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The effects of modern war and military activities on
biodiversity and the environment
Michael J. Lawrence, Holly L.J. Stemberger, Aaron J. Zolderdo, Daniel P. Struthers, and Steven J. Cooke

Abstract: War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences
of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear
weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have
overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution,
and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both
terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was
possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated
that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic
systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided
conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with
military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment
are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline
conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal
opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and
recovery.
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Résumé : La guerre est une force omniprésente ayant le potentiel d'altérer l'atmosphère. Les auteurs passent en revue les
conséquences potentielles des activités guerrières et militaires modernes sur la structure et le fonctionnement des écosystèmes.
On met l'accent sur les effets directs et indirects des conflits, des armes nucléaires, des entrainements militaires et des contam-
inants des produits militaires. Dans l'ensemble, on constate que les activités préalablement mentionnées ont des effets négatifs
écrasants sur la structure et le fonctionnement des écosystèmes. Avec des altérations dramatiques des habitats, la pollution et les
perturbations environnementales contribuent au déclin des populations et aux pertes de biodiversité provenant des effets aigus
et chroniques sur les systèmes terrestres aussi bien qu'aquatiques. Tout de même dans certains cas, en présence d'altérations
massives de la structure des écosystèmes, la récupération s'est avérée possible. Il est intéressant de noter qu'une activité militaire
fut bénéfique sous des conditions spécifiques telles que la création d'une zone d'exclusion, en générant des augmentations
générales des populations/ou une reprise des populations; ceci fut observé en milieux terrestres aussi bien qu'aquatiques. De
plus, les avances des technologies militaires (p. ex. la technologie GPS, les drones, la biotélémétrie) ont fourni aux scientifiques
de la conservation de nouveaux outils pour la recherche. Compte tenu des défis associés avec la conduite de recherches dans les
sites d'activités militaires (p. ex. accès restreint, conditions dangereuses) les informations concernant les impacts militaires sur
l'environnement sont relativement rares et ne sont étudiées qu'après nombreuses années après la fin les activités militaires sans
connaissance des conditions des lignes de base au départ. En plus, la recherche aiderait à élucider les conséquences environne-
mentales (positives et négatives), révélant ainsi des opportunités pour mitiger les effets négatifs, tout en fournissant des
informations pour le développement de stratégies optimales pour la récupération et la réhabilitation. [Traduit par la Rédaction]

Mots-clés : guerre, biodiversité, structure des écosystèmes, conflit, activités militaires, environnement, biologie de la conserva-
tion.

Introduction
Conflict has been an ever-present aspect of human civilization.

Indeed, the manifestation of conflict in direct combat and mili-
tary engagements has continuously plagued the world through-
out the 20th century leading to more than 100 million human
deaths across a number of major and minor wars (Westing 1980;
Pendersen 2002; Sarkees et al. 2003; Leitenberg 2006). Beyond
war’s rather obvious negative impacts on human populations
(Pendersen 2002; Machlis and Hanson 2008), human warfare has

also been documented as having a significant influence on the
biosphere across a range of ecological scales (Dudley et al. 2002;
Machlis and Hanson 2008). The degree to which warfare can exert
an impact upon an ecosystem and its constituent populations
rests entirely on the nature of the disturbance, the sensitivity of
the biological system (including resilience), and the timescale of
the impacts (Westing 1971; Demarais et al. 1999; Dudley et al. 2002;
Warren and Büttner 2006; Warren et al. 2007). Consequently, hu-
man conflict has the potential to impart a wide range of impacts
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on biodiversity and ecosystem structure and function. Interest-
ingly, although one may presume that all conflict is overwhelm-
ingly “negative” in an ecological context, in reality the consequences
of warfare generate a continuum of outcomes ranging from
highly positive to highly detrimental.

While a large body of knowledge of the consequences of war
on the ecological dynamics of a variety of biological systems is
known, a comprehensive assessment of these impacts has yet to
be conducted. Current reviews on the subject often frame ecolog-
ical changes in the greater context of socioeconomic factors and
human interactions, which are often restricted to terrestrial
mammalian megafauna (e.g., Dudley et al. 2002; Machlis and
Hanson 2008). Thus, the purpose of this review will be to address
the specific impacts of modern warfare (i.e., turn of the 20th cen-
tury) on ecosystem structure (especially biodiversity and the sta-
tus of populations and communities) and ecosystem function in a
variety of systems (e.g., aquatic, terrestrial). For the sake of sim-
plicity, our analysis will be restricted to the following impacts of
military activities: direct armed conflict (between two or more
factions), nuclear warfare, military training, and military-produced
chemical and metals contamination. For the entirety of this re-
view, the term warfare will encompass the preparation (e.g., train-
ing, material development, and testing), mobilization, conflict,
and related activities of nations or factions involved in a military
operation against one another. This review will also limit its scope
to include assessments of the impacts of military activities on
ecosystem structure and function during the “preparations for
war”, “violent conflict”, and “post-war activities” phases, as out-
lined in Machlis and Hanson (2008). As such, any activity that
directly relates to preparation and (or) is a product of war, outside
of civilian operations, will be considered an aspect of warfare.
Our assessment will encompass a continuum-based approach
whereby both the negative and positive impacts of the preceding
factors are highlighted appropriately.

Active armed conflict
Armed conflict is the act of war generated by two or more

governmental groups, non-governmental groups, or interna-
tional states that generally involves a combination of active mili-
tary actions, including aerial assaults, naval craft operations, or
ground forces (ICRC 2008; Machlis and Hanson 2008; Pearson
2012). Often, natural ecosystems are termed “terrain” in military
battlespace terminology (O’May et al. 2005; Visone 2005; Hieb
et al. 2007), taking on an anthropogenic rather than an eco-centric
view of natural landscapes during periods of armed conflict. As a
result, ecosystem health and integrity are often neglected casuali-
ties of warfare with little responsibility from involved factions in
contributing to conservation efforts (Gangwar 2003; Clark and
Jorgenson 2012). The consequences of active armed conflict range
across a spectrum of ecological scales and lead to unexpected and
complex outcomes — either beneficial, negative, or a combina-
tion of these two. This component of the paper highlights a
number of types of active warfare engagement forms including
airborne, naval, and ground warfare activities, which have de-
monstrable impacts on ecosystem structure and function.

Aerial assault
Aircraft (both rotary and fixed-wing) are commonly used in

military operations and can produce bursts of noise (e.g., sonic
booms, jet afterburners, rotary pulses, etc). The auditory system is
more sensitive in many animals compared to that of humans
(Manci et al. 1988; Larkin et al. 1996) and thus aerial activities
possess a significant source of noise pollution that is of global
concern for the wellbeing of wildlife (Dunnet 1977; Dufour 1980;
Gladwin et al. 1988). The production of noise from military aircraft
has variable impacts on wildlife, which encompass primary, sec-
ondary, and tertiary effects ( Janssen 1980; reviewed in Manci et al.
1988). These effects can occur over an acute or chronic timescale

representing both sub-lethal and lethal impacts that have the
potential to cause permanent damage; a factor that is influenced
by acoustic duration, intensity, and the biology of the specific
species. Primary effects can include eardrum rupture, shifts in
hearing abilities (either temporary or permanent), and (or) audi-
tory signal masking (e.g., unable to identify noises from prey,
predators, or mates). Secondary effects are related to physiologi-
cal impacts (Manci et al. 1988), which can lead to impediments in
reproduction, foraging behaviour, and natural habitat use of
wildlife residing in areas where aircraft noise is prevalent
(Francis 2011). Tertiary impacts consist of a combination of pri-
mary and secondary effects that can lead to population declines,
species extinction, and habitat degradation (Klein 1973; Bender
1977; Manci et al. 1988).

Ecosystem structure has been affected by means beyond noise
pollution from military aircraft. For example, during World
War II (WWII), aircraft acted as a vector for the transportation of
exotics whereby weeds and cultivated species were brought to
oceanic island ecosystems by way of aircraft landing strips used
for refueling and staging stations during operations in the Pacific
theatre (Stoddart 1968). Prior to the war, these isolated islands
were home to a number of sensitive and endemic species that had
naturally dispersed to their current positions. However, in the
aftermath of aerial warfare events, large numbers of invasive spe-
cies had become established on these small islands, which altered
the evolutionary pathways of native species causing competitive
exclusion, predation, and extinction of endemic species (Mooney
and Cleland 2001). Aerial warfare also has had a great influence on
altering population dynamics directly. Air-to-ground assaults are
known to cause elevations in wildlife mortality (Zahler and
Graham 2001; Gangwar 2003) and destroy natural habitat (Levy
et al. 1997) both of which may contribute to a localized population
decline. Conventional aerial assault weapons are generally cate-
gorized into four groups, which include: high explosive frag-
mentation, incendiary weapons, enhanced blast munitions, and
defoliants; all of which have potential to destroy wildlife and
natural habitat in different ways and with varying degrees of
severity (reviewed in Majeed 2004). These impacts have been illus-
trated in a number of species including Asian elephants (Elephas
maximus; Chadwick 1992; Dudley et al. 2002) and snow leopards
(Panthera uncia; Zahler and Graham 2001) where aerial combat
maneuvers were observed to decimate entire forest ecosystems
leaving behind stumps and craters, alongside contaminated and
destabilized soils (Levy et al. 1997).

