Wadden Sea (marine) and landlocked lakes 
IJsselmeer and Markermeer (freshwater) in the Netherlands, 
regions fragmented by a large dam (Table  2). They found 
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significantly higher 88Sr concentrations in marine fish, with 
no indication of mixing between the marine and landlocked 
populations. Given declines in the landlocked stocks and their 
important ecological role as key prey for piscivorous birds, 
this study shows how otolith chemistry confirmed that an 
artificial barrier is disrupting ecological and trophic linkages 
and reducing demographic connectivity.

Several methods exist for determining fish movement and mi-
gration using otoliths, varying based on the number of fish 
groups studied, the use of chemical profiles across otoliths, 
and whether natural environmental signatures or applied 
chemical tags are evaluated (Elsdon et al. 2008; Walther and 
Limburg 2012; Thomas and Swearer 2019). Much of the work 
has focused on natural tags (information naturally acquired in 
otoliths) but several studies also demonstrate ecological con-
nectivity among groups using applied tags such as tetracycline 
(Jones et al. 1999) or an unnatural isotopic ratio of a common 
element (Almany et al. 2007). For example, Jones et al. (1999) 
marked embryos in the field with tetracycline, subsequently 
collected larvae settling onto a reef, and examined their oto-
liths to determine if they were marked. Using this approach, 
researchers were able to examine functional and demographic 
connectivity by demonstrating return to natal reefs and self-
recruitment of 15%–60%. Almany et al.  (2007) used a differ-
ent marking approach whereby they marked mothers with 
enriched 137Ba isotopes that were transmitted to offspring 
before hatching. Two months after marking, recently settled 
fish were collected and researchers examined daily growth 
increments in otoliths to confirm they were born after moth-
ers were marked and then examined the core of the otolith to 
determine if the fish were tagged. Using this approach, they 
demonstrated return of larval fish to natal reefs with 17%–60% 
returning depending on the species. Other approaches trace 
juvenile or adult fish back to their larval (in the case of juve-
niles) or juvenile (in the case of adults) habitats (Gillanders 
and Kingsford  1996; McMahon et  al.  2012) based on natu-
rally occurring elements or isotopes in otoliths. For example, 
Gillanders and Kingsford  (1996) demonstrated functional 
connectivity between estuarine nursery habitats and adult 
rocky reef habitats by analysing trace elements in otoliths of 
juvenile fish from estuarine seagrass and rocky reef habitats.

Similarly, naturally occurring elements or isotopes can be an-
alysed in profiles across otoliths with variation used to iden-
tify functional connectivity among different water bodies. 
For example, Elsdon and Gillanders (2005) assessed whether 
freshwater occupancy of black bream (Acanthopagrus butch-
eri) could be inferred from otolith Ba:Ca ratios whereby oto-
lith Ba:Ca of fish was correlated with ambient Ba:Ca. They 
discovered a strong correlation, with fish caught in freshwater 
showing roughly double the Ba:Ca of fish captured in saltwa-
ter. These ratios successfully identified fish residency patterns 
and revealed multiple migratory behaviours of fish within 
the same estuary. This approach has also been used to deter-
mine partial migration in fish whereby some individuals in a 
population moved and others remained resident (Gillanders 
et  al.  2015). Interestingly, a study by Pan et  al.  (2024) used 
otolith biochemistry to assess effects of a climate event—
El Niño—on population connectivity of Spanish mackerel 
(Scomberomorus niphonius) along China's coast during the 

2015–2016 event (Figure 2C). They analysed elemental ratios 
(Ba:Ca, Mg:Ca) in otoliths from age-1 individuals across three 
consecutive years (2016–2018), observing significant increases 
in these ratios during the El Niño year. Their results indicated 
that during the El Niño year, there was large-scale movement 
of mackerel between the East China Sea and the Yellow Sea, 
but in the following years, local spawning groups appeared 
to be more self-sustaining, suggesting that extreme climate 
events like El Niño can profoundly affect the functional con-
nectivity of migratory fish populations. Collectively, these 
studies demonstrate the importance of otolith chemistry for 
spatially reconciling population structures, life histories and 
movement patterns of fishes. However, researchers have cau-
tioned that otolith chemistry can come with limitations like 
overlapping chemical signatures in similar habitats and that 
data interpretation requires assumptions about water chemis-
try stability that may not capture movements if environmental 
gradients are ephemeral or weak (Elsdon et al. 2008; Sturrock 
et al. 2012).

