
Vol.:(0123456789)1 3

Aquatic Sciences           (2021) 83:44  
https://doi.org/10.1007/s00027-021-00797-5

RESEARCH ARTICLE

Modeling fish habitat: model tuning, fit metrics, and applications

Jacob W. Brownscombe1   · Jonathan D. Midwood1 · Steven J. Cooke2

Received: 18 November 2020 / Accepted: 7 March 2021 
© Crown 2021

Abstract
Knowledge of the habitat associations and spatial–temporal distributions of wild animals is essential for successful ecosystem 
management, and effective analytical approaches are key to develop accurate models of these relationships. We explore the 
influence of several modeling techniques, tuning parameters, and assignment thresholds on a variety of model fit metrics to 
characterize habitat associations and make spatial–temporal predictions of species distribution based on a nine-year acous-
tic telemetry fish tracking dataset from a freshwater system. Unweighted generalized linear mixed models (GLMM) and 
random forests (RF) had the highest prediction accuracy of fish occupancy (> 84%) and precision (positive predictive value 
accuracy), but because the data were imbalanced (> 70% absences), predictions had low sensitivity (accuracy of true pres-
ences, < 45%), and therefore, low accuracy balance. Model weighting to prioritize presences and lowered presence probability 
thresholds both produced more balanced models, but RF exhibited low sensitivity to alterations in probability thresholds. 
Model weighting presents a straightforward approach to balance class accuracy in imbalanced datasets, which are common in 
species distribution samples. However, there is a wide range of weighting options and an important trade-off between model 
sensitivity and precision, either of which may be favoured depending on the research question or management application.

Keywords  Environmental management · Conservation · Machine learning · Occupancy models · Habitat suitability

Introduction

Knowledge of species distributions, habitat associations, 
and spatial–temporal patterns of occupancy is essential for 
effective ecosystem management (Fielding and Bell 1997; 
Loiselle et al. 2003; de Kerckhove et al. 2008). Measurement 
of these characteristics is challenging due to environmental 
monitoring limitations, and complex modeling techniques 
are often required to develop accurate representations for 
inference of habitat associations and spatial–temporal pre-
dictions (Elith et al. 2006; Guillera-Arroita et al. 2015). 
Rapid advances in both data collection and modeling tech-
niques are improving our capacity to develop accurate repre-
sentations of biological systems; however, they also present 

numerous experimental design and analytical challenges that 
can be difficult for researchers to navigate. Moreover, given 
that the spatial ecology of wild animals is of great relevance 
to environmental managers (Allen and Singh 2016), data 
collection and modeling strategies can also have implica-
tions for management decisions and interventions (e.g., res-
toration planning).

Historically, animal habitat has been measured by in situ 
sampling of animal distribution relative to environmental 
conditions. For example, fish distributions are often sampled 
through techniques such as netting, electrofishing, longlin-
ing, or visual observations (Bonar and Hubert 2002). Fish 
habitat use is particularly challenging to characterize due to 
constraints of detecting the presence of mobile and cryptic 
fish in underwater environments. However, new technolo-
gies are allowing for more continuous measurement of fish 
habitat use using video, telemetry, and passive acoustics 
(Cappo et al. 1999; Rountree et al. 2006; Hussey et al. 2015). 
Telemetry involves tracking tagged animals with mobile or 
stationary receivers, which has the added value of being able 
to monitor the movement and space use of individuals long 
term (i.e., multiple years), helping to address key knowledge 
requirements related to habitat connectivity and movement 
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pathways (Crossin et al. 2017; Brooks et al. 2018). Continu-
ous measurement of the presence/absence of tagged fish at 
telemetry receiver locations can also provide more compre-
hensive measures of habitat use, suitability, and function 
than instantaneous measures of fish habitat use, which are 
typically conducted more seldom due to resource constraints 
(Brownscombe et al. 2019). However, applications of telem-
etry techniques to characterize animal habitat use and selec-
tion are generally better developed with other animal taxa 
and ecosystems (e.g., Marzluff et al. 2001; Long et al. 2009).

