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Abstract
Information on ecological systems often comes from diverse sources with varied levels of complexity, bias, and uncertainty. 
Accordingly, analytical techniques continue to evolve that address these challenges to reveal the characteristics of ecologi-
cal systems and inform conservation actions. We applied multiple statistical learning algorithms (i.e., machine learning) 
with a range of information sources including fish tracking data, environmental data, and visual surveys to identify potential 
spawning aggregation sites for a marine fish species, permit (Trachinotus falcatus), in the Florida Keys. Recognizing the 
potential complementarity and some level of uncertainty in each information source, we applied supervised (classic and con-
ditional random forests; RF) and unsupervised (fuzzy k-means; FKM) algorithms. The two RF models had similar predictive 
performance, but generated different predictor variable importance structures and spawning site predictions. Unsupervised 
clustering using FKM identified unique site groupings that were similar to the likely spawning sites identified with RF. The 
conservation of aggregate spawning fish species depends heavily on the protection of key spawning sites; many of these 
potential sites were identified here for permit in the Florida Keys, which consisted of relatively deep-water natural and arti-
ficial reefs with high mean permit residency periods. The application of multiple machine learning algorithms enabled the 
integration of diverse information sources to develop models of an ecological system. Faced with increasingly complex and 
diverse data sources, ecologists, and conservation practitioners should find increasing value in machine learning algorithms, 
which we discuss here and provide resources to increase accessibility.
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Introduction

Remote measurement of the biotic and abiotic conditions of 
natural ecosystems provides essential insights in the fields of 
ecology and conservation. However, collecting information 
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on wild organisms in natural ecosystems presents excep-
tional logistical and analytical challenges due to technologi-
cal limitations of study methods, uncontrolled conditions, 
complex interactions between biotic and abiotic factors, 
biases and uncertainties inherent to measurement, and data 
deficiencies. Scientific advances are increasing our capacity 
to study wild animals and ecosystems using tools such as 
telemetry (Cagnacci et al. 2010; Hussey et al. 2015), sta-
ble isotopes (West et al. 2006; Michener and Lajtha 2008), 
genetics/genomics (Manel et al. 2003; Hanski and Gaggiotti 
2004), as well as access to local ecological knowledge (Men-
zies 2006; Brook and McLachlan 2008). Yet, our knowledge 
of natural ecosystems is still incomplete, and often suffers 
from various biases and uncertainties (Ludwig et al. 1993; 
Ascough et al. 2008; Fulton et al. 2019), including new 
challenges related to translating complex data collection 
techniques and datasets into actionable knowledge (Young 
et al. 2013; Nguyen et al. 2018). Cohesive and comprehen-
sive data collection and analysis techniques; therefore, play 
an essential role in converting data into actionable knowl-
edge (Nguyen et al. 2017). There is great potential to over-
come the data deficits and uncertainty (Green et al. 2007; 
Michener and Jones 2012) and avoid analytical errors that 
can result in inaccurate interpretations and ineffective con-
servation actions (Johnson 1981; Zuur et al. 2010).

Increasingly complex datasets on ecosystems necessitate 
the development and application of sophisticated analytical 
techniques. Emerging from the field of machine learning, 
various statistical learning algorithms (i.e., machine learn-
ing algorithms) have gained popularity for modeling eco-
logical systems in the recent decades due to their ability 
to handle diverse data types, large numbers of correlated 
predictors, and model complex hierarchical relationships 
with high predictive accuracy relative to other statistical 
techniques (Cutler et al. 2007; Elith et al. 2008; Olden et al. 
2008). Some algorithms are particularly well suited for 
dealing with challenges in ecology, such as ‘large p small 
n’ problems, where there are a large number of potential 
predictors relative to the sample size (Oppel et al. 2009). 
Statistical learning algorithms are highly numerous and 
diverse (see Kuhn et al. 2019 for some examples) and are 
generally implemented in two ways—supervised or unsuper-
vised. In supervised learning, the model is trained to predict 
a known response variable, for example, to identify specific 
animal behaviors from positioning or sensor data based on 
direct observations of tagged animals (Guilford et al. 2009; 
Brown et al. 2013). With unsupervised learning there is no 
response variable specified; algorithms identify patterns 
or groupings in the data based on its structure alone, for 
example, to explore biological community dynamics (Chon 
et al. 2000). These statistical learning algorithms are often 
applied with a focus on prediction accuracy, and while pre-
dictor importance scores can often be generated, they do not 

typically provide statistical p values to indicate ‘significant 
predictors’, which ecologists often focus on, sometimes to 
their peril (Halsey 2019). Olden et al. (2008) suggested it is 
perhaps this philosophical difference in analytical approach 
that has constrained the application of these algorithms in 
ecology. Yet, these approaches are becoming more accessi-
ble (Elith et al. 2008; Christin et al. 2019) and increasingly 
applicable to large and complex ecological datasets. There 
may be some confusion about machine learning terminol-
ogy because there is a distinction between what are often 
referred to as machine learning algorithms (i.e., a specific set 
of statistical learning techniques), and the field of machine 
learning, which focuses on the application of algorithms or 
statistical models to perform a task (e.g., robotic movements, 
pattern recognition, data prediction) without specific instruc-
tion. This distinction is illustrated by the fact that logistic 
regression is commonly utilized as a statistical model in the 
field of machine learning but is not generally referred to as 
a machine learning algorithm.