Naval operations
Naval conflict between foreign nations has a diverse range of

effects on the marine environment. Like aircraft, ships have been
implicated in introducing foreign species to otherwise uncoloni-
sable regions under normal circumstances. This has been achieved
through the dumping of ballast waters (Apte et al. 2000) and the
introduction of naval structures or materials into the region
(Tavares and De Melo 2004). As an example of the latter, the brown
tree snake (Boiga irregularis) was introduced into Guam in 1949 just
after WWII, most likely as a stowaway on boats salvaging materi-
als from a port in New Guinea (Rodda and Savidge 2007). This
species has subsequently invaded all terrestrial ecosystems in
Guam leading to the extirpation of many bird and lizard species,
as well as a number of other native invertebrates thus having a
measurable effect on the local biodiversity (Rodda and Savidge
2007).

Naval blasts and sonar operations during active periods of war-
fare have the potential to interfere with the daily lives of many
aquatic species. The acoustic frequency used by dolphins and
whales coincides with that used by naval sonar devices, which can
cause ear hemorrhaging and beach stranding (Science Wire 2001;
NRDC 2003). In addition to this, conventional naval ordinance
(e.g., depth charges, torpedoes) create substantial underwater
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blasts that can inflict overpressure and fragmentation injury to
invertebrates, fish, reptiles, birds, and marine mammals in prox-
imity of the blast radius (Gaspin 1975; Westing 1980; Ketten 1995;
reviewed in Keevin and Hempen 1997; see the section entitled
“Nuclear warfare” for more on blast injury).

While there are a number of negative impacts associated with
naval operations, marine environments have profited from this
activity in a number of ways. Fish populations greatly benefited
from the activities occurring in the North Atlantic during WWII
whereby sensitive and overexploited populations were given time
to recover from anthropogenic disturbances and fisheries exploi-
tation (Beare et al. 2010) as fishing fleets were drastically reduced
in size resulting from their participation in naval operations in-
cluding mine sweeping and shipping supplies (Gulland 1968;
Engelhard 2008). If not called to assist in military services, then
fishing vessels were often harboured and, therefore, excluded
from fishing activity because of threats at sea from naval or aerial
strikes and subsurface mining (Beare et al. 2010). During this pe-
riod of war, large areas in the Atlantic Ocean functioned as marine
protected areas for several years, which allowed commercial fish
populations to proliferate with a reduction in fishing effort (Beare
et al. 2010). During this time, it was observed that the reduction in
fishing mortality altered the age-structure dynamics of gadoid
fisheries resulting in a larger proportion of mature and larger
fish, which allowed populations to proliferate to a greater extent
(Beare et al. 2010). Additionally, opportunistic species (e.g., oce-
anic whitetip sharks, Carcharhinus longimanus) have been reported
as benefiting from the casualties associated with naval ship
wrecks provided a rich food source during periods of warfare
representing an acute “ecological bonanza” (Bass et al. 1973). In-
directly, the occurrence of naval warfare allowed fisheries and
other untargeted species to rebound and proliferate, which may
not have otherwise occurred in its absence.

Naval conflicts, particularly during WWII, also led to the cre-
ation of heterogeneous habitats that would not exist otherwise.
During WWII, there was a global expansion with ocean-going
vessels that navigated the coastal and pelagic waters of the Atlan-
tic and South-Pacific oceans to engage hostile countries. Although
this led to devastating consequences for human life, the resulting
ship wrecks created a large number of artificial reefs where
aquatic life could colonize, utilize, and flourish (Hynes et al. 2004).
While there are concerns regarding long-term contamination
with sunken naval craft (Westing 1980; Martore et al. 1998;
Ampleman et al. 2004; Monfils 2005; Barrett 2011; see the section
entitled “Military contamination”), these vessels have proven to
be a source of new habitat for aquatic life in areas of the ocean
that were largely devoid of structure for animals to colonize
(Hynes et al. 2004).

Terrestrial conflict
Ground warfare often takes place in sensitive and remote loca-

tions around the globe. Indeed, a large number of biological hot-
spots have set the stage for major ground conflict events (Hart
et al. 1997; Kim 1997; Hanson et al. 2009). Furthermore, modern
ground warfare has often altered natural landscapes and im-
pacted wildlife in a number of different ways. Often, soldiers were
positioned for on-ground battle within critical habitats of en-
demic and endangered species (Shambaugh et al. 2001; Zahler and
Graham 2001; Hanson et al. 2009; Lindsell et al. 2011) representing
a potential threat to these organisms. As one may expect, armed
conflict found within terrestrial ecosystems often facilitates
poaching by military forces (Shambaugh et al. 2001; Draulans and
Van Krunkelsven 2002; Dudley et al. 2002) and can promote fur-
ther destruction of the landscape and wildlife populations by dis-
placed refugees of war (Shambaugh et al. 2001; Dudley et al. 2002;
McNeely 2003; Dubey and Shreni 2008). In contrast, there are
reports of large adaptable predators, including Bengal tigers
(Panthera tigris tigris) and grey wolves (Canis lupus) becoming habit-

uated to gunfire noise on the battlefields of WWII; they were often
sighted foraging on casualities in the aftermath of battles (Orians
and Pfeiffer 1970; Westing 1980; McNeely 2003), which may
acutely benefit the species as in the case of marine predators
illustrated earlier.

The weapons employed by militaries probably pose the greatest
hazard by terrestrial conflicts to ecosystem structure. The numer-
ous explosive techniques and tools at the disposal of army forces
during ground warfare have left a legacy on landscapes across the
globe by leaving large craters, shrapnel, and contamination, thus
devastating many ecosystems across the biosphere (Westing 1980;
Hupy 2008; Certini et al. 2013). Landmines applied during active
ground warfare have left a lasting legacy on the environment and
still remain a major threat to biodiversity, even decades after
being deployed (Westing 1985; Roberts and Williams 1995; re-
viewed in Berhe 2007). However, landmines may help ecosystems
recuperate after heavy impact from armed conflict by creating a
“no-mans-land” in an analogous manner to a game reserve or park
as seen in the case of the cranes in the demilitarized zone of the
Korean Peninsula (Fig. 1; Higuchi et al. 1996; Kim 1997; Dudley
et al. 2002). Landmines do not differentiate between soldiers and
wildlife (especially large mammals) and therefore, many organ-
isms have been damaged or killed directly from landmine explo-
sions (Westing 1996; Shambaugh et al. 2001; Zahler and Graham
2001; Berhe 2007). Indeed, landmines have been responsible for
pushing at risk species closer to extinction (e.g., elephants in
Africa, leopards in Afghanistan; Troll 2000) and deteriorating
ecosystem integrity by destroying vegetation and degrading soil
structure (Miller 1972; Berhe 2007).

Fig. 1. The Korean Demilitarized Zone. The Demilitarized Zone
(DMZ) on the Korean peninsula serves as a protected area for many
endemic and endangered species (Kim 1997; Healy 2007). The Korean
DMZ is a 4 km wide by 250 km long strip of natural land that has
separated North and South Korea since 1953 with the Armistice
Agreement (Kim 1997). This area is home to 3514 species, which
equates to 67% of the species diversity of the Korean Peninsula, most
of which are endemic to this small plot of land (Healy 2007). One of
the world’s most endangered bird species, the White-Naped Crane
(Grus vipio) relies on the Korean DMZ for critical overwintering
habitat for 50% of the remaining population. As well, areas within
the DMZ are also reported as important resting locations during the
north–south migration for a large proportion of the crane
population in addition to numerous other bird species (Higuchi
et al. 1996; Healy 2007). Photo credit: Adrian Pingstone, Wikimedia
Commons, 2006.
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Artillery fire also poses a risk to the environment. During World
War I and WWII, artillery weapons were positioned behind sol-
diers and were fired towards the opposing factions with the capa-
bility of firing hundreds of shells per hour (Hupy 2008). Troops
often found shelter or fought battles in forested areas resulting in
heavy artillery fire on these regions, devastating the local ecosys-
tem and associated biodiversity (Hupy 2008). Decades after WWII,
craters in Verdun, France, produced by heavy artillery fire still
remain devoid of vegetative growth; deep craters extending to the
water table cause hydric conditions, making them unsuitable for
colonization by terrestrial plant species (Hupy 2006). Thus, shell-
ing can result in chronic legacy impacts in addition to acute influ-
ences (e.g., instant mortality).

Terrestrial conflicts have been known to target military and
civilian infrastructure to stifle opposing factions. Ground forces,
in the past, have used explosives to destroy hydropower dams
(Sweetman 1982; Gleick 1993; Clodfelter 2006) and dikes (Lacoste
1973) as a means to impede the mobility of countering factions
(Francis 2011). The abrupt removal of long-established dams can
cause a number of ecological consequences, such as siltation,
mortality of fish and wildlife populations situated above and be-
low the dam (e.g., abrasion, suffocation, habitat loss), and produce
lasting physical, chemical, and biological legacies (Bednarek 2001;
Stanley and Doyle 2003).