Using data from field sampling of animal distributions 
relative to both biotic and abiotic conditions, a wide vari-
ety of models of animal presence or presence/absence are 
commonly used to describe habitat associations and make 
spatiotemporal predictions, such as simple or multiple 
regression, generalized additive models, Bayesian infer-
ence, and machine learning (Elith et al. 2006). In selecting 
model type and tuning, model fit is the primary considera-
tion, which should ideally be assessed in separate test data 
held out of the model training process [see Fielding and 
Bell (1997) for overview of common approaches]. For clas-
sification problems such as animal occupancy, there are a 
wide variety of model fit metrics available (e.g., see Field-
ing and Bell 1997; Kuhn et al. 2019). Focusing on overall 
model fit metrics such as model accuracy is highly common 
(e.g., Elith et al. 2006; MacLeod et al. 2008), but can be 
perilous in some circumstances because these metrics do 

not consider accuracy amongst classes (Fielding and Bell 
1997; Termansen et al. 2006; Jiménez-Valverde and Lobo 
2007; Lobo et al. 2008). This is particularly concerning for 
species distribution and habitat models, since false positive 
and negative prediction rates can have a major impact on 
environmental decision making (Loiselle et al. 2003; Rond-
inini et al. 2006). To address this, models can be tuned in a 
variety of ways including selecting probability thresholds for 
presence assignment, down sampling the majority class, or 
model weighting to penalize misclassification of the minor-
ity response class (Fielding and Bell 1997; MacKenzie et al. 
2002; Liu et al. 2005; Jiménez-Valverde and Lobo 2007; 
Evans et al. 2011).

Advances in our ability to remotely measure animal dis-
tributions and environmental associations, combined with 
complex analytical techniques, have valuable applications 
for environmental management through description of habi-
tat associations and prediction of species distributions. Here 
we apply two commonly employed modeling techniques, 
generalized linear mixed effects models (GLMM) and ran-
dom forests (RF), to a nine-year fish tracking data set, with 
which we explore a range of model tuning approaches (i.e., 
weighting, probability of occurrence thresholds) in rela-
tion to a diversity of model fit metrics (Table 1). Due to 
the flexible nature of RF for habitat modelling, we further 
apply the RF models to make spatial–temporal predictions 
of fish occupancy and habitat suitability indices. In doing 

Table 1   Select model fit metrics relevant to classification problems

TP true positive, FP false positive, TN true negative, FN false negative, P total positives, N total negatives

Metric Calculation Definition

Accuracy (A) (TP + TN)/(P + N) Overall prediction accuracy
Sensitivity (Se)
Recall
True positive rate

TP/(TP + FN) True positive value prediction accuracy

Specificity (Sp)
Selectivity
True negative rate

TN/(TN + FP) True negative value prediction accuracy

Precision (Pc)
Positive predictive value (PPV)

TP/(TP + FP) Positive predictive value accuracy

Negative predictive value (NPV) TN/(TN + FN) Negative predictive value accuracy
Area under the curve (AUC) Integral of TPR vs FPR Model performance in TP vs FP. Perfect value = 1, random selection in 

binary response = 0.5
Balanced accuracy Se + Sp/2 Accuracy amongst classes weighted equally
True skill statistic (TSS) Se + Sp − 1 Accuracy amongst classes weighted equally
No information rate (NIR) P/P + N|N/N + P Model accuracy if the dominant class was predicted in all cases
Kappa Complex. See Cohen (1968) Accuracy normalized for baseline of random chance
F1 (2*Pc*Se)/(Pc + Se) Harmonic mean of Precision and Sensitivity, integrating positive predic-

tion accuracy and error
Minimized difference threshold (MDT) abs(Se − Sp) Measure of model fit that focuses on minimizing the differential between 

class accuracy, with lower values indicating better balance
Maximized sum threshold (MST) Se + Sp Measure of model fit that integrates balance amongst classes, with higher 

values indicating better balance
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so we identify optimal modeling techniques, model tuning, 
and focal fit metrics relative to the environmental manage-
ment context. The findings are of relevance to any situation 
where spatial or spatial–temporal distributions of animal 
occupancy or habitat associations are being modelled—a 
common activity in fisheries management (e.g., Boisclair 
2001).