3.4   |   Genetics

Genetic connectivity among populations is imperative for 
the maintenance of genetic diversity and adaptive poten-
tial in wild populations of fish (Rubidge et al. 2012; Klingler 
et  al.  2021; Figure  3D). Habitat fragmentation erodes struc-
tural connectivity and can ultimately affect functional and 
genetic connectivity, resulting in isolation and acceleration of 
the loss of genetic variation through demographic and genetic 
stochasticity within populations (Pflüger et al. 2019; Klingler 
et  al.  2023). Genetic data collection, beginning with protein 
electrophoresis and continuing into the present genomic se-
quencing era, has allowed biologists to genotype individuals 
at specific loci within populations and characterise the gene 
pool. Statistical comparison of alleles and allele frequency 
across multiple loci within and among populations provides 
an estimate of gene flow (Hamilton 2021). Subsequent breed-
ing among immigrant and resident individuals acts to in-
crease genetic connectivity and similarity among populations 
and provide novel genotype combinations that may increase 
fitness. By comparing genetic similarity and structure, re-
searchers can determine whether fish from different locations 
are mixing, isolated, or have restricted movements, offering 
insights into genetic connectivity among wild and/or farmed 
populations (e.g., Spies et  al.  2018; Fazzi-Gomes et  al.  2021; 
O'Dwyer et  al.  2021). Allozymes, mitochondrial DNA, and 
nuclear microsatellites were the genetic marker systems that 
dominated the conservation and population genetic field for 
the past 20–30 years (Grover and Sharma 2016); today, whole 
genome sequencing, RADseq approaches and the develop-
ment of GTseq panels have increased our ability to charac-
terise all or significant portions of the genome of individuals, 
whole populations, watersheds, regions and entire manage-
ment units (Saglam et  al.  2017; Supple and Shapiro  2018; 
Amish et al. 2019; Bohling et al. 2021; Chang et al. 2021). With 
the advent of genomic sequencing methodology, we can now 
characterise large portions of the entire genome at both neu-
tral genetic and adaptive trait loci to more accurately quantify 
gene flow and connectedness and estimate genetic diversity 
and adaptive potential.
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Patterns of genetic variation provide statistical power to under-
stand the effects of anthropogenic changes that may be impeding 
the ability of fishes to move among habitats and fulfil their life 
history. This is a comparatively powerful framework, as track-
ing physically tagged individuals in real time can be logistically 
challenging and provides no information on subsequent breed-
ing or historical patterns of movement. In addition to Wright's 
F statistics (Weir and Hill 2002), which measure the extent of 
genetic differentiation through allele frequency differences and 
the presence of unique variants, Bayesian genotype clustering 
analysis (Pritchard et  al.  2000; Gompert et  al.  2014) uses the 
probability of specific genotypes based upon allele frequencies 
and assumptions of Hardy–Weinberg equilibrium to identify 
groups (clusters) of interbreeding individuals. Bayesian analy-
sis assigns individuals to a genotype cluster (population) of ori-
gin. Genetically identified populations overlaid onto landscapes 
can identify real boundaries and reveal generational movement 
(Brown et al. 2016; Neville et al. 2016; Peacock et al. 2016). In 
cases of individuals with mixed ancestry (i.e., proportional 
membership in multiple genotype clusters), the parents reflect 
different genotype clusters and therefore interbreeding and 
admixture.

Landscape genetics/genomics combines population genetics 
and landscape ecology to help elucidate genetic connectivity, as 
well as effects of habitat fragmentation and other human distur-
bances on functional connectivity. The literature is replete with 
studies using genetic data to characterise movement patterns of 
fish species and the landscape correlates of these patterns. For 
example, Whiteley et  al.  (2010) used spatial patterns of allelic 
variation to show that coastal cutthroat trout (Oncorhynchus 
clarkii clarkii) above natural waterfall barriers in western North 
America were highly differentiated from populations below the 
barriers, therefore demonstrating natural inhibition of func-
tional and genetic connectivity (Figure 2D). Geological evidence 
suggests that above-barrier populations have been isolated from 
downstream populations for 8000–12,500 years and that gene 
flow was also unidirectional from upstream to downstream with 
the isolated upstream populations having lower levels of genetic 
variation. In another example, Neville et al. (2006) used genetic 
data to characterise the functional connectivity of the endan-
gered Lahontan cutthroat trout (O. c. henshawi) in one of the last 
large, interconnected stream systems it inhabits (Table 2). They 
identified both resident and migratory life histories, with spatial 
genetic structure in tributaries indicating isolation by barriers or 
distance. Evidence of extirpation and recolonisation supported 
a metapopulation dynamic, dependent on the connectivity and 
habitat diversity of large watersheds. Migratory individuals play 
a key role in recolonising extirpated tributary populations, while 
tributaries act as refugia during droughts. Similar genetic pat-
terns supporting the historical importance of large, connected 
watersheds have been documented in other inland cutthroat 
trout subspecies (e.g., O. c. lewisi, O. c. utah, O. c. bouvieri; Eaton 
et al. 2018; Budy et al. 2017, 2020; Kaeding 2023).