Across a large range of animal taxa, certain biological 
events such as mating or spawning disproportionately shape 
populations, food webs, and ecosystems (Nowlin et al. 2008; 
Archer et al. 2015; Mourier et al. 2016). In aquatic ecosys-
tems, there is growing recognition that protection of fish 
spawning sites, particularly spawning aggregations, is of 
major importance due to the role these sites play as produc-
tivity and biodiversity hotspots (Sadovy and Domeier 2005; 
Sadovy De Mitcheson and Colin 2012; Lowerre-Barbieri 
et al. 2016; Erisman et al. 2017; scrfa.org). Fish spawning 
aggregations are also highly vulnerable to fisheries overex-
ploitation due to the concentration of individuals at predict-
able locations and times (Sala et al. 2001; Erisman et al. 
2017). Population depletion also often occurs cryptically 
with aggregate spawning species (Erisman et al. 2011). For 
these reasons, protection of spawning fish and their habitats 
is a major focus of aquatic conservation efforts. However, 
identifying critical spawning locations presents many chal-
lenges related to monitoring mobile animals in expansive 
aquatic systems such as open oceans. Efforts to identify fish 
spawning sites can be informed by diverse sources, com-
monly from local ecological knowledge accrued from years 
of interactions between local people and the ecosystem (Sil-
vano et al. 2006; Hamilton et al. 2012), through direct sci-
entific studies using techniques such as individual tracking 
via telemetry (Zeller 1998; Danylchuk et al. 2011; Crossin 
et al. 2017; Binder et al. 2018; Brownscombe et al. 2020), or 
a combination of these approaches (e.g., Adams et al. 2019).

One such aggregate spawning marine fish species is 
the permit (Trachinotus falcatus), which lives through-
out the tropical and subtropical western Atlantic Ocean, 
Caribbean Sea, and Gulf of Mexico, supporting popular 
recreational fisheries in many locales (Adams and Cooke 
2015). Permit commonly feed on invertebrates in shallow 
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nearshore flats, moving further offshore to form spawning 
aggregations in proximity to reef promontories (Graham 
and Castellanos 2005; Bryan et al. 2015; Brownscombe 
et al. 2020). Gonadosomatic data suggest permit have an 
extended reproductive period in south Florida from March 
to September, potentially indicating multiple batch spawn-
ing (Crabtree et al. 2002). Permit are commonly targeted 
by recreational anglers at spawning aggregation sites, 
but harvest is limited by fisheries regulations, especially 
in the southernmost part of Florida in the Special Per-
mit Zone where harvest is prohibited from April through 
July (Brownscombe et al. 2019a; www.myfwc​.com/fishi​
ng/saltw​ater/recre​ation​al/Permi​t/). However, catch-and-
release fishing of spawning aggregations is common, and 
may not be sustainable in some locations due to high rates 
of shark depredation (Holder et al. 2020).

As an aggregate spawning fish that supports popular 
recreational fisheries, the identification of permit spawn-
ing sites is of major importance for their conservation.

Further, spawning locations also dictate larval distri-
bution patterns and population connectivity (Lowerre-
Barbieri et al. 2017), as well as the spatial dynamics of 
predator–prey interactions (De Mitcheson and Colin 2012) 
relevant to biological community and ecosystem dynam-
ics. Unlike many other aggregate spawning species, where 
aggregation sites are better studied and are known to occur 
at predictable locations (Kobara and Heyman 2008, 2010), 
less is known about permit aggregation sites. This may 
be in part because permit are wary of boats and divers, 
and rarely observed underwater. Despite this elusiveness, 
anglers commonly target permit spawning aggregations 
by visually observing them from boats or using advanced 
sonar technology (Holder et al. 2020). There is at least one 
known permit spawning aggregation site in south Florida, 
but tracking data indicate permit occupy numerous loca-
tions throughout the region during the spawning period, 
some of which may also be spawning sites (Brownscombe 
et al. 2020). Over the course of tagging permit to collect 
said tracking data, we also acquired hundreds of visual 
observations of permit behavior over space and time, 
including likely prespawning schooling behaviors. Yet, 
without clear evidence of spawning activity (e.g., obser-
vations of direct spawning or collection of released eggs), 
the links between behavioral observations, tracking data, 
and permit spawning are not concrete. Recognizing uncer-
tainty and potential biases in these information sources, 
we applied a combination of supervised and unsupervised 
machine learning techniques to identify potential permit 
spawning sites in proximity to the Florida Keys. These 
findings may be of relevance to spatial management of 
fisheries and marine habitats, and also improve accessibil-
ity to tools (including R code; Appendix III) and insights 

for the application of machine learning to other ecological 
data.