Methods

Data collection

Largemouth bass (Micropterus salmoides) space use was 
measured over a nine-year period using acoustic telem-
etry in Toronto Harbour, Ontario, Canada (43.63°N, 
79.36°W). Largemouth bass (n = 144; 400 ± 94 mm total 
length; mean ± SD; 156–535 mm range) were captured via 
boat electrofishing and surgically implanted with acoustic 
transmitters (V7-4x, V9TP-2x, V13-1x, V13TP-1x, V13A-
1x; 60–180 s or 130 to 270 s transmission delay; Vemco/
InnovaSea Inc., Halifax, Nova Scotia) from 2010-09-08 to 
2016-07-15 [see Midwood et al. (2019) for more details on 
fish capture and tagging]. All procedures were conducted in 
accordance with the Carleton University Animal Care Com-
mittee (application 110,723). Tagged largemouth bass were 
tracked with stationary acoustic receivers (Vemco VR2W; 
n = 67), which were grouped into 36 unique receiver nodes 
with corresponding habitat conditions in Toronto Harbour 
(Appendix S1; Fig. S1). Deployment periods at each receiver 
node were variable (Appendix S1; Fig. S2). At each receiver 
node, habitat variables were measured including the water 
depth (meters), percent cover of submerged aquatic vegeta-
tion (SAV), and wind exposure. Depth and SAV were meas-
ured by sonar within the detection range regions surrounding 
receivers, and wind exposure (fetch) via GIS measurement 
[see Midwood et al. (2019) for more details on habitat sam-
pling]. Detection ranges were measured at a subset of receiv-
ers using stationary reference tags, and varied from 400 to 
1500 m (see Veilleux 2014).

Data analysis

All data analyses were conducted in R v1.2.5019 (R Core 
Team 2019). Largemouth bass detections were passed 
through a series of filters to reduce the potential for false 
detections (Simpfendorfer et al. 2015). Firstly, detections 
that occurred simultaneously within a period shorter than 
the minimum tag delay were removed. Secondly, single 
detections that occurred at an acoustic receiver within a 2-h 
period were removed (Pincock 2012). Thirdly, spatial–tem-
poral patterns of detections were plotted to visually examine 
for any shed tags or dead fish, which manifest as consistent 

detections at a single acoustic receiver without subsequent 
detections on another (Klinard and Matley 2020; Matley 
et al. 2020). No tags exhibited this pattern. Filtered detec-
tions were used to calculate daily largemouth bass presence/
absence at each acoustic receiver station over a nine-year 
period (2010-09-22 to 2019-10-31) only including days 
when a given acoustic receiver station was deployed, and 
the period when a minimum of five largemouth bass were 
being tracked.