Environmental DNA (eDNA) is an additional genetic method 
that can be used to monitor fish connectivity by detecting spe-
cies' genetic material in water, indicating where fish are pres-
ent and how/if they move across geographic regions or barriers. 
This noninvasive method has improved our ability to detect fish 
species while reducing sampling bias, removing the need to 

handle animals and has proven useful for assessing functional 
connectivity across both marine and freshwater ecosystems 
(see Yamanaka and Minamoto 2016). In freshwater ecosystems, 
eDNA has been used to track recolonisation after dam removal, 
such as in the Elwha River (Washington, USA) where anadro-
mous fishes were newly detected upstream post-barrier removal 
(Duda et  al.  2021). In marine environments, eDNA has been 
used to compare fish community structures (also see Section 3.5: 
Community Structure Analysis) across different coastal habi-
tat types to evaluate functional connectedness, indicating key 
differences in species present at embayment habitats versus 
open coastal regions (Waters et al. 2023). In a different marine 
study, Wu et al. (2025) used eDNA to sample fish communities 
from three habitat types near Hainan Island (China): a natural 
Sargassum seaweed field, an adjacent natural Enhalus acoroi-
des seagrass bed, and a cultivated Eucheuma gelatinae seaweed 
zone (Table 2). They detected 156 fishes, but only 7% were de-
tected across all habitat types; the fish assemblages in the nat-
ural seaweed and seagrass habitats were analogous, indicating 
demographic connectivity; however, the cultivated bed was sig-
nificantly different and had the lowest number of species pres-
ent. This work underscores how habitat type and management 
(i.e., natural versus cultivated) can influence fish community 
composition and connectedness. Although eDNA provides a 
number of benefits, including its ability to detect cryptic species, 
capture a greater number of species compared to conventional 
methods, and sample at a greater spatial and temporal scale due 
to ease of use, it currently has known limitations such as false 
positives and its ability to only apply basic species data (i.e., can-
not offer size frequency, sex ratio or absolute abundance data; 
discussed in Waters et  al.  2023). Regardless, the above exam-
ples provide valuable insights into local biodiversity and how 
fish populations are functionally linked across seascapes and 
riverscapes.

Levels of genetic variation, measures of effective population 
size and extent of genetic differentiation can be used to develop 
recovery strategies and for effective monitoring of species at 
risk. Although researchers have cautioned the use of genetics 
to evaluate fish connectivity given potential lag times in detect-
ing connectivity changes and/or capturing short-term changes 
in connectedness (e.g., it may take up to 200 generations for 
microsatellite markers to reach equilibrium after isolation be-
gins; Cossu et  al.  2022), advances in next-generation genomic 
approaches, such as single nucleotide polymorphism (SNP) 
analyses, can detect divergences more rapidly. For example, 
SNP data have been used to detect the effects of fragmentation 
due to dams, and subsequent post-dam removal, on timescales 
far less than 200 generations; Fraik et al. (2021) detected signif-
icant shifts in the genetic structure of steelhead (Oncorhynchus 
mykiss) populations on the Elwha River within two generations 
(< 5 years) following dam removal. Regardless, if researchers 
require the actual or fine-scale use of specific habitats, genetic 
methods may need to be combined with complementary tagging 
or behavioural studies (Cooke et al. 2008; Washburn et al. 2020).