Methods

Fish tracking

Acoustic telemetry was used to track permit movement pat-
terns and space use. In August 2015, an array of 60 acoustic 
receivers (VR2W, Vemco Inc, Halifax, NS, Canada) was 
established in nearshore regions of the Florida Keys. Addi-
tional receivers were added to the tracking system over time, 
totaling 84 by May 2018 (See Appendix I: Fig. 1 for loca-
tions). Receivers were moored to the substrate via attach-
ment to a 1 m length rebar extending from 30–50 kg cement 
bases, placed adjacent to popular permit fishing locations, 
informed by consultation with local fishing guides. This 
acoustic receiver array complimented others established in 
the region in 2014–2016 to track a diverse range of fish spe-
cies, providing extensive coverage along the Florida Reef 
Tract. In addition to these arrays, another 1000 + receivers 
were maintained by numerous research groups throughout 
the southeastern United States, with data sharing facilitated 
through the FACT, integrated Tracking of Animals in the 
Gulf of Mexico network, and the Ocean Tracking Net-
work (Appendix I: Fig. 1). Receiver coverage was variable 
amongst locations, which may have had an influence on 
detectability over space. These acoustic receiver arrays were 
used to track permit with internally implanted acoustic trans-
mitters (V13-1x; high power, 80–160 s delay, 653 day life, 
6.2 g in water, Vemco Inc), V13A-1x (low power, 80–160 s 
delay, 355 day life, 6.2 g in water, Vemco Inc), or V16-4x 
(high power, 60–120 s delay, 1910 day life, 11.7 g in water, 
Vemco Inc) from Mar 2016 to May 2019. Tagging locations 
spanned throughout the Florida Keys region (Appendix I: 
Fig. 2); see Brownscombe et al. (2020) for details on per-
mit capture and tagging. All procedures were conducted in 
accordance with the Carleton University Animal Care Com-
mittee (application 11,473), as well as the American Asso-
ciation for Laboratory Animal Science (IACUC protocol 
2013-0031, University of Massachusetts Amherst).

Visual surveys

Over the course of permit tagging efforts from Aug 2015 
to May 2019, the research team spent over 2000 h search-
ing for permit, successfully finding, visually observing, and 
capturing permit at 78 general locations throughout the 
study region. Efforts were concentrated in the months of 
March–October, which encompasses the primary spawning 
period (Crabtree et al. 2002; Brownscombe et al. 2020). The 
entire spatiotemporal structure of sampling was informed by 

http://www.myfwc.com/fishing/saltwater/recreational/Permit/
http://www.myfwc.com/fishing/saltwater/recreational/Permit/


286	 Oecologia (2020) 194:283–298

1 3

working closely with local fishing guides, especially those in 
the Lower Keys Fishing Guides Association and the Florida 
Keys Fishing Guides Association. Researchers were either 
fishing directly with fishing guides or acting on shared infor-
mation about fishing opportunities. Visual surveys were 
therefore structured largely by local ecological knowledge.

Although some permit was located with sonar, the vast 
majority of successful permit tagging involved visual obser-
vation of groups of permit from a boat, sight casting to them 
via fishing rod and reel. During this process, distinct per-
mit behaviors were observed over space and time. In shal-
low water flats, permit were observed either: (1) foraging 
in the benthos alone or in small groups (< 20 individuals); 
(2) moving in or out of the flats alone or in small groups; 
or (3) floating in channels or nearshore natural or artificial 
reef structures (2–7 m water depth) in small to large groups 
(10 to ~ 100 individuals). In deeper water sites > 5 m, permit 
were observed exclusively in proximity to natural or artifi-
cial reef structures, generally in larger groups of 20 to > 500 
individuals (roughly estimated). In these habitats, permit 
were either: (4) floating in currents or moving slowly and 
independently with large spacing (> 3 m) between them; or 
(5) in tightly aggregated (~ 1 to 2 m spacing) groups of > 50 
individuals either floating in currents or moving rapidly in 
a highly coordinated manner (see Appendix II for video of 
this behavior).

Of the five distinct behaviors observed and described 
above, behavior 5) is consistent with those associated with 
direct observations of permit spawning in Belize (Graham 
and Castellanos 2005) and prespawning behavior in the Dry 
Tortugas (Bryan et al. 2015). Aside from spawning, another 
major driver of fish schooling behavior is the presence of 
predators (Pitcher 2001). Behavior 5) was observed both 
with and without predators (large sharks) in the vicinity. 
Spawning aggregations often attract predators due to the 
high density of relatively stationary prey (Sancho et al. 2000; 
De Mitcheson and Colin 2012). In many cases, permit was 
observed exhibiting behavior 5) with no predators present, 
then predator(s) subsequently arrived, at which time the 
schooling behavior remained consistent but movements 
became more rapid. In these cases, the observed permit 
never strayed more than ~ 500 m from the putative point of 
attraction, which was either a natural or artificial reef prom-
ontory. The potential reasons why these types of locations 
may be popular spawning locations are discussed in Brown-
scombe et al. (2020). Lastly, behavior 5 was observed exclu-
sively in the months of March–June, which coincides with 
peak gonad development in permit in this region (Crabtree 
et al. 2002). In many locations, behavior 5 was observed in 
those aforementioned spawning months, but at other times 
in July–October, behavior 4 was observed. Owing to the 
combination of empirical information on gonad develop-
ment, empirical behavioral observations of prespawning 

and spawning, and the observations made here, behavior 
5) was interpreted as probable prespawning behavior. Sites 
were therefore categorized into those where prespawning 
behaviors were observed, sites where only nonprespawn-
ing behaviors were observed, or sites where no behavioral 
observations were available.