Nuclear warfare
The development and use of nuclear warheads, in both times of

peace and conflict, has undoubtedly left a significant scar on the
Earth’s surface. As of the late 1990s, more than 2000 nuclear weap-
ons tests have been conducted around the world (Yang et al. 2003).
The detonation of a nuclear warhead represents a significant
threat to local biodiversity as, unlike conventional ordinance, the
energy released is partitioned into three distinct categories in-
cluding thermal (35%), kinetic (50%), and radioactive (15%) ener-
gies (Glasstone 1964; Brode 1968; Nishiwaki 1995; Eisenbud and
Gesell 1997). Here we will review the documented and potential
effects of each of these detonation impacts on ecosystem struc-
ture and function.

Thermal impacts
Thermal emissions from nuclear blasts can have a number of

impacts on local ecosystems. The immense release of thermal
energy at the detonation’s epicentre results in temperatures far in
excess of 3000 °C (Brode 1968; Pinaev and Shcherbakov 1996). As
such, thermal emissions pose a lethal force to any life in the
vicinity of the epicentre resulting from incineration (Glasstone
1964; Lifton 1967) as seen in the bombings of Japan (Summary
Report of Research in the Effects of the Atomic Bomb 1951;
Silberner 1981; Ruhm et al. 2006; Ochiai 2014). Beyond the epicen-
tre, an outward thermal wave (100–1000 °C) moves radially (a dis-
tance dependent on the bomb strength) (Brode 1968) and is a
serious risk to most life over its expansion. Here, local vegetation
is burnt and defoliated, often perishing through the extreme heat
(Palumbo 1962; Shields and Wells 1962; Shields et al. 1963; Craft
1964) representing severe reductions in plant species richness and
abundances (Palumbo 1962; Shields and Wells 1962; Shields et al.
1963), not unlike an intense forest fire (Noble and Slatyer 1980;
Rowell and Moore 2000; Grace and Keeley 2006). The spatial ex-
tent to which vegetation burning occurs is highly dependent on
the status (e.g., moisture content) and composition of the vegeta-
tive assemblages present in the blast area (Chandler et al. 1963;
Craft 1964; Small and Bush 1985). Some have speculated that ther-
mal emissions may indirectly impact adjacent forests and vegeta-
tive regions, through the generation and spread of wildfires
(Chandler et al. 1963; Craft 1964) that may extend the immediate
population and (or) diversity reduction outside of the blast area
for both plants (Noble and Slatyer 1980; Rowell and Moore 2000;
Grace and Keeley 2006) and animals (Singer et al. 1989; Kaufman

et al. 1990; Moreira and Russo 2007; Lindenmayer et al. 2008). In
contrast to plant life, there is comparatively little research on the
effects of thermal impacts from nuclear blasts on animals, hu-
mans notwithstanding. Thermal wave exposure has been re-
ported to cause severe whole body burns on unprotected skin in
humans (Oughterson et al. 1951; Kajitani and Hatano 1953;
Oughterson and Warren 1956; Nishiwaki 1995). In the bombings
of Japan, fatal burns and mild non-lethal burns were observed
within 1.2–2.5 km and 3–4 km from the epicentre, respectively,
(Oughterson et al. 1951; Oughterson and Warren 1956; Glasstone
1964; Nishiwaki 1995) with the former resulting in a large propor-
tion of the total deaths (�30%) during this event (Oughterson and
Warren 1956; Glasstone 1964; Nishiwaki 1995). Additionally, ther-
mal radiation, along with high intensity visible radiation, can also
result in severe retinal burning in humans (Oyama and Sasaki
1946; Rose et al. 1956; Glasstone 1964). There is no reason to as-
sume that similar consequences would not be observed among
terrestrial wildlife, especially mammals.

Experimental tests of simulated and (or) actual nuclear weap-
ons produced thermal energy exposure in rats (Alpen and Sheline
1954), dogs (Brooks et al. 1952; Richmond et al. 1959a), rabbits
(Byrnes et al. 1955; DuPont Guerry et al. 1956; Ham et al. 1957), and
swine (Baxter et al. 1953; McDonnel et al. 1961; Hinshaw 1968) have
generated analogous effects as seen in humans suggesting that
wild mammals may have a similar burn response during a nuclear
detonation. Severe burns were also reported in teleost fish that
were in close proximity to the detonation of the warhead in Bikini
Atoll (Donaldson et al. 1997). Not surprisingly, in simulated exper-
iments, severe burns increased the rates of mammalian mortality,
resulting from general physiological disturbances and secondary
infection occurring 0–2 weeks “post-blast” (Brooks et al. 1952;
Alpen and Sheline 1954; McDonnel et al. 1961). This effect was also
amplified under a combined thermal and radiation exposure re-
sulting in a severely immunocompromised, physiologically dis-
turbed individual (Brooks et al. 1952; Baxter et al. 1953; Alpen and
Sheline 1954; Valeriote and Baker 1964; Ledney et al. 1992) similar
to what is believed to occur in humans (Nishiwaki et al. 2000).
Scaling these effects up, it would be highly likely that thermal
emission exposure would result in a large die-off event in the
local animal life thereby reducing local populations and, poten-
tially, reducing local species richness over an acute timeframe
(0–2 weeks). It should be noted that the intensity of the burns is likely
to be a product of the distance from the epicentre as the thermal
wave will gradually reduce in magnitude (Brooks et al. 1952;
McDonnel et al. 1961; Glasstone 1964), a factor that must be ac-
knowledged when predicting the expected impacts on animal
populations. However, this effect would not be equal for all crea-
tures as rats on Bikini Atoll were able to avoid both thermal and
kinetic emissions from warhead testing even in close proximity to
the blast as a product of their subterranean existence (Donaldson
et al. 1997). As such, we would expect that species occupying “shel-
tered” habitats may not experience a large die-off as described
earlier.

Blast effects
As mentioned earlier, in a nuclear warhead detonation, blast

energy accounts for approximately 50% of the total emitted en-
ergy that moves away from the epicentre in a radial pattern
(Randall 1961; Glasstone 1962; Glasstone 1964; Eisenbud and Gesell
1997). The large amount of kinetic energy emanating from the
blast (1–3500+ kPa) is especially damaging to plants whereby the
blast force is capable of denuding foliage as well as damaging
branch structure and uprooting vegetation from the soil (Shields
and Wells 1962; Palumbo 1962; Shields et al. 1963; Beatley 1966;
Glasstone and Dolan 1977; Hunter 1991) effectively destroying a
large proportion of the surrounding plant life and primary pro-
duction.
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Animals caught within the blast wave can be impacted in a
number of ways. Terrestrial species are likely to experience dam-
age resulting from overpressure injury. Using blast pressures sim-
ilar to what has been reported during nuclear explosions, rats
experienced severe lung damage as well as large degrees of hem-
orrhaging in various regions of the body (Jaffin et al. 1987). Similar
effects have been noted in a number of other vertebrate species
(Richmond et al. 1959a, 1959b; Goldizen et al. 1961; Richmond and
White 1962; Candole 1967; Jaffin et al. 1987; Mayorga 1997) with
the extent of physiological damage dependent upon the mass
of the animal (larger animals are less susceptible to injury;
Richmond and White 1962; Jaffin et al. 1987) as well as the magni-
tude and duration of the over-pressure exposure (Candole 1967).
Unsurprisingly, mortality in these trials was elevated (Richmond
et al. 1959a, 1959b; Richmond and White 1962; Jaffin et al. 1987)
which, under an actual nuclear detonation, would be expected to
increase mortality rates in exposed populations. Further exacer-
bating these effects would be the large amount of debris and
shrapnel carried through the air by the blast causing injury and
death to animals in the surrounding area (Candole 1967; Mayorga
1997). This effect has been directly observed during a nuclear det-
onation on both humans (Shaeffer 1957; Liebow 1983; Kishi 2000)
and other mammalian species (Goldizen et al. 1961; McDonnel
et al. 1961; Masco 2004).

Aquatic organisms are particularly sensitive to the effects of a
blast. While direct evidence is rather limited in the literature,
nuclear detonations in proximity to aquatic environments have
been shown to result in large fish population die-offs (Kirkwood
1970; Merritt 1970, 1973; Kirkwood and Fuller 1972; Planes et al.
2005) demonstrating similar impacts to conventional ordinance
explosion on fish mortality on a much larger scale (Govoni et al.
2008; Popper and Hastings 2009). This is primarily a result of the
anatomical design of teleost fish having a gas-filled swim bladder
that is easily ruptured upon exposure to large pressure differen-
tials (Simenstad 1974; Yelvertton et al. 1975; Baxter et al. 1982;
Planes et al. 2005; Popper and Hastings 2009). Marine mammals,
given the presence of large gas-filled lungs, would also be ex-
pected to suffer high rates of mortality under a nuclear blast
resulting from severe lung damage in a manner similar to that of
fish swim bladders (Baxter et al. 1982; Goertner 1982). Marine
mammals in proximity to a warhead detonation experienced se-
vere lung damage and elevated mortality (Kirkwood and Fuller
1972; Rausch 1973). This effect also extended to diving birds
(Kirkwood and Fuller 1972; Rausch 1973). Interestingly, inverte-
brates are not seemingly affected by pressure waves in aquatic
systems (Isakason 1974; Baxter et al. 1982) and are unlikely to be
impacted, in this manner, under a nuclear blast. However, not all
invertebrates are equal, in respect to kinetic energy disturbances,
in that warhead detonation over coral reefs leads to widespread
coral death presumably through mechanical disruption from the
blast (Richards et al. 2008). While most of the coral community
appears able to recover, highly turbid conditions generated dur-
ing blasts have led to the extinction of calm water specialist coral
species on some reefs (Richards et al. 2008).