3.5   |   Community Structure Analysis

Unlike the previously listed methods that directly quantified 
fish connectivity, community structure analysis instead offers 
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indirect inference based on spatial and/or temporal patterns 
in species assemblages to examine demographic connectivity 
(Figure 3E). Examples of tools to assess fish community struc-
ture include traditional fisheries approaches (e.g., passive and 
active nets), backpack and/or boat electrofishing, eDNA, and 
telemetry. These techniques allow researchers to detect spe-
cies presence, relative abundance, community composition or 
individual movements across geographic regions and seasons 
(Evans et  al.  2017; Radinger et  al.  2019). Though community 
composition metrics, like alpha diversity (a community's species 
richness) and beta-diversity (difference in species composition 
between two or more sites/habitats) (Whittaker  1972), do not 
themselves quantify connectivity, spatial patterns such as a high 
composition overlap would suggest landscape and demographic 
connectivity among habitats/sites/regions. These inferences 
can become more powerful when combined with species traits 
like dispersal capacity or life history, abiotic environmental or 
habitat data, and hydrological models of movement pathways or 
corridors. For example, Felin et al. (2025) investigated the role of 
local and whole-basin functional and structural connectivity in 
fish species distribution, designing connectivity indices based 
on river network characteristics and each species' mobility char-
acteristics, and including them in a species distribution model to 
consider habitat suitability and quantify their role in fish distri-
bution patterns. They found that connectivity indices that took 
the local context of the area into account performed consistently 
better than others, noting that fragmentation caused lower like-
lihood of presence for many non-diadromous river fish species.

Moreover, integrating community structure with comple-
mentary tools can connect compositional patterns with a 
mechanistic understanding of movements. For example, fish 
community sampling was conducted in the Lower Boardman 
(Ottaway) River (Michigan, USA) to provide a baseline assess-
ment and migratory patterns of fishes that may encounter a 
fish passage structure being constructed by the Great Lakes 
Fishery Commission in North America called “FishPass” 
(www.​glfc.​org/​fishp​ass.​php; Figure 2E). The FishPass project 
aims to reconnect the Boardman River with Lake Michigan 
by replacing a deteriorating dam with a complete barrier (to 
all fish) and an adaptable fishway designed to support auto-
mated or semi-automated selective, bidirectional fish passage. 
This system would enable native species to pass while block-
ing harmful invaders like sea lamprey. Swanson et al. (2023) 
evaluated fish community assemblage and associated fish 
movement patterns using a suite of methods (e.g., boat and 
backpack electrofishing, PIT and radio telemetry) to deter-
mine which species would encounter FishPass and if seasonal 
patterns of occurrences existed. Their study demonstrated 
phenological variation in movement patterns across their 
study species coinciding with seasonal shifts in the relative 
abundance of species observed within the fish community 
sampling (i.e., demographic connectivity). A large proportion 
of radio telemetered (73%) sea lamprey encountered the dam, 
with observations suggesting they challenged the barrier mul-
tiple times. Native species had variable tendencies to encoun-
ter the dam, and their tendency to encounter decreased after 
subsequent entry events into the river. This study is an on-
the-ground example of a community structure analysis that 
identified species that managers should consider in a manage-
ment intervention and functional aspects of such movements, 

offering the evidence necessary for effective management of 
a fish passage solution. By leveraging innovative approaches 
(i.e., this could also be considered an emerging technology, 
see section below), FishPass aims to address one of the great-
est challenges in fisheries management: ensuring the passage 
of desirable fish at a barrier while preventing the spread of 
invasive fishes (i.e., ‘selective fragmentation’, Rahel and 
McLaughlin  2018; Zielinski et  al.  2020), with the long-term 
goal of fully automated selective passage.

Community structure analyses that integrate species traits can 
reveal how habitat fragmentation and flow alteration affect fish 
connectivity in regionally specific contexts. Perkin et al. (2015) in-
vestigated fish communities in Great Plains streams (USA), where 
intermittent flows and extensive agricultural water use have al-
tered hydrologic regimes (Table 2). They documented declines in 
headwater specialists, such as the plains minnow (Hybognathus 
placitus) and western silvery minnow (H. argyritis), species par-
ticularly sensitive to fragmentation and dewatering. By combining 
beta-diversity metrics with trait data, the researchers showed that 
fragmentation and flow reductions disproportionately affected 
small-bodied, dispersal-limited fishes, resulting in an altered com-
munity structure downstream of water withdrawals and anthro-
pogenic barriers. Research like this emphasises the critical role of 
maintaining hydrological connectivity to support vulnerable spe-
cies and informs water management policies that balance human 
use with ecological integrity. Linking shifts in community struc-
ture to species' functional traits and environmental stressors offers 
a nuanced approach for conservation prioritisation in fragmented 
river systems that experience dewatering, providing insights be-
yond those obtained through direct movement tracking alone.