Data analysis

Fish tracking data consisted of 1.53 million detections of 
112 individual permit (682 ± 96 mm fork length; mean ± SD; 
474–978 mm range). The majority of these individuals were 
likely mature (50% maturity at 486 mm in males and 547 mm 
in females; Crabtree et al. 2002). Tracking durations were 
variable amongst individuals (286 ± 177 days; mean ± SD, 
1–658 day range; Appendix I: Fig. 3). Detections occurred at 
205 acoustic receivers, which were grouped into 43 spatially 
distinct sites, or receiver nodes. To reduce the potential for 
false detections (see Simpfendorfer et al. 2015), detections 
were filtered in a two-stage process. First, detections that 
occurred prior to tag deployment were removed, as were 
duplicates that were spaced within a time period less than 
the minimum tag delay (60 s) at the same receiver. In the 
second stage, detections were removed if they consisted of 
a single detection at given site (i.e., receiver node) within 
a 2-h time period. Once filtered, total detections were cal-
culated at each site, along with the number of detections 
during the known spawning based on gonad development 
period from March to July (Crabtree et al. 2002). These data 
were also used to calculate individual-level residency peri-
ods at each site, where permit was considered resident at a 
site when < 1 h lapsed between detections. Total residency, 
mean residency period (i.e., the mean period of time spent 
at the location per visit), the number of unique visits (i.e., 
individual residency periods) and the total number of indi-
viduals visiting each node were calculated. Site degree was 
also calculated as the number of other unique sites each site 
was connected to via permit movements, site strength was 
calculated as the total number of movements between each 
site and all other sites, and edge weights were calculated for 
each pair of connected sites as the total number of move-
ments between them. All environmental and fish tracking 
data for each of the 43 sites surrounding the Florida Keys 
is reported in Appendix I: Table 1; however, generic site 
names are used to avoid any potential misuse of data to tar-
get spawning permit via fishing. Specific site information 
can be made available upon reasonable request.

Of the 43 sites at which permit were detected in prox-
imity to the Florida Keys, visual observations of permit 
behaviors were available at 27. Although there is strong 
empirically based rationale for the association of behavior 
5) with spawning, without direct observations or extensive 
site monitoring (aside from presence/absence from acoustic 
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detection data), these observations are not concrete evidence 
of spawning locations. Therefore, a combination of statis-
tical learning approaches was applied to identify potential 
permit spawning sites in the Florida Keys using available 
data including environmental characteristics, permit track-
ing metrics, and visual behavioral observations. All analysis 
were conducted with R (R Core Team 2018) via RStudio 
(RStudio Team 2016), and all R code for analyses can be 
found in Appendix III.

Supervised learning

Operating on the assumption that visual observations of per-
mit prespawning behaviors are reliable evidence of spawn-
ing sites, we aimed to develop a predictive model of the 
presence/absence of this behavior to make predictions about 
sites where no visual observations were available, but permit 
were detected via acoustic telemetry. We identified a range 
of potential metrics that could be related to permit spawning, 
including environmental characteristics (habitat type, water 
depth) and fish tracking metrics (number of detections, total 
residency, mean residency period, number of unique visits 
by individuals, number of individuals visiting the site, site 
degree, and site strength; see “Data analysis” section above). 
Unfortunately, there was a large number of predictors rela-
tive to sample size and the majority of these metrics are 
correlated with each other, display substantial heterogene-
ity and some outliers (Appendix I; Fig. 4, 5), posing chal-
lenges for developing a predictive model. Initial attempts 
to utilize logistic regression to model the presence/absence 
of prespawning behavior revealed that cross-validation (i.e., 
separating data into training and test sets to assess model 
predictive performance to ensure the model makes gener-
alizable predictions and is not overfitting the training data) 
was not possible with any models with complexity beyond 
a single predictor due to convergence failure (although there 
are more advanced methods to implement logistic regres-
sion in similar scenarios; e.g., Piironen et al. 2020). This is 
indeed a ‘large p small n’ problem, that is, a large number 
of potential predictors relative to sample size, which occurs 
frequently with ecological questions and datasets.

To overcome the above-discussed analytical challenges, 
we applied decision tree algorithms to predict permit pres-
pawning behavior. Basic versions of these models are classi-
fication and regression trees (CART), which generate recur-
sive binary partitions in the data to optimize prediction of 
the response (Breiman et al. 1984; De’Ath and Fabricius 
2000). This approach is fundamentally different from fre-
quentist models like regression in that CART, like many 
learning algorithms, does not require a defined relationship 
between the predictors and response, rather it uses an algo-
rithm to learn the relationship. These models have many 
advantages; they handle a wide range of variable types, 

are not majorly affected by variable distributions, outli-
ers, missing data, or monotonic variable transformations, 
can model complex hierarchical interactions, and handle 
high-dimensional datasets (Olden et al. 2008). They are 
also highly tractable, providing intuitive and interpretable 
outputs. It is likely these qualities that have attracted ecolo-
gists to versions of these models (Cutler et al. 2007; Elith 
et al. 2008; Olden et al. 2008). Caveats of these models can 
include data overfitting, predictor biases, and poor perfor-
mance on some types of datasets. Overcoming many of these 
caveats, random forests (RF) are a relatively recent exten-
sion (patented in 2009) of decision trees that fit numerous 
trees (often thousands) with random data subsampling and 
variable selection via bootstrapping and aggregate the trees 
via bagging to optimize the prediction of the response (Brei-
man 2001). RF can be biased towards utilizing certain types 
of predictors and correlated predictors (Strobl et al. 2007). 
These biases can be overcome with conditional RF (Strobl 
et al. 2009), which build ensembles of conditional inference 
trees, using statistical criteria to determine data partitions 
(Hothorn et al. 2006). Fitting conditional RF that subsample 
without replacement and a conditional permutation scheme 
enables unbiased predictor selection and importance meas-
ures (Strobl et al. 2008).