Both thermal and kinetic impacts of a nuclear detonation occur
over an acute timeframe and would likely result in a great reduc-
tion in the abundances and diversity of local flora and fauna.
However, over a more chronic duration, these impacts are likely
to be minimal as populations and diversity could recover through
dispersal to the area as well as contributions from surviving or-
ganisms. Indeed, this has been observed in a number of plant
(Palumbo 1962; Shields and Wells 1962; Shields et al. 1963; Beatley
1966; Fosberg 1985; Hunter 1991, 1992) and animal (Jorgensen and
Hayward 1965; O’Farrell 1984; Hunter 1992; Wills 2001; Kolesnikova
et al. 2005; Pinca et al. 2005; Planes et al. 2005; Richards et al. 2008;
Houk and Musburger 2013) communities from a diversity of test-
ing site environments. In some instances, the exclusion of human
activity from test sites has been quite beneficial to the recovery

and prosperity of organisms found in these areas, as in the case of
the atolls of the Marshall Islands (see Fig. 2; Davis 2007; Richards
et al. 2008; Houk and Musburger 2013).

Radiation impacts
Nuclear weapons emit a portion of their energy as ionizing,

radioactive emissions either as electromagnetic radiation (e.g.,
gamma and X-rays) or through radionuclides of various elements
(Aarkrog 1988; Robison and Noshkin 1999; Whicker and Pinder
2002), which are accumulated primarily through direct exposure
or through consumption of producers, respectively (Donaldson
et al. 1997; Entry and Watrud 1998; Whicker and Pinder 2002).
However, the effects of radioactivity on life are variable. Over an
acute timescale, provided sufficient activity (<2 Gy), radiation ex-
posure in humans can result in the development of radiation
poisoning that can manifest itself as (depending on the dose) hem-
orrhaging, blood cell and tissue destruction, and mortality in
doses in excess of 6 Gy (Prosser et al. 1947; Ohkita 1975; Guskova
et al. 2001; Mettler 2001) thus accounting for the elevated mortal-
ity rate in the bombings of Japan (Ohkita 1975). Similar effects
have been observed to occur in terrestrial mammals in both lab-
oratory experiments (Eldred and Trowbridge 1954; Brown et al.
1961; Zallinger and Tempel 1998) and bomb-exposed animals
(Tullis et al. 1955; McDonnel et al. 1961; Zallinger and Tempel 1998)
resulting in considerable mortality. As previously mentioned, ra-
diation and thermal energy exposure can work synergistically to

Fig. 2. The Marshall Islands Reef Recovery. During the decades
following WWII, the testing of nuclear weapons by the United States
military was well underway. The Marshall Islands were home to a
great number of nuclear detonations comprising a total of 66 test
blasts that left the surrounding environment devastated. However,
because of the area having large degrees of residual radioactivity,
human exclusion from many of the test site islands has generated a
marine protected area of sorts alleviating anthropogenic stress from
the region (Donaldson et al. 1997; Berger et al. 2008). As such, the
system has been allowed to recover in isolation for the greater part
of the last half century and has produced some interesting results.
With the exception of a few specialized species, scleractinian coral
diversity has rebounded on a number of reefs affected by nuclear
testing (Richards et al. 2008). As well, the size-frequency
distribution, an indicator of biomass, of many fish taxonomic
groups within former blast sites have been observed to be much
greater than that of the surrounding waters unaffected by nuclear
testing (Houk and Musburger 2013). While nuclear testing is
devastating on an acute timescale, it may prove to be beneficial to
the local ecosystem over a more chronic duration through human
exclusion. Photo Credit: United States Department of Defense, 1946.
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induce higher mortality rates (Brooks et al. 1952; Baxter et al. 1953;
Alpen and Sheline 1954; Valeriote and Baker 1964; Ledney et al.
1992). In plants, acute radiation exposure results in tissue degra-
dation and death under sufficiently high radioactivity levels
(Sparrow and Woodwell 1962; Shields et al. 1963; Rhoads and Platt
1971; Rhoads et al. 1972). However, the extent of tissue damage in
plants varies with development state (Sparrow and Woodwell
1962; Shields et al. 1963; Rhoads and Platt 1971; Rhoads and
Ragsdale 1971). Together, these effects could represent a substan-
tial source of mortality following a weapon detonation on ecosys-
tems on an acute time scale.

Radioactive exposure may also lend itself to more chronic im-
pacts on animal populations. In humans exposed to nuclear
weapon emissions, there has been an observed elevation in the
rates (Bizzozero et al. 1966; Wanebo et al. 1968; Prentice et al. 1982;
Darby et al. 1988) and risk level (Pierce and Preston 2000) of devel-
oping a chronic disease, such as neoplasia. Assuming this effect
occurred in a similar manner as in humans (Mole 1958), it would
be expected to significantly reduce life expectancies and survival
in wild animals. Chronic radiation effects may also result in the
development of chromosomal and (or) genetic aberrations (Hatch
et al. 1968; Bickham et al. 1988; Lamb et al. 1991; Sugg et al. 1995) in
addition to altered genetic structure of populations (Theodorakis
and Shugart 1997, 1998; Theodorakis et al. 1998) in wild animals
under radiation exposure from weapons test and development
sites. While extremely limited data exist, reduced reproductive
capacities in wild animals have been noted at detonation sites
(Turner et al. 1971; Medica et al. 1973; Turner 1975; Turner and
Medica 1977) consistent with the expected effects of radiation’s
impacts on the reproductive system (reviewed in Real et al. 2004).
However, this effect seems to be variable as a few species at weap-
ons test sites seem to have no genetic or macroscopic level im-
pacts (Hatch et al. 1970; Campbell et al. 1975; Theodorakis et al.
2001) with the sensitivity of reproductive systems to radiation
being non-ubiquitous among species (Barnthouse 1995; Mudie
et al. 2007). It is believed that in some cases the “null” effect of
radiation may be the product of immigration of non-affected in-
dividuals into the irradiated area (Theodorakis et al. 2001). The
overall effects of these long-term impacts are relatively uncertain
and could have variable consequences on a given population de-
pending on the strength and type of the effect. However, it should
be noted that because of the high degree of hazard (i.e., radiation)
and security precautions associated with nuclear weapons test and
production sites of these areas are devoid of human activity and thus
serve as important refuge sites for a variety of plant and animal
species. Indeed, these areas have been demonstrated to have quite
diverse and thriving ecosystems that are often in a better ecological
state when compared to similar areas where routine human activity
is present (see Fig. 2; Gray and Rickard 1989; Whicker et al. 2004;
Davis 2007; Richards et al. 2008; Houk and Musburger 2013). Thus,
sites devoted to nuclear arms production and testing can still be
considered a positive feature in maintaining biodiversity despite the
potential for chronic health impacts in resident organisms.

Military infrastructure and bases

Military bases
The impacts of war on ecosystems are not limited to armed

conflict events, but can be connected to, and influenced by, the
development and operational use of military training bases. A
military training base is a general designation applied to military
facilities that house military equipment and personnel, and facil-
itate training exercises and tactical operations (Kazmarek et al.
2005; Zentelis and Lindenmayer 2014). Military training bases can
range from small outpost sites to large military “cities” (Brady
1992). The variation in size and operational use of military train-
ing bases leads to a broad spectrum of anthropogenic impacts,

both in type and severity, on the local ecosystem (Owens 1990;
Rideout and Walsh 1990; Goldsmith 2010). These impacts can be
broken down into two broad categories: (i) the development of
military training bases, which includes the establishment and
construction of the facility and site; and (ii) operations of the
military training base, which include the functional operation of
the infrastructure itself and the corresponding military activities
designated for the specific site. In this section, we will focus our
discussion on the effects of development and operations of mili-
tary training bases (including air, naval, and terrestrial) on ecosys-
tem structure and function.

Environmental impacts of military base development
The environmental impacts associated with the construction of

infrastructure projects are site specific (Augenbroe and Pearce
1998; Tang et al. 2005; Gontier 2007; Mortberg et al. 2007). For
example, the development of naval ports and shipyards are more
likely to have a greater contamination risk of adjacent water bod-
ies than the development of a terrestrial airstrip, which can be
situated miles from water sources and surrounded by a natural
vegetation buffer zone (Tull 2006; Mortberg et al. 2007). Even the
construction of similar base infrastructure, situated in different
locales, are subject to different environmental impacts based on
the landscape and ecosystem they are built within and thus im-
pacts are highly site specific (Kazmarek et al. 2005; Gontier 2007;
Mortberg et al. 2007). Although construction projects are associ-
ated with site-specific environmental impacts, the focus of this
section is not to dissect these site-specific characteristics, but to
address some overarching impacts on ecosystems that are ger-
mane to most military base development projects.