Although community structure analysis provides valuable 
information about fish connectivity, this method, too, has 
limitations. The approach relies heavily on detecting changes 
in species presence or relative abundance, which may be af-
fected by numerous confounding factors beyond connectivity 
itself, including seasonal variability, sampling biases or hab-
itat heterogeneity (Gotelli and Colwell  2001; Legendre and 
Legendre 2012). Moreover, compositional overlaps do not al-
ways differentiate between transient movements and actual 
demographic exchange, potentially overestimating true de-
mographic connectivity (Lowe and Allendorf 2010). As such, 
community structure analysis may be most powerful when in-
tegrated with other methods such as movement data, genetic 
analyses or hydrological modelling to provide a comprehen-
sive and mechanistic understanding of connectivity. Careful 
study design and multimethod approaches appear essential 
to overcome these limitations and effectively estimate demo-
graphic connectivity to inform conservation and management 
decisions.

3.6   |   Emerging Tools and Technologies

Recent advances in data analyses and technology have revolu-
tionised the way we can monitor fish connectivity, enhancing 
our understanding of fish passage and movements, water flow 
and overall ecosystem health. These technologies span remote 
sensing, biological monitoring, and data integration and analyt-
ics. In some cases, emerging technologies may be a standalone 
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technique to evaluate connectivity, whereas in other examples 
they have been blended with the above-mentioned methods to 
achieve more comprehensive results.

Remote sensing can be used to evaluate structural connec-
tivity of the land- and water-scape. High-resolution satellite 
imagery, freely accessible through services like Google Earth 
and Sentinel-2 via the Copernicus browser (https://​brows​er.​
datas​pace.​coper​nicus.​eu/​), has been used to identify sea-
sonal hydrologic or geomorphological patterns related to fish 
movements that may affect connectivity in freshwater envi-
ronments (Galia et  al.  2023). For example, high-resolution 
(10 m horizontal RGB) Sentinel-2 images were used to deter-
mine ice-on and ice-off periods and combined with acoustic 
telemetry data to investigate potential seasonal barriers (i.e., 
ice) to fish movement, providing key information to manag-
ers related to both structural and functional connectivity, as 
well as overwintering habitats (Bergman et al. 2023, 2025—
Figure 2F). Similarly, light detection and ranging (lidar) data 
can be used to create digital elevation maps (DEMs) or digital 
terrain models (DTMs) to study water flow (i.e., reconstruct 
stream networks) at basin-wide scales to provide broad scale 
information on water-scape features that may hinder struc-
tural connectivity (e.g., water falls, velocity barriers) (Hedger 
et al. 2020; Andualem et al. 2024; Figure 3F). Together, these 
remote sensing tools can help map and evaluate the impact of 
potential natural and artificial disruptions to structural con-
nectivity at broad scales more efficiently than on-the-ground 
surveys (Parks et al. 2024—Table 2).

Underwater imagery using ultrasonic sensors (e.g., ARIS, 
DIDSON, recreational side-scan, forward-facing sonar, live-
view sonar) or visual spectrum photography are also useful 
for monitoring fish passage and community assemblages 
(i.e., functional and demographic connectivity, respectively; 
Schramm et  al.  2020; Haas et  al.  2024—Table  2). Baited 
Remote Underwater Video Systems (‘BRUVs’) offer a nonin-
vasive, fishery-independent method that can be used to assess 
demographic connectivity via fish assemblages and provide 
valuable insights into species presence and diversity, relative 
abundance and spatial distribution. When BRUVs are de-
ployed strategically across habitats or management zones (e.g., 
protected areas, spatial closures), they can offer information 
on functional connectivity by capturing patterns of habitat 
use and occurrences over time (Santana-Garcon et  al.  2014; 
Hall et  al.  2021). While underwater cameras provide high-
resolution images of fish in controlled settings (i.e., a fish 
counter within a fishway) or automated remote settings, they 
can be hindered by high turbidity or low light levels. Sonar 
techniques such as hydroacoustics are not impacted by water 
clarity or light levels, but object identification can be more dif-
ficult (Le Quinio et al. 2023). For example, Piczak et al. (2025) 
used down-looking hydroacoustic surveys and trawls (bottom 
and mid-water) to evaluate fish community composition in-
side versus outside harmful algal bloom areas, revealing no 
significant differences between areas, and suggest that bloom 
zones in their study were not a total barrier or ‘dead zone’ to 
fishes. Advances in machine learning and image detection or 
recognition software that reduce the need for significant in-
vestment in data storage and analyses have made these tech-
nologies more widespread in their deployment (Barbedo 2022) 