We applied both classic RF and conditional RF to obser-
vations of permit prespawning behavior (binary categori-
cal) with the site-specific environmental and fish tracking 
predictions stated above. RF were fit with replacement and 
1000 trees, although > 500 trees produced stable outputs 
(Appendix I; Fig. 6). The number of variables subsampled 
at each partition (mtry) was tested at every value; classic 
RF were sensitive to variation in mtry, but conditional were 
not (Appendix I; Fig. 7). Classic RF were therefore fit with 
mtry = 2; for conditional RF the default of the square root of 
the number of variables. Model performance was assessed 
based on prediction accuracy, accuracy balance between 
classes, Cohen’s Kappa, sensitivity (proportion of pres-
ences accurately classified), and specificity (proportion of 
absences accurately classified) in out-of-bag samples, i.e., 
data not used for training each subsampled decision tree. 
Predictor importance was assessed for classic RF using per-
mutation importance (Mean Decrease in Accuracy), while 
conditional permutation importance was used for condi-
tional RF, calculated from out-of-bag data. To assess how 
the models were making their predictions, partial dependen-
cies were calculated for the top predictors, which represent 
predicted values of the response (expressed as a probability 
in this case) across levels of each predictor while holding 
other predictors at their mean (i.e., the marginal effects of 
the predictor). These models were then used to predict on to 
sites that lacked visual observations of permit behavior, but 
tracking and environmental data were available. Classic RF 
were fit with the randomForest R package (Liaw and Wiener 
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2002) and conditional RF the cforest function in the partykit 
package (Hothorn and Zeileis 2015). Model performance 
metrics were calculated with the confusionMatrix function 
in the caret package (Kuhn et al. 2019).

Unsupervised learning

The supervised learning approach employed above oper-
ates on the assumption that visual observations are reliable 
evidence of potential permit spawning sites, using these 
observations as a primary basis for developing a model 
to predict additional potential sites in the region based on 
environmental and tracking information. Despite the fact 
that these visual observations are similar to those of per-
mit spawning in other locations (Graham and Castellanos 
2005; Bryan et al. 2015), without direct observations of 
actual permit spawning at these sites or continuous moni-
toring of sites for this behavior, it is not concrete evidence. 
For example, it is possible that permit were forming pres-
pawning aggregations prior to moving to a nearby spawn-
ing location. Recognizing this uncertainty, an unsupervised 
learning algorithm was applied to explore potential clusters 
of sites with unique characteristics that may be indicative of 
spawning sites independent of observations of permit behav-
ior. Specifically, fuzzy k-means (FKM) was applied using 
the ‘fclust’ package (Ferraro and Giordani 2015). Similar 

to most clustering algorithms, the FKM algorithm aims to 
identify a limited number of homogeneous groupings in the 
data. However, FKM accommodates both numerical and 
categorical predictors, and allows for some uncertainty in 
data clustering, assigning a probability of each data point 
belonging to each cluster (Hoppner et al. 2000). Variables 
included in FKM included habitat type, water depth, total 
permit residency, and mean permit residency period. All 
available model performance criterion were considered to 
identify the optimal number of unique clusters, including the 
partition coefficient, modified partition coefficient, partial 
entropy, silhouette, fuzzy silhouette, and Xi and Beni. The 
optimal number of clusters was considered that which the 
majority of performance criteria agreed upon.

Results

Permit were detected via acoustic telemetry throughout the 
broader Florida Keys region, moving frequently amongst 
shallow water flats habitats, nearshore, and offshore reefs, 
both natural and artificial (Fig. 1). There was high connectiv-
ity amongst the flats of the Lower Florida Keys, the Marque-
sas and adjacent sites on the Florida Reef Tract and artificial 
reefs west of the Marquesas. Of the 43 sites permit were 
detected, 27 had associated observations of permit behaviors 

Fig. 1   Network map of permit movement patterns in proximity to 
the Florida Keys, with node (green circle; N = 43) size representing 
its degree (number of unique connections to other nodes) and edge 

(yellow line) width representing its weight (number of movements 
between connecting nodes) (color figure online)
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(categorized as spawning or nonspawning related). Within 
these sites, supervised learning via classic RF predicted sites 
where putative prespawning behavior occurred with 100% 
accuracy in training data and 85% accuracy in out-of-bag 
(nontraining) data, significantly higher than the no-infor-
mation rate (Table 1). Conditional RF were less accurate in 
training data, at 89%, but had equal out-of-bag accuracy to 
classic RF and better accuracy balance between response 
categories (Table 1). The most important predictors, deter-
mined via permutation, differed between model types. Clas-
sic RF identified the most important predictors as depth, 
followed by detections during the known spawning period, 
and residence hours, while conditional RF identified habi-
tat type, water depth, and mean residency period (Fig. 2). 
Both models agreed the number of individuals detected, 
number of unique site visits, site degree and strength were 
the least important predictors. Examining partial dependen-
cies, both model types predict similar relationships between 
model predictors and permit spawning sites; however, clas-
sic RF predicted higher probabilities at greater water depths 
and outer reef habitats (Appendix I; Fig. 8). Predicting on 
to sites without behavioral observations, the two types of 
models produced different results (Fig. 3a, b). Classic RF 
identified 16 sites as probable spawning locations (9/9 with 
prespawning observations, 7/16 with no observations, 0/18 
with nonprespawning observations; Fig. 4a). Conditional RF 
identified 9 sites as probable spawning locations (7/9 with 
prespawning observations, 1/16 with no observations, 1/18 
with nonprespawning observations; Fig. 4b).    