There are several generic impacts associated with the construc-
tion of most complex infrastructure projects. Some of these im-
pacts include habitat degradation, soil erosion, and chemical
contamination (Westing 1980; Tang et al. 2005; Xun et al. 2013).
Initial site development requires the clearing of vegetation and
trees, followed by intensive soil excavation and compaction. This
process alters the natural landscape by the removal of existing
vegetation and the prevention of future vegetation growth (Kopel
et al. 2015). The removal of vegetation coupled with soil excava-
tion increases the potential for soil erosion, and reduces water
infiltration rates, altering the landscape ecology by changing soil
structure and chemistry, and increasing water runoff rates (Tang
et al. 2005). Chemical contamination of local water sources can
also occur from increased water runoff carrying sediments and
chemicals associated with waste dumping (e.g., hazardous build-
ing materials, paints, solvents, etc.), and accidental chemical
spills (e.g., fuel and oil) during the development stage (Brady 1992;
Kazmarek et al. 2005; Villoria Saez et al. 2014; Kopel et al. 2015).
These pollutants can alter community structure within the vicin-
ity of the infrastructure (Meyer-Reil and Köster 2000; Beasley and
Kneale 2002; Edwards 2002; Osuji and Nwoye 2007).

However, the establishment of military training bases can also
have beneficial impacts on biodiversity at the local, regional, and
global scale. For effective combat training in real-world scenarios,
military training bases need to be large and encompass a wide
variety of environments and climates (Stephenson et al. 1996;
Doxford and Judd 2002; Smith et al. 2002). Depending on the
specific nature and use of military training areas, public and com-
mercial access are usually restricted because of safety and security
issues. This creates great tracts of land largely devoid of human
contact and commercial development, preserving these wilder-
ness areas, which have been lost to human development else-
where (Rideout and Walsh 1990; Doxford and Judd 2002; Zentelis
and Lindenmayer 2014). Military training areas have been increas-
ingly recognized as areas of high biodiversity, and in particular,
for harbouring endangered and at-risk species (Fig. 3). It has been
estimated that, in the United States alone, over 200 federally listed
endangered species inhabit military training areas; which is more
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endangered species per area within military installations com-
pared to other federally managed lands in the United States
(Doxford and Judd 2002; Pekins 2006; Zentelis and Lindenmayer
2014). Aside from these training lands supporting IUCN red-listed
species, they also support highly diverse landscapes. The U.S.
Army holds two of their largest European training bases in
Bavaria, Grafenwohr and Hohenfels, which are situated on 22 855
and 16 175 ha of land, comprising 0.34% and 0.24% of the land area
in Bavaria, respectively (Warren et al. 2007). Despite the relatively
small size of these training areas and their exposure to intensive
military training exercises, they contain approximately 27% of the
total plant species richness found in Bavaria (Schonfelder et al.
1990). Similarly, the military training areas in the Netherlands
comprise approximately 1% of the total available land area, but
have been reported to support approximately 53% of all vascular
plant species, and 61% of all bird species found within this nation
(Gazenbeek 2005; Warren et al. 2007). It is also important to rec-
ognize the significance of military training areas to provide key
habitat for wide-ranging megafauna species such as bears, ungu-
lates, coyotes, and wolves that require large tracts of land for
foraging and hunting (Gese et al. 1989; Stephenson et al. 1996;
Telesco and Van Manen 2006). Globally, military training areas
have been estimated to encompass approximately 6% of the
Earth’s surface spanning a multitude of environments and ecosys-

tems. This extended global coverage makes military training
lands important areas for biodiversity conservation and preserva-
tion (Zentelis and Lindenmayer 2014), notwithstanding the fact
that the type of activities that occur on these sites could rapidly
alter biodiversity. Recognizing the importance of military facili-
ties in conserving biodiversity, the US has begun rehabilitating
former training sites to serve as nature preserves (Coates 2014;
Havlick 2014). As of 2014, 15 of these areas have been developed in
an effort to promote and conserve the biodiversity of these re-
gions (Havlick 2014). In this way, military facilities are of great
benefit to sustaining and conserving biodiversity.

Operations of a military training base
The environmental impacts associated with the upkeep of mil-

itary infrastructure and equipment have been a growing concern.
Many military bases have been targeted for environmental assess-
ment and site remediation (Kazmarek et al. 2005; Goldsmith
2010). Military infrastructure and equipment is subject to rigorous
use, often under extreme conditions, creating the need for con-
stant maintenance and upkeep. This maintenance leads to the
generation of large quantities of hazardous wastes including
heavy metals, solvents, corrosives, paints, fuel, and oils (Brady
1992; Kazmarek et al. 2005). When these hazardous wastes are
improperly stored or disposed of, it can cause serious water con-
tamination and habitat degradation issues, which can directly
affect biodiversity (Edwards 2002; Osuji and Nwoye 2007). There
have even been documented reports of military sites that dump
hazardous wastes into open holding ponds, evaporation ponds,
mines, and wells (Brady 1992; see the section entitled “Military
contamination” for more detail). The Otis Air Base in the United
States has received significant attention over the past few decades
because of the extensive contamination of groundwater caused
from fuel spills and aircraft maintenance (Kazmarek et al. 2005;
Goldsmith 2010). Similarly, the Norton Air Force Base in the US is
under scrutiny for its poor approach of storing hazardous wastes
in above- and below-ground storage drums, which have begun to
leak, causing environmental contamination issues (Brady 1992).
However, poor environmental planning at military bases appears
to be a common theme. The US Environmental Protection Agency
has listed over 53 military bases on the National Priorities List of
sites that pose direct hazards to human health and the environ-
ment (Brady 1992; Kazmarek et al. 2005; Goldsmith 2010). Unfor-
tunately, the majority of the literature on the environmental
impacts associated with the upkeep of military infrastructure and
equipment is focused mainly on the USA with, comparatively,
little known about such issues in other jurisdictions.

Training activities
Live-fire training has similar impacts on the environment as

those discussed in the active armed conflict section, with respect
to local landscape alteration and vegetation destruction, chemical
and heavy metal contamination, and the incidental killing or
maiming of wildlife. However, there are also differences in envi-
ronmental impacts of live-fire training that occur in training fa-
cilities as opposed to actual armed conflict events (Owens 1990;
Goldsmith 2010). Training facilities are faced with the challenge of
repeated use of live-fire training shooting ranges, which leads to
consistent site-specific degradation and contamination. The most
common and extensive life-fire training occurs on small arms
ranges (Goldsmith 2010), which are associated with extensive
heavy metal contamination, with lead being the most notable
contaminant (Cao et al. 2003a, 2003b; Goldsmith 2010). The weath-
ering and oxidation of lead bullets leads to the contamination of
soils, groundwater, and surface water sources. It has been noted
that high lead concentration in soils can reduce vegetation
growth and species richness (Cao et al. 2003a, 2003b; Hardison
et al. 2004; Goldsmith 2010).

Fig. 3. Military training bases. Military training bases have long
been known as areas of high biodiversity and, as of late, these vast
military training landscapes are becoming increasingly recognized
as important refuge areas for IUCN red-listed species (Zentelis and
Lindenmayer 2014). A case study examination conducted by Stein
et al. (2008) evaluated the status of US federally listed endangered
species across the 264 million ha of government owned and
managed lands in the United States. This case study identified a
significantly greater density and diversity of endangered and
imperiled species inhabiting military training lands, compared to all
other federally managed lands across the country. In addition to this
finding, the greatest diversity of endangered and imperiled species
were found inhabiting four training bases in the Hawaiian Islands,
led by Oahu’s Schofield Barracks Military Reservation supporting
approximately 47 federally endangered species and 53 imperiled
species (Stein et al. 2008). Overall, more than 34% of the US federally
listed endangered species are found within Hawaiian military
training bases, which makes these areas particularly vulnerable to
military training exercises; stressing the importance for
conservative land-use practices and management techniques to
protect these ecologically valuable landscapes (Zentelis and
Lindenmayer, 2014; Stein et al. 2008). Photo Credit: Polihale
Wikimedia Commons, 2004.
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Other forms of live-fire training involve the use of advanced
high-power weaponry including, but not limited to, artillery
and mortars, multiple-launch rocket systems, hand grenades, and
anti-tank weapons (Rideout and Walsh 1990; Doxford and Judd
2002; Pekins 2006). These high-powered weapons require special
training areas to safely contain the blast radius and noise from
civilian areas. This type of weapon training can create significant
habitat damage by cratering the terrain and altering the species
composition within the area. Specifically, these highly disturbed
landscapes can suffer from degraded soil structure and quality,
and are reduced to disturbance-tolerant flora and fauna species
(Fehmi et al. 2001; Smith et al. 2002; Pekins 2006; Warren et al.
2007). Chemical contamination is also prevalent in these training
areas in the form of heavy metals, radiation (see the section enti-
tled “Nuclear warfare”), and unused propellants, all of which can
directly impact community composition (Doxford and Judd 2002;
Edwards 2002; Garten et al. 2003). However, for most of these
high-powered weapons, “dummy” rounds (rounds containing less
explosives and (or) propellants) have been developed to lessen the
environmental impacts (Doxford and Judd 2002; Goldsmith 2010).