and can also be integrated into selective fish passage solutions 
(Grasty et  al.  2021). Passive acoustic monitoring (‘ecoacous-
tics’) is another emerging technology that has been used more 
extensively in marine habitats to record animal sounds or 
track movement of vocal animals (Miller  2012), offering in-
sights beyond communication, but also community compo-
sition and functioning of the ecosystem, and is not limited 
by turbidity like BRUVs (Stowell and Sueur  2020). In addi-
tion, artificial intelligence and machine learning approaches 
have benefited from the analyses of large datasets to identify 
patterns in structural connectivity and predict disruptions 
(Buchanan et  al.  2022). Machine learning techniques have 
been applied to the analysis of telemetry data to (1) improve 
the accuracy of resource selection functions, which are used 
to determine and predict relative habitat selection by animals 
(Griffin et al. 2021—Table 2), (2) infer differential movement 
and space use patterns by fish in areas where receiver cover-
age is poor (Williamson et al. 2021) and (3) integrate with en-
vironmental data to identify potential spawning aggregation 
sites (Brownscombe et al. 2020).

Thanks to the prevalence of smartphones with GPS capabili-
ties, high-resolution cameras and continuous internet connec-
tions, crowdsourcing biological data collection has become a 
more common approach to collecting near real-time data on 
fish distributions (Radinger et  al.  2019). An innovative ap-
plication of crowdsourcing to inform functional connectivity 
of freshwater fishes is the ‘fish doorbell’, where people from 
around the world are able to monitor a live feed of an under-
water camera for fish and report (i.e., ring the doorbell) fish 
presence to fisheries scientists in Utrecht, NL to operate a 
gate, allowing fish to pass (https://​visde​urbel.​nl/​en/​). Apps 
can also provide information to managers and scientists on 
distributions of fishes, like ‘AquaInvaders’ (http://​natur​eloca​
tor.​org/​aquai​nvade​rs.​html), which focuses on nonnative 
aquatic species.

4   |   Knowledge Gaps

While current and emerging technologies have provided oppor-
tunities to gain a better understanding of landscape and ecolog-
ical connectivity to effectively manage fish populations, several 
knowledge gaps remain. There is often a taxonomic bias with 
respect to conservation-related studies with certain species or 
groups of species receiving more funding and prioritisation over 
others (Donaldson et al. 2016). Whether charismatic megafauna 
(e.g., sharks; Mazzoldi et  al.  2019), flagship, or umbrella spe-
cies (Kalinkat et al. 2017), or a focus on recreationally or com-
mercially important or invasive species (Landsman et al. 2011; 
Rypel et al. 2021; Brown et al. 2025), a lack of understanding of 
fish connectivity on all trophic levels undermines comprehen-
sive management strategies. Management paradigms are chang-
ing where ecological knowledge of species across trophic levels 
and recreational importance are valued to understand ecosys-
tem functioning.

Similar to taxonomic biases, it is important to be aware of 
geographic biases that exist in the literature due to remote-
ness of access and/or limited accessibility of funds/resources/
technologies to researchers in different parts of the world (Kot 
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et al. 2023). These biases present opportunities for capacity and 
relationship building and can be mitigated by coordinated pro-
grams such as large tracking networks that could leverage in-
frastructure across regions (e.g., OTN, ETN; Matley et al. 2022). 
Despite diverse methodologies for studying connectivity, ac-
cess to understanding deep-water movements in marine and 
freshwater environments is limited by logistics and abilities 
to sample these areas given the technologies available to date. 
Even in more accessible urban areas, knowledge gaps remain; 
LaPoint et al. (2015) reviewed ecological connectivity research 
conducted in urban areas and discovered strong taxonomic and 
geographic biases, with most studies focusing on large mam-
mals and birds in North America and Europe (only 2 of 148 
articles evaluated fish). The authors emphasise that these bi-
ases are concerning given urban stressors like fragmentation 
and pollution already limit functional connectivity of many 
species and that climate change will likely exacerbate negative 
effects by increasing species' need to shift ranges or access new 
habitats.