Unsupervised learning via FKM applied to environmental 
and permit tracking metrics identified five clusters based on 
the general agreement amongst the modified partition coeffi-
cient, partial entropy, silhouette, and fuzzy silhouette cluster 
validity indices (Appendix I: Fig. 9). Within these, clusters 
2, 3, and 4 were comprises artificial and outer natural reef 
habitats with high mean permit residency values (Fig. 5). 
Cluster 5 included entirely natural reefs with moderate per-
mit residency values, and cluster 1 was primarily shallow 
flats habitats with low residency values (Fig. 5). Compar-
ing these characteristics to empirical knowledge of permit 

spawning sites, which consist of deeper, outer reef habitats, 
clusters 1 and 3 were considered improbable spawning loca-
tions, clusters 2, 4, and 5 as probable spawning locations. 
Based on the post hoc interpretation of cluster identity, 18 
sites were considered probable spawning locations (9/9 with 
prespawning observations, 7/16 with no observations, 2/18 
with nonprespawning observations; Fig. 3c).

Combining supervised and unsupervised learning by col-
lating ensemble votes and calculating multiplicative prob-
abilities of spawning locations from classic RF, conditional 
RF, and FKM, there were eight sites with the highest prob-
ability of being permit spawning locations. Five of these 
sites were located along the Florida Reef Tract, one clus-
ter of shallow artificial reefs west of the Marquesas, and 
two artificial reef sites in the Gulf of Mexico (Fig. 3d). An 
additional eight sites throughout the region were potential 
spawning sites, while 30 sites were categorised as low prob-
ability. Sites generally had higher probability of being poten-
tial spawning locations which were deeper water, artificial 
or outer reef habitats with a higher mean permit residency 
period (Fig. 6).

Discussion

The field of ecology is fraught with challenging questions 
about how ecosystems function and the best approaches 
to achieve effective biological conservation, often requir-
ing action based on the complex and diverse information 
sources. The case of identifying permit spawning aggrega-
tion sites in the Florida Keys is interesting due to the nature 
of available data and its applicability to marine conserva-
tion. We used a combination of individual tracking-based 
site use metrics, visual observations guided by local eco-
logical knowledge, and habitat characteristics analyzed with 
a combination of supervised and unsupervised machine 
learning algorithms to identify potential permit spawning 
aggregation sites. With this approach, we aimed to integrate 
diverse information sources, avoiding reliance solely on any 
particular information source (e.g., visual observations of 

Table 1   Model performance metrics for classic random forests and conditional random forests models predicting potential permit spawning sites 
in the Florida Keys

Statistical significance at p < 0.05 is indicated by italics

Model Accuracy Balance Kappa Sensitivity Specificity NIR p value [Acc > NIR]

Classic random forests
 Training 1.00 1.00 1.00 1.00 1.00 0.67  < 0.001
 Out of bag 0.85 0.81 0.65 0.67 0.94 0.67 0.03

Conditional random forests
 Training 0.89 0.86 0.74 0.78 0.94 0.67 0.008
 Out of bag 0.85 0.83 0.67 0.78 0.89 0.67 0.03
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aggregation behavior) to avoid confounding our findings 
with any potential biases or uncertainty. Through applying 
multiple statistical learning approaches to this problem, we 
have gleaned insights relevant to applied conservation of 
marine ecosystems and applications of these algorithms in 
ecology.

Conservation implications

As an aggregate spawning species that is subject to fisher-
ies exploitation, the identification and protection of permit 
spawning sites is an essential component of their conserva-
tion strategy. The sites identified here in both the Atlantic 

Ocean and the Gulf of Mexico were generally in proximity 
to deeper water natural and artificial reef structures, where 
tracking data indicated longer mean residency periods. 
These characteristics are consistent with the site charac-
teristics and observations of spawning and prespawning 
behaviors in other locations including Belize and the Dry 
Tortugas (Graham and Castellanos 2005; Bryan et al. 2015). 
All models combined identified eight locations with high 
probability of being spawning sites, and an additional eight 
with moderate probabilities (Fig. 3d). However, the results 
are presented from each model type with recognition that 
end users may decide (perhaps based on the new information 
in the future) that they trust the assumptions of one model 

Fig. 2   Variable importance 
values for a classic random for-
ests, and b conditional random 
forests for predictors of sites 
where permit exhibit prespawn-
ing behavior



291Oecologia (2020) 194:283–298	

1 3

more than another. For example, if visual observations 
of prespawning behavior are indeed reliable indicators of 
spawning sites (supported by Graham and Castellanos 2005; 
Bryan et al. 2015), the supervised model predictions may be 
most reliable. These predictions may serve to inform future 
research approaches, such as structured visual surveys to 
confirm spawning sites. They may also help to guide efforts 
to identify permit spawning locations in other locations with 
popular fisheries, such as Belize, Mexico, and Cuba. Our 
findings and approach here may be more broadly relevant 
in locating and characterizing fish spawning aggregations 
within the framework of the Science and Conservation of 
Fish Aggregations (https​://www.scrfa​.org).