Armoured vehicles denote all tracked and wheeled military ve-
hicles used for combat and transport (Johnson 1982) and are es-
sential in most conflict situations because of their long-range
firing capacity, protective armour, and all-terrain maneuverabil-
ity (Doxford and Judd 2002). These vehicles are generally outfitted
with heavy armour and weaponry, making them extremely
heavy, with some vehicles weighing upwards of 60 metric tons.
Because of the heavy weight of these vehicles, terrain compaction
is a significant issue that can have detrimental impacts on the soil
and vegetation communities (Lathrop 1983; Foster et al. 2006;
Dickson et al. 2008). Armoured manoeuvre training is seen as
being particularly damaging and persistent (Doxford and Judd
2002), especially in fragile environments, such as the Mojave
Desert (Johnson 1982). The conditions for when armoured manoeuvre
training occurs can also influence the severity of the impact on
the landscape; operations during wet spring conditions can cause
enlarged track ruts and higher rates of vegetation removal
(Johnson 1982; Watts 1998; Dickson et al. 2008). In frequently used
landscapes, tracked vehicles have been noted to reduce total plant
and woody vegetation cover, and increase soil erosion rates
(Johnson 1982; Wilson 1988). Armoured manoeuvre training can
also lead to changes in soil structure and chemistry with fre-
quently used sites having lower carbon to nitrogen ratios, as well
as reduced soil carbon content (Garten et al. 2003). Certain train-
ing exercises in wooded areas can be particularly degrading on
vegetation communities, as tracked vehicles can often be used as
bulldozers to clear paths and sight lines (Rideout and Walsh 1990).
Armoured vehicle operations have also been linked to inci-
dentally hitting and killing wildlife during training exercises
(Zakrajsek and Bissonette 2005; Telesco and Van Manen 2006).

Aside from terrestrial armoured vehicle training, military
training areas are intensively used for fighter jet and helicopter
training exercises (Black et al. 1984; Harrington and Veitch 1991;
Conomy et al. 1998). The largest environmental impact associated
with aviation exercises is hitting and killing birds during flight
manoeuvres (Richardson and West 2000; Civil Aviation Authority
2001; Zakrajsek and Bissonette 2005). Bird–aircraft collisions are
particularly serious as they can often cause a loss of human life
and damage to or destruction of aircraft. From 1985–1998, the United
States Air Force (USAF) recorded an average of 2700 aviation-
related bird strikes each year, accumulating in excess of
35 000 bird–aircraft collisions over the 13 year period; an average
cost of $35 million US dollars annually in aircraft repair and re-
placement to the USAF (Zakrajsek and Bissonette 2005). The most
vulnerable bird species to aircraft collisions noted by the USAF
included raptors, waterfowl, and passerines (Lovell and Dolbeer
1999; Zakrajsek and Bissonette 2005). For all bird–aircraft colli-
sions, it has been estimated that roughly 69% take place below

305 m of altitude, which makes birds especially vulnerable to
low-flight training exercises (Lovell and Dolbeer 1999; Civil
Aviation Authority 2001; Zakrajsek and Bissonette 2005; Dukiya
and Gahlot 2013). Because of the high risk of bird–aircraft colli-
sions, special measures have been taken at airstrips to reduce bird
strike hazards. These precautionary measures include reducing
attractive installations near airfields (e.g., landfills or new water
environments), altering flight training routes, and using falconry
to deter birds from the airfield vicinity (Cleary and Dolbeer 1999;
Lovell and Dolbeer 1999; Civil Aviation Authority 2001).

Naval military training exercises can have negative impacts on
marine life. Unlike the issues associated with over-pressure inju-
ries from explosive detonations and live-fire operations (see the
sections entitled “Nuclear warfare”, and “Active armed conflict”
for further explanation), the main impacts of naval training exer-
cises are caused from the generation of excessive noise pollution
(Dolman et al. 2009). Noise pollution can be generated from a
variety of sources including, but not limited to, mechanical and
propeller noise, gun discharges, explosives detonations, and the
use of sonar technologies (Parsons et al. 2000; Scott 2007; Dolman
et al. 2009). The latter source has received a lot of research atten-
tion and has been noted to negatively impact large marine mam-
mals in various ways (reviewed in Parsons et al. 2008). Active sonar
systems range from low-frequency levels, 1 Hz – 1 kHz, to mid-
frequency levels, 1–10 kHz (Dolman et al. 2009). When opera-
tional, both low- and mid-frequency systems emit high-intensity
sound into the ocean and listen for echoes that provide a sonic
image of the ocean environment (Dolman et al. 2009). This type of
imaging technology is highly useful for military operations, but it
can impact the behaviour and survival of large marine mammals
(Balcomb and Claridge 2001; Madsen 2005). Marine mammals rely
on echolocation for most biological aspects of their lives, and the
use of sonar technologies has been linked to disrupting their sig-
naling abilities. This can interfere with foraging, reproduction,
communication, and their predator detection abilities (Rendell
and Gordon 1999; Miller et al. 2000; Dolman et al. 2009). The use of
sonar technology has also been linked to mass stranding mortal-
ity events in cetacean species, most notably in beaked whales
(reviewed in Parsons et al. 2008) however, the causal mechanism
of mortality from sonar is still unknown (Dolman et al. 2009).

Dry troop training refers to dismounted infantry exercises and
is widely practiced by militaries around the world. This type of
training can have a wide range of environmental impacts deter-
mined by the size of the infantry and the nature of the exercise
itself (Fehmi et al. 2001; Garten et al. 2003). Dismounted infantry
can cause vegetation destruction, alter soil structuring, and in-
crease soil erosion from repetitive use of designated training areas
(Whitecotton et al. 2000; Warren et al. 2007). Realistic training
requires infantry to dig defensive positions for combat, and tent
ditches for sleep and rest, further increasing soil erosion rates
(Trumbull et al. 1994; Fehmi et al. 2001). Dismounted infantry
exercises can also negatively affect wildlife distribution in active
training areas where infantry presence can act to deter large
mammal species including black bears (Ursus americanus), mule
deer (Odocoileus hemionus), and coyotes (Canis latrans) (Stephenson
et al. 1996; Telesco and Van Manen 2006). Although wildlife avoid-
ance of such activities reduces likelihood of direct mortality, the
disturbance and displacement can have sublethal consequences.

Military contamination
Military conflict is associated with the testing, production,

transportation, and deployment of weapons. At each of these
stages, there exists the potential for environmental contamina-
tion (Dudley et al 2002; Machlis and Hanson 2008). In a warfare
context, chemicals can be manufactured for use in weapons to
cause direct human mortality and (or) to alter landscapes to gain
strategic tactical advantages that can expose the surrounding eco-
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systems to potentially toxic compounds (Stellman et al. 2003;
Ganesan et al. 2010; Westing 2013a). Military activities also have
the potential to indirectly contaminate the environment through
various by-products and spills associated with warfare, as in the
case of fuels and compounds used in maintaining vehicle opera-
tion (Brady 1992; Dudley et al 2002; Machlis and Hanson 2008).
Chemicals (in the broader sense), such as hydrocarbons and met-
als, can have immediate destructive and toxic effects that may
also persist for long periods of time in soil, water, and the tissues
of animals, all posing legacy issues. This section will aim to review
how military actions contribute to harmful chemical contamina-
tion at the different stages of warfare and their subsequent effect
on ecosystems with a particular focus on wildlife.

Pre-war contamination
Military chemical production and testing facilities require mas-

sive attention due to hazardous waste accidents, spills, and dump-
ing as the production of chemicals can be highly volatile. These
chemicals are required for the day-to-day operation of the mili-
tary, as well as in weapons development. In the United States,
military training facilities and bases are responsible for localized
contamination from the dumping of chemicals directly into the
environment causing regional waterbodies, including drinking
water sources, in the area to become toxic (Brady 1992; Miller et al.
1998). Contaminated reservoirs on US army bases have caused the
deaths of thousands of waterfowl from drinking water on site
(Lanier-Graham 1993). Similar pollution conditions are present in
Russia where dioxin pesticides have been disposed of improperly
resulting in soil and water contamination, thereby affecting
the surrounding vegetation negatively (Sidel 2000). Additionally,
weapons testing, such as those done in Puerto Rico, Bikini Atoll,
and the United States, can result in significant soil, groundwater,
and marine contamination of chemicals and metals, which may
include mercury, iron, and plutonium. This could have deleteri-
ous consequences to local vegetation and marine organisms in
these regions resulting in food chain disturbances (Donaldson
et al. 1997; Ortiz-Roque and Lopez-Riviera 2004; Porter 2005;
Machlis and Hanson 2008). All of these pre-war activities can lead
to soil, water, and vegetation contamination and have negative
impacts on the wildlife that interacts with these contaminated
areas.