Advances in current and emerging technologies for studying 
connectivity represent a significant promise for addressing 
many of the gaps outlined above. The miniaturisation of bio-
telemetry tags allows for the tagging of younger and smaller 
fishes, helping to fill life history, taxonomic and trophic gaps, 
while also enabling the tracking of individuals over longer 
time periods (Cooke et al. 2022; Lennox, Mastrodimitropoulos, 
et al. 2025). The call for a global library of underwater biologi-
cal sounds (Parsons et al. 2022) will enhance the utility of the 
emerging technology ecoacoustics by practitioners because 
they will no longer need to start from the ground up. In addi-
tion to the ability of machine learning to recognise fish images 
(Barbedo  2022), it can also be used to detect and classify fish 
sounds (Barroso et al. 2023). Calls for archiving data from peer-
reviewed literature would benefit knowledge exchange in future 
studies (Kot et al. 2023), ultimately benefiting fisheries manage-
ment and conservation.

Many opportunities remain to further our understanding of fish 
connectivity by working together. An area that is receiving more 
attention for filling in gaps for connectivity studies is the use 
of participatory science using visual surveys. For example, en-
gaging volunteers in documenting the migration phenology of 
various fish species is not only responsible for increased data 
collection, but it mobilises a new set of advocates for habitat con-
nectivity for all fish species (e.g., sucker migration phenology, 
Murchie et  al.  2024; Run Herring Run, Metcalfe et  al.  2022). 
Similarly, groups such as Redmap (https://​www.​redmap.​org.​au/​
about/​​how-​you-​can-​help-​redmap/​) rely on volunteers to share 
observations of marine species to document range extensions, 
with data typically shared to researchers via cell phone apps 
(Happel et al. 2020). The opportunity to collaborate with others 
that have expertise across different technologies, geographies, 
and taxa (including terrestrial) for studying animal connectivity 
will further enhance our current understanding of fishes. This 
includes the Two-Eyed Seeing Approach (Reid et al. 2021) where 
Indigenous Knowledge can be paired with Western science in a 
complementary and co-existing manner for future studies.

Although the focus of this article was to review methods used to 
assess fish connectivity, we acknowledge that there are a number 

of fundamental questions that persist. Understanding the degree 
of connectivity needed to maintain or restore fish populations in 
different contexts (e.g., when installing a fish passage device) is 
difficult to assess, but wholly vital to ensure wild populations per-
sist. Moreover, there are fascinating and fundamental questions 
about the interplay between structural and functional connectiv-
ity that enable fish to occupy the same site, yet there are also ques-
tions about the extent to which individuals or subpopulations that 
come from different areas exchange genetic material. Integrating 
methods and disciplines has the potential to reveal novel ecolog-
ical processes while informing management. As such, continued 
efforts to address knowledge gaps that span disciplines, organisa-
tions and ways of knowing for researchers to collaboratively work 
together will provide critical insight in fish connectivity.

5   |   Conclusion

Connectivity is a fundamental concept in aquatic ecosystems 
with particular salience to fishes. For decades, researchers have 
attempted to understand and document the extent and conse-
quences of connectivity—or its corollary, fragmentation. Many 
of the fundamental studies about why and how fish move have 
come from applied research focused on addressing issues with 
physical barriers (e.g., dams) or to define fisheries management 
units (e.g., stocks). Today, connectivity is routinely considered 
within an applied context by fisheries managers in decisions 
related to stocking, fisheries regulations and planning, inva-
sive species management and habitat management including 
restoration and protection (Cooke et al. 2016; Hays et al. 2019). 
This article emerged from a conference symposium on ma-
rine and freshwater fish connectivity where the diverse ways 
in which different methods were being applied were remark-
able and spanned species, ecosystems, methods and objectives. 
Here, we synthesise the diverse toolbox available to assess 
fish connectivity which has expanded since previous reviews 
(e.g., Lucas and Baras 2000). Despite impressive technological 
developments that have revolutionised our understanding of 
fish connectivity, many questions remain. To that end, we an-
ticipate and welcome future efforts to develop novel methods 
and approaches for combining tools to further refine our un-
derstanding of fish connectivity. Connectivity is of fundamen-
tal importance to ecology and fisheries management; we are 
convinced that efforts will continue to unravel the mysteries of 
how fish interact with each other, their environment and hu-
mans for many decades to come.
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