The majority of probable permit spawning sites identi-
fied here are located within the Special Permit Zone (SPZ), 
where permit harvest is prohibited from April through July 
(recently extended; Brownscombe et al. 2019a); however, 
the northernmost site in the Gulf of Mexico is north of the 
SPZ, where harvest is allowed year-round. Importantly, 
even within the SPZ, harvest prohibition alone may not be 
sufficient to protect permit from fisheries overexploitation 
because precapture depredation rates can be extraordinarily 

high at certain locations (Holder et al. 2020). Although 
there has not been a dramatic collapse in the permit fish-
ery like that of bonefish in the region (Santos et al. 2018; 
Brownscombe et al. 2019b), fishing guide and angler surveys 
indicate fishing quality has declined in recent decades (JW 
Brownscombe, unpublished data). Overfishing at spawn-
ing aggregation sites has linked with population declines 
in many marine fish species (Sadovy and Domeier 2005; 
Aguilar-Perera 2006; Graham et al. 2008; Erisman et al. 
2011), and therefore should be considered a potential threat 
to the permit fishery and population sustainability. Protec-
tion of permit spawning aggregations from overfishing could 
potentially be accomplished through regulatory or voluntary 
approaches such as educational programs to promote cultural 
change (Cooke et al. 2013; Waterhouse et al. 2020). For 
example, encouraging a social awareness of permit depreda-
tion issues could facilitate cultural shifts in angler behavior, 
with anglers avoiding angling permit at spawning sites when 
sharks are observed. Such an approach may avoid the poten-
tial for conflict by restricting fishery access.

The locations of permit spawning habitats are not only 
directly relevant to fisheries management strategies, but 

Fig. 3   Sites where permit were observed conducting prespawn-
ing behavior (filled blue circle; N = 9), sites where nonprespawning 
behaviors were observed (filled red circle; N = 18), and a classic ran-
dom forests model predictions of spawning sites (open blue circles; 
N = 16) on nonspawning sites (open red circles; N = 27) and b con-
ditional random forests predictions of spawning sites (open blue cir-
cles; N = 9) and nonspawning sites (open red circles; N = 34), c sites 

categorized into probable (N = 18) and improbable (N = 25) permit 
spawning sites based on unsupervised learning (fuzzy k-means) clus-
ter assignment and post hoc interpretation of unique grouping repre-
sentation, and d Multiplicative probability of sites representing per-
mit spawning locations using all model predictions combined (from 
a, b, c) (color figure online)

https://www.scrfa.org
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also more broadly to population connectivity and ecosys-
tem dynamics. The complex current patterns surrounding 
the Florida Keys are such that spawning in certain locations, 

especially those further east along the Florida Reef Tract, 
may result in poor larval recruitment (Zeng et al. 2018) 
and hence fish spawning in these locations could represent 

Fig. 4   Sites where permit were detected by acoustic telemetry in 
proximity to the Florida Keys categorised by whether prespawning 
observations occurred (y; N = 9) or not (n; N = 18) or no observa-

tions were available (ND; N = 16), and predicted probability of being 
a spawning site by a classic random forests, and b conditional random 
forests
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population sinks. Indeed, Bryan et al. (2015) suggest that 
permit spawning in the Dry Tortugas could be a major 
source of permit larvae for the Florida Keys, while Adams 
et  al. (2006) found juvenile permit settlement occurred 
year-round in nearshore habitats of the Florida Keys, which 
is suggestive of larval inputs from regions outside of the 
United States of America. Yet, as discussed in Brownscombe 
et al. (2020), complex current patterns including mesoscale 
eddies and tidal bores coincide closely with permit spawning 
activity and may be a mechanism for higher self-recruitment 
than larval drift models suggest.

Based on our observations and empirical reports from 
other regions, it appears permit likely spawn on the offshore 
side of prominent natural or artificial reefs. The mecha-
nisms driving this pattern are worth considering given they 
may assist in finding additional spawning sites and assess 
potential impacts of rapid environmental change on permit 
populations. Permit larval periods typically span from ~ 15 
to 20 days prior to settlement into windward sandy beaches, 
or more seldomly mangrove shorelines (Adams and Blewett 
2004; Adams et al. 2006). Although larvae do not settle 
into reefs, permit spawning locations may enable larvae to 

Fig. 5   Characteristics of locations grouped into five unique clusters using a fuzzy k-means clustering algorithm
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navigate toward shorelines using sound or chemical cues 
from the reef, as is common with reef fishes to recruit into 
the reef (Leis et al. 2003; Paris et al. 2013). Reef noise is 
the highest seasonally during the permit spawning period 
(Brownscombe et al. 2020). Reef promontories may also 
serve as a ‘common meeting point’ for adults, serving as 
a reference that increases aggregation efficacy (Soria et al. 
2009).

Applications of machine learning to ecological data

In an absence of direct observations of permit spawning 
behavior, potential aggregation sites were identified based 
on a combination of diverse information sources, inte-
grated using multiple modeling techniques. The supervised 

modeling approaches, using classic and conditional RF oper-
ated on the assumption that observations of large aggrega-
tions of permit exhibiting schooling behaviors is a reliable 
indication of a spawning site, which is a logical assump-
tion based on confirmed observations of permit spawning 
in proximity to reef promontories in Belize (Graham and 
Castellanos 2005). The use of RF models enabled us to over-
come a number of challenges in this dataset including small 
sample sizes, unbalanced data, and correlated predictors 
(Breiman 2001; Liaw and Wiener 2002; Cutler et al. 2007) 
which are problematic for most other commonly employed 
models such as generalized linear models. However, impor-
tantly, small datasets can have higher potential of being 
unrepresentative of the system due to sampling biases, which 
are challenging to overcome analytically and must always 