Active combat contamination
Chemical warfare agents are weapons employed by the military

to cause direct human mortality (Ganesan et al. 2010). Many of the
products developed as chemical warfare agents have highly toxic
and damaging properties intended for human targets, but may
have negative impacts on other species as well. These chemicals
can fall under five main categories of weapon effects: blistering
agents that cause burning and blistering, nerve agents that target
neuron impulses, choking agents that affect the respiratory tract,
blood agents that interrupt oxygen absorption, and riot agents
that cause immediate, short-term incapacitation (Ganesan et al
2010). Most chemical agents that can harm humans are toxic to
other vertebrates and can injure or kill some aquatic organisms at
high concentrations. Often, these chemicals persist in plant tissue
resulting in developmental issues and can be potentially toxic to
herbivores upon consumption (Coppock 2009; Ganesan et al.
2010). Bullets and related debris (e.g., shell casings) are often com-
posed of materials that can be harmful to the ecosystem they are
fired in. Lead, one of the more commonly used metals in bullets
and casings, has toxic properties that are highly detrimental to a
number of organ systems in vertebrates including the nervous
system (Burger and Gochfeld 2000; Papanikolaou et al. 2005). Left-
over shells or fragments after combat can result in accidental
ingestion by many bird species, who consume small particles in-
advertently, or as grit to aid in their digestion (Fisher et al. 2006).
Depleted uranium shells or casings are also used by some factions

and can cause localized soil and sediment contamination
(Haavisto et al. 2001; Papastefanou 2002; Briner 2010). Uranium
toxicity is of concern to exposed terrestrial and freshwater
plants, freshwater invertebrates and vertebrates, and mammals
(Sheppard et al. 2005). In mammals, uranium toxicity can be
highly detrimental to development, brain chemistry, behaviour,
and kidney function (Briner 2010).

Not all chemical warfare agents used are directly targeted at
humans. Herbicides have also been used, during combat opera-
tions, to alter landscapes and reduce foliage to enhance visibility
(Westing 1980; Stellman et al. 2003). Agent Orange, used during
the Vietnam War (1961–1971), was one of several types of dioxin-
based herbicides sprayed by United States forces to destroy crops
and obstructing vegetation (Orians and Pfeiffer 1970; Westing
1980, 1984; Stellman et al. 2003). During this war, the landscapes
in Vietnam, Cambodia, and Laos were exposed to over 77 million L
of herbicides covering some 2600 million hectares of land
(Nguyen 2009). Over the past three to four decades, various studies
have attempted to evaluate environmental damage caused by
these events and to assess their long term effects. In doing so, it
was apparent that the defoliation of the landscape resulted in
immediate tree and shrub mortality in addition to the local extir-
pation of many large mammals such as ungulates, carnivores, and
elephants (Westing 1980, 1985; Orians and Pfeiffer 1970).

The application of large quantities of concentrated herbicides
can alter the local community structure as well. In Vietnam, for-
ested and mangrove-dominated habitats have become scrubby
grasslands, greatly changing the community assemblages (Dinh
1984; Westing 1989; Nguyen 2009). Surveys comparing un-
impacted habitat with that inflicted with herbicide found notably
less species diversity (Westing 1989). However, one of the major
limiting factors in assessing and quantifying ecosystem changes is
the lack of data in the region’s baseline ecological conditions (e.g.,
before war). In attempting to evaluate how biodiversity was af-
fected, researchers have made broad assumptions based off of
limited observations and local indigenous knowledge. Orians and
Pfeiffer (1970) used these methods and suggested that regions of
Vietnam experienced a decline in bird species richness post con-
flict, specifically in those consuming insects and fruit.

An additional long-term problem associated with herbicide ex-
posure is bioaccumulation and the persistence of these chemicals
in the environment. After the Vietnam War, high concentrations
of dioxins were found in the ovaries and livers of turtles (Schecter
et al. 1989). This effect was also demonstrated in tissues isolated
from local pigs and chickens, likely resulting from a combination
of residual Agent Orange and other herbicidal exposure over the
past few decades (Schecter et al. 2006). More recently, the dioxin
contamination still present in the soils near the Bien Hoa Airbase
(a “hotspot”) was discovered to fall within a high risk category in
terms of Canadian Environmental Quality Guidelines (Mai et al.
2007). The probable effect level was 46 times higher than the
standard value for soil, even 30 years after the initial chemical
deployment illustrating a capacity of these chemicals to have
chronic impacts on the ecosystem.

Military activity is a highly mobile system occurring at multiple
spatial scales (e.g., nationally and internationally) that requires
vast fuel and hydrocarbon resources that may increase the possi-
bility of oil and gas contamination. The Gulf War oil spill of 1991
resulted in over 10 million m3 of oil and heavy metals intention-
ally dumped into the ocean (Fig. 4; Westing 2003) resulting in
elevated bird mortalities and damage to important avian, mam-
malian, and reptilian migratory feeding habitats (Evans et al.
1993; Westing 2013b). Studies on benthic invertebrates, such as
snails and clams immediately after the spill were found to have
significantly higher levels of Zn, Cu, and Ni in their tissues
(Bu-Olayan and Subrahmanyam 1997). A decade after the spill,
studies on the tissues of crabs showed high levels of Zn and Cu,
along with detectable levels of other heavy metals, demonstrat-
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ing the persistence of these compounds in the ecosystem
(Al-Mohanna and Subrahmanyam 2001).

Post-war environmental impacts associated with disposal
The long-term effects of chemicals results from both their po-

tential persistence and the poor disposal programs of nations
with stockpiled weapons. After WWII, chemical warfare agents,
such as mustard gases and arsenic poisons, were packaged in
barrels and directly disposed of in the ocean (Chepesuik 1997;
Smith 2011); a common practice across the globe at the time.
Disposal of these vessels in the ocean runs the risk of the metal-
based containers corroding and leaching the chemical contents of
the vessel into the ocean; an effect that could lead to a localized
exposure to the chemical as well as more widespread impacts via
trophic movements (Long 2009). Sanderson et al. (2010) modelled
propagation of chemical warfare agents in the Baltic Sea through
the food chain in cod (Gadus morhua), herring (Clupea harengus), and
sprat (Sprattus sprattus). Adamsite, a component found in chemical
weapons, was found to be consistently present in the tissues of
Atlantic cod demonstrating bioamplification and accumulation of
these substances in higher trophic levels. However, that study did
not take into account the number of buried munitions and con-
tainers on the seafloor that could reintroduce high levels of chem-
icals to the surrounding area as the containers holding them
degrade and corrode. Regardless, this represents a pathway by
which contaminants may be spread throughout the various com-
ponents of the ecosystem. Similarly, wreckages from naval ships
pose certain risks for the marine ecosystem in which they are
found. Oil contamination in the Atlantic Ocean due to WWII ship-

wrecks alone is estimated at over 15 million tonnes (Monfils 2005).
Much of the oil still resides within these wrecks and will pose
future problems as the vessels begin to degrade (Westing 1980;
Monfils 2005). In much the same manner, during the conflict in
Kosovo, shelling of civilian infrastructure, namely, manufactur-
ing plants, resulted in a significant but unintentional emission of
industrial contaminants into the environment (Haavisto et al.
1999). Attention and care needs to be present during all stages of
warfare, as contamination events are common throughout train-
ing and active war with their effects persisting well after the
conflict has been resolved. Stringent policies are recognized as
necessary to hold militaries accountable for cleanup before train-
ing facilities can be returned to the public. Indeed, many Western
nations have adopted policies that require strict environmental
management and concern on home soil (Durant 2007; Ramos et al.
2007). However, it should be noted that during war outside of
their respective countries, these policies are not necessarily fol-
lowed.

The up-shot: technology
One undeniable benefit that environmental and conservation

science has reaped from military research and development is the
ability to utilize and refine resulting technological advances.
Military research and development teams share a common interest
with ecological and environmental researchers in needing to col-
lect meaningful information more efficiently. An exhaustive list
of military developments used in everyday applications would
include everything from computing systems and the internet to
nylon material that makes field equipment durable and light-
weight (Alic et al. 1992). However, there are a few notable tech-
nologies that have been crucial to shaping modern ecological
research. Satellites emerged over the course of the Cold-War ten-
sions between the United States and the Soviet Union (Alic et al.
1992; Slotten 2002) and were followed closely by the creation of
global positioning systems (GPS), which allows for high precision
and accurate navigation (Parkinson 1996). Today, satellite imagery
has paved the way for the development of GIS spatial analyses, the
backbone of evaluating large-scale spatial patterns and trends
(Goodchild 2000). GIS permits investigators to relate spatially
organized data to other variables, such as weather, animal
abundance, or natural resource quantities. Remote sensing tech-
nologies have military roots as well, and involve either passive
or active gathering of energy to help locate and identify objects
(Turner et al. 2003). Electromagnetic energy, detected by satel-
lites, is commonly used to accomplish tasks, such as assessing
wildlife spatial distribution and calculating species diversity
(Turner et al. 2003). Similarly, RADAR technology actively uses
radio waves to locate objects and obstructions with system ad-
vances being developed between the British and American forces
during the 1940s (Science News Letter 1945). Currently, RADAR is
one of the best methods for monitoring migratory bird species
(Gauthreaux and Belsier 2003). Remote operated vehicles (ROVs)
including aerial drones, marine vehicles, and terrestrial vehicles
were originally developed by military organizations for training
operations, bomb recovery, and hostile terrain observations
(Springer 2013). Now, aerial ROVs are used in conservation to film
and survey overhead parks, to monitor wildlife, and to look for
illegal activity, such as poaching and unauthorized logging
(Sutherland et al. 2013; Schiffman 2014). Marine ROVs have been
employed to monitor marine life as well as being used as a poten-
tial tool in gaining valuable insight into the system in question
(Cohen 1995; Jones 2009; Moura et al. 2013; Van Dover et al. 2014).
Integration of autonomous technology has huge advantages in
ecological studies that are often limited by man-power and over-
whelmed by spatial scales; ROVs can efficiently extend work
periods and area covered without human intervention. Lastly,
advances in telemetry technology by the military have greatly