Fig. 6   The relationship between environmental and tracking data-
based factors and the multiplicative probability of sites representa-
tion permit spawning locations combining supervised random forests 
models based on environmental data and tracking data, and an unsu-
pervised fuzzy k-means clustering algorithm. Votes refers to the num-

ber of times a model predicted the location as a spawning location, 
lines represent a loess smoother. Mean residency reflects the mean 
period of time spent resident at the site per visit, residence refers to 
the total residency of permit at the site
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be considered in study interpretation. With more complex 
analytical approaches, interpreting performance and under-
standing how predictions are generated is essential for reli-
able application. Global model performance metrics are 
informative and well-developed (see Kuhn et al. (2019) for 
a range of available metrics). Beyond overall model accuracy 
in nontraining data, with classification problems it is impor-
tant to consider accuracy balance amongst classes. This is 
especially true when the response variable is imbalanced, 
as models often favor overall accuracy by default and may 
neglect the minority class. Ecologists may commonly face 
this problem with zero-inflated presence/absence datasets, 
in which there is a particular interest in ensuring presences 
are accurately classified. This can be accomplished with 
RF models by including a weighting structure. Model sen-
sitivity and specificity are useful model fit metrics in this 
regard. Generally speaking, when modeling species distri-
butions, it is more conservative to ensure a model has high 
sensitivity (accurately classifying presences). There is also 
a growing suite of model agnostic (i.e., applicable across a 
range of model types) tools for understanding model func-
tion (e.g., see Molnar 2019). Our application was relatively 
simple, with a small dataset and a limited number of impor-
tant predictors, hence partial dependencies were sufficient 
to understand model function. However, in more complex 
cases, tools such as Local Interpretable Model-agnostic 
Explanations (LIME; Ribeiro et al. 2016) may be employed 
to understand more nuanced relationships between predic-
tors and a specific predictions to assess their validity, and 
also improve upon and choose between classifiers and sub-
sampling regimes.

In the application of these models to identify permit 
spawning sites, classic and conditional RF identified differ-
ent partial dependencies and variable importance structures; 
conditional RF are generally considered more robust in this 
respect (Strobl et al. 2008). Key predictors of potential 
reproduction sites included a combination of environmental 
characteristics (i.e., water depth and habitat type), and track-
ing metrics (i.e., mean permit residency duration). With the 
increasing applications of telemetry to track individual fish 
over expansive space and time, metrics can be developed 
that indicate certain behaviors and provide greater insights 
into habitat function and ecological interactions. For aggre-
gate spawning species, it is intuitive that residency period 
metrics relate to spawning sites; however, fish may reside in 
a particular area for a variety of reasons (Lowerre-Barbieri 
et al. 2013). Here we found mean residency period was a 
better predictor of potential permit spawning sites than total 
summed residency values, which reflects that fish remained 
resident for longer periods per visit at spawning sites.

Despite the rational link between observations of large 
aggregations of schooling fish and spawning sites, we also 
explored potential permit spawning sites independent of 

this assumption using unsupervised FKM. This alternate 
approach requires few assumptions about the data; rather 
it allows the algorithm to explain the structure of the data-
set through identification of unique clusters, or groupings. 
Advantages of FKM include the ability to include diverse 
predictor types (unlike k-means, which only accepts con-
tinuous predictors), and the fuzzy set assignment of data 
points, allowing for uncertainty in group assignment (Equi-
hua 1990; Salski 2007). Overall, group assignment generally 
parsed out sites in a similar manner to the supervised RF 
approach, but additional inner reef sites were also assigned 
to probable spawning site groups. This indicates that certain 
permit space use characteristics (i.e., longer residency peri-
ods) were present at these inner reef sites, despite the fact 
that they do not fit the mold of deeper water structures where 
spawning aggregation schooling behaviors were observed 
(Fig. 3).

As ecological datasets continue to grow and become more 
complex, ecologists should find increasing value in machine 
learning algorithms for a range of applications. Here we pro-
vide an example of application of decision tree and cluster-
ing algorithms to a challenging dataset, along with associ-
ated R code (see Appendix III), which may help increase 
the accessibility of these models. There are numerous sta-
tistical learning algorithms that ecologists may find useful, 
others include boosted regression trees (Elith et al. 2008) 
and neural networks (Christin et al. 2019). In addition to 
specific applications of machine learning algorithms to indi-
vidual datasets, they will become an increasing component 
of diverse aspects of research for ecologists. For example, 
learning algorithms can be used as an integral component of 
scientific methodology, exploring data patterns and hypoth-
eses interactively (Peters et al. 2014). As datasets become 
increasingly large, machine learning will play an important 
role in extracting relevant patterns and answers from big 
data (Durden et al. 2017). As web scraping and natural lan-
guage processing tools develop and become more accessible, 
information aggregation and synthesis will become increas-
ingly automated, changing the roles that scientists play in 
the scientific process. It would therefore behoove ecologists 
to have some level of familiarity with machine learning and 
artificial intelligence as they become integral parts of the 
scientific process.

Summary

We applied multiple statistical learning techniques to a range 
of information sources to identify prespawning behavior, a 
potential indicator of spawning sites for permit in the Florida 
Keys. These findings may serve to guide permit conserva-
tion efforts by management and conservation organiza-
tions through educational or legal avenues, in particular to 
address issues related to angling depredation at spawning 
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aggregation sites. The predictions from the developed mod-
els may also serve to inform future research approaches, 
for example, guiding visual surveys to confirm spawning 
sites or structuring local ecological knowledge surveys. We 
also provide insights for identifying ecological phenomena, 
including cryptic spawning aggregations, using various 
information sources. The application of statistical learning 
techniques allowed us to overcome significant analytical 
challenges, and we provide relevant information and tools, 
including R code, to increase their accessibility.
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