Fig. 4. Oil contamination in Arabian Gulf. After the Gulf War oil
spill in 1991, coral reef species demonstrated substantial resilience
to seawater temperature decreases and toxic hydrocarbon fallout
(Downing and Roberts 1993; Vogt 1995). The Arabian Gulf is home to
several diverse coral reef communities both inshore and offshore.
From 1984 until 1994, coral species cover was estimated at six
different locations off the coasts of Kuwait and Saudia Arabia using
video recordings and diving teams. The combined results of two
independent studies found that (Downing and Roberts 1993; Vogt
1995), after an estimated 6–8 million barrels of oil were added to the
Arabian Gulf, there was no observable declines in coral reef health.
Instead, from 1992 to 1994, Vogt (1995) observed significantly
increasing trends in coral cover. Today, coral reef health is subject
to climate change and increasing marine ecosystem pollution,
which makes modern coral surveys unable to tease out any direct
evidence of long-term effects of the Gulf War on coral communities
(Downing and Roberts 1993; Al-Cibahy et al. 2012). Photo Credit:
Michael J. Lawrence, 2012.
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improved conservation research through the miniaturization of
tag components (e.g., batteries, transmitters, etc.) for use in a wide
number of biotelemetry projects, which are useful in animal track-
ing and monitoring (Cooke 2008; Benson 2010). Not only has this
greatly improved the performance, operation, and capabilities of
many of these devices (Cooke 2008), but it has permitted them to
be deployed on a greater number of species and weight classes as
the mass of the tag has often been a limiting factor in determining
the lower size limit of their use (Olival and Higuchi 2006; Bridge
et al. 2011; Cooke et al. 2013).

Research gaps
War is a perilous activity that makes for a poor research envi-

ronment. Conflict zones, restricted access military bases, and
warfare-induced hazardous material zones are often out of reach
of researchers attempting to assess war’s impact on ecological
functioning resulting in a significant knowledge gap for current
and post-conflict field sites (see Table 1). Additionally, because of
the stochastic nature of war (e.g., unknown when and where con-
flict and battles will occur), the battlefield sites may not have
pre-conflict information available, thereby complicating before–
after impact analysis. To the extent possible, conducting research
of military activities in a before–after-control-impact framework
would help to elucidate the environmental consequences and
thus reveal opportunities for mitigating negative effects while
informing the development of optimal strategies for rehabilita-
tion and recovery. There also exists an apparent taxonomic bias in
the literature presented here whereby mammals, fish, and plants
are often the studied components of the impacted system, pre-

sumably as a result of some perceived importance and (or) ease of
access. Given that war is unlikely to be eliminated from society,
the literature should further expand to include other taxonomic
representations and (or) focus on species that are vital to ecologi-
cal functioning (e.g., keystone species, ecosystem engineers, etc.)
in warfare impact assessment. This could allow for the potential
to expand our knowledge base significantly while providing a
potentially more streamlined approach that may be able to infer
how overall ecosystem functioning may be impaired or impacted
under “conflict stress”. It may be of relevance and use to develop
a mesocosm model system whereby the various impacts of war-
fare could be modelled in a controlled environment to aid in
developing an impact model at the whole ecosystem level under a
variety of climatic and environmental scenarios.

Conclusion
Given the information presented here, it is evident that war-

fare’s impacts on ecosystem functioning are indeed overwhelm-
ingly deleterious. The impacts of conflict, nuclear weapons,
training operations, and chemical contaminations all contribute
to both reductions in the populations of local flora and fauna as
well as reducing species diversity in the affected ecosystems. Im-
pacts were demonstrated in a number of environments with a
diversity of taxonomic groups represented with war resulting in
both acute and chronic impacts on the ecosystem. A general over-
view of the impacts induced by the various aspects of war can be
found in Fig. 5. In some instances, warfare is a positive force in
ecosystem functioning whereby unintentional human exclusion
provides refugia for a variety of species and, in some cases, pro-

Table 1. Research gaps related to the effects of warfare on ecosystem structure and function.

Warfare aspect Research gaps

Active armed conflict Areas of conflict are often too hazardous for researchers to enter and gather data.
BACI experimental (before–after control–impact) approach is usually not possible because conflicts occur without

consultation with researchers. Armed conflicts often occur randomly, kept confidential, or in areas that are
difficult to access by researchers from abroad (e.g., drone or aerial assaults).

Conservation priorities can be overlooked during war activities resulting in lack of pre- and post-war efforts to
maintain and monitor ecological integrity and animal populations.

Lack of international capacity to monitor threats from armed conflict on ecosystems, particularly when armed
conflicts occur between several nations and across large spatial scales.

Nuclear warfare Effects of nuclear weapons had high anthropogenic focus (e.g., effects on human health, buildings, etc.), information
on greater impacts on ecological functioning at the population and biodiversity level is relatively scarce;
taxonomic representation relatively low.

Ecosystem diversity is under-represented as testing was generally restricted to a few select habitat types, mostly
desert regions, that are typically low in biodiversity to begin with.

The long-term impacts from radiation exposure from nuclear-weapon-produced fallout and (or) radiation has been
minimally documented in wildlife with little regard for potential fitness impacts; timescale is an issue and
impacts may be mitigated by immigration.

As nuclear weapons use is currently banned under international treaties, new research avenues into ecosystem
structural impacts are potentially limited.

Military training Research focused on military training facilities operated by the US Department of Defense, within North America.
Data extrapolated to address the impacts of military training facilities located abroad; minimal investigation
into whether these assessments address impacts in different geographic environments, under different
training regimes, etc.

Many military training lands and facilities are situated within biodiversity hotspots, which are home to numerous
rare and endemic species; these operational training bases may be located in hostile developing nations where
research access is restricted creating knowledge gaps in these unmanaged and unprotected areas.

Research and environmental assessments pertaining to military training activities is relatively new, gaining
importance within the past 50 years, which has created knowledge gaps in how certain training landscapes
existed and functioned prior to military management.

Military contamination Many surplus marine munitions and barrels after WWII were dumped at undisclosed locations, making it both
difficult to estimate potential contamination and to initiate recovery.

The broad spatial scales at which environment may be exposed to contamination can cross geographic and political
borders, complicating accountability procedures.

Chemicals, hydrocarbons, and metals can have legacy effects in soil, water, and plant and animal tissue. Immediate
effects may not always be obvious.
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vides suitable habitat for endangered or threatened species. Some
of these beneficial impacts are illustrated in Figs. 1–4. Addition-
ally, research into developing military technology has benefitted
ecosystem functioning, indirectly, through providing a wide di-
versity of technological tools and devices that are employed by
many researchers involved with conservation and ecological sci-
ences. However, because of the inherent dangers of warfare and
its seemingly stochastic nature, research and assessments of mil-
itary activities’ impacts on the environment are difficult to con-
duct and as such, the literature is limited in its scope (Table 1).
Moreover, new technologies and militarily unique substances
continue to be developed and deployed such that the threats are
dynamic. With humanity continually engaging in war, the bio-
sphere is likely to continue to suffer. As such, this area of research
should be continually pursued in an attempt to better understand
war’s impact on ecosystem structure and assist with developing
potential mitigation strategies to minimize negative conse-
quences and implementing effective rehabilitation and restora-
tion approaches.

There seems to be little evidence that military strategists con-
sider environmental consequences of military activities when
planning or executing military actions related to conflict. We sub-
mit that there is much scope for proactive efforts to consider the
environment and biodiversity in formulating military plans. Yet,
we also recognize that at the end of the day, battlefield supremacy
and achieving military objectives will likely continue to trump
any and all concerns related to the environment during active
conflict (Westing 1986). The situation is somewhat different for
training facilities or other military installations during the pre-
paratory and readiness phases, at least in developed countries,
where there is legal obligation to address environmental concerns
(e.g., contamination, endangered species; see Durant 2007). Unfor-
tunately, most warfare occurs in developing countries that tend to
have unstable governance structures where there is limited capac-
ity for developing environmental policy or addressing environ-
mental issues that arise following conflict (Westing 1986). The
policy implications of warfare are beyond the scope of this arti-
cle, but nonetheless, we wish to emphasize greater need for global
consideration of the environmental consequences of warfare with
efforts to develop policy instruments and agreements that con-
sider the environment (sensu Gasser 1995; Mrema et al. 2009) in
the same way that attempts are made to consider aspects of hu-
man welfare (e.g., war crimes tribunals, Geneva convention; see
Drumbl 1998). The findings of the synthesis presented here are
clear — the consequences of modern warfare are overwhelmingly
negative for the environment and biodiversity. Indeed, although

not quantified, it is not unreasonable to think that modern war-
fare is one of the major forces associated with environmental
issues and biodiversity declines in some regions.
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