To model largemouth bass habitat use and make spa-
tial–temporal predictions of occupancy, daily largemouth 
bass presence/absence at each of the 36 receiver nodes 
was modelled with generalized linear mixed effects mod-
els (GLMM; Bolker et al. 2009) and random forests (RF; 
Breiman 2001). Predictors included water depth, SAV, wind 
exposure, and season. For GLMMs these predictors were fit 
as fixed effects, with receiver station as a random intercept 
and a logit link function. RF were fit with 1000 trees and 
the default number of variables was tried at each split at 
the square root of the number of predictors. Prior to mod-
elling, the daily location-level largemouth bass presence/
absence dataset (n = 116,445) was subset into ten partitions 
for cross validation. Initially, a single partition was used to 
fit GLMMs and RFs, with the remaining nine partitions held 
out as test data. In addition to unweighted GLMM and RF, 
weighted versions of each model type were fit to penalize 
misclassification of the minority class (presences) and bal-
ance prediction accuracy. This was accomplished by itera-
tively testing weighting combinations; balanced class accu-
racy was accomplished by weighting presences: absences at 
5:1 for GLMM and 1:0.95 for RF. Overweighted versions of 
the models were also fit, with GLMM at 10:1 and RF 1:2. 
The weighting schemes are different with GLMM and RF 
implementation; these schemes produced similar model fit 
metrics at the default probability threshold (0.5). Relation-
ships amongst probability of occurrence threshold values 
(zero to one) and true positive rate (TPR; accurately pre-
dicted presences), false positive rate (FPR; inaccurately pre-
dicted presences), true negative rate (TNR; accurately pre-
dicted absences), and false negative rate (FNR; inaccurately 
predicted absences) were examined for each model. TPR vs 
FPR were also plotted to visualize the Receiver Operating 
Characteristic (ROC) curve. Further, a range of fit metrics 
(Table 1) were calculated for each model by cross validation 
on test data (nine hold-out folds) with threshold presence 
probabilities ranging from 0.05 to 0.5.

We found RF were generally more flexible for develop-
ment of non-linear fish-habitat relationships, and therefore 
the influence of model weighting was further explored with 
these models. Unweighted, weighted, and overweighted RF 
were fit with tenfold cross validation using one fold at a time 
to fit the models, and assessing model fit with the remain-
ing nine folds. Variable importance was assessed using 
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mean decrease in accuracy (MDA), which is the percent 
decrease in model accuracy in trees where the variable was 
not included. MDA values were corrected to a proportion by 
dividing each variable MDA value by the sum of MDA val-
ues for all variables. Two-way variable interactions were cal-
culated using Friedman’s H-statistic, which also ranges from 
zero to one (Friedman and Popescu 2008). To examine mod-
eled relationships between predictors and largemouth bass 
presence, each RF model (default, weighted, overweighted) 
was fit to the entire dataset and partial dependencies (ŷ) were 
calculated for each predictor-response combination, as well 
as two-way predictor interactions as a measure of seasonal 
habitat associations, or habitat suitability indices. Lastly, full 
RF models were used to make predictions for each season 
across the study area in Toronto Harbour to compare pre-
dictions amongst the weighting schemes. GLMM models 
were fit with the ‘lme4’ R package (Bates et al. 2015). RF 
were fit with the ‘randomForests’ package (Liaw and Wiener 
2002), model fit metrics were calculated with the ‘caret’ 
package (Kuhn et al. 2019), variable interaction values were 
calculated with the ‘iml’ package (Molnar 2019), and par-
tial dependencies were calculated with the ‘pdp’ package 
(Greenwell 2017).

Results

Over 9 years of tracking data resulted in 6,742,588 filtered 
detections of 144 largemouth bass at 67 acoustic receivers 
in 36 receiver nodes throughout Toronto Harbour (Appen-
dix S1; Fig. S1). Tracking durations were variable amongst 
individuals (514 ± 348 days; mean ± SD; 5–1250 day range; 
Appendix S1; Table S1, Fig. S3). Over time, largemouth 
bass were present at 23% of day/station combinations. 
GLMM and RF models with a range of weighting struc-
tures showed varied patterns of largemouth bass presence 
prediction rates depending on presence assignment threshold 
probability values (Fig. 1). Decreasing threshold values con-
sistently resulted in higher TPR, FPR and lower TNR and 
FNR with both model types, but with a far greater impact on 
GLMMs (Fig. 1). Interestingly, altering probability thresh-
olds with RF models had a limited capacity to achieve a 
range of TPR.

Unweighted GLMM and RF with a default threshold value 
of 0.5 had similar performance, including the highest accuracy 
of all models/thresholds (RF: 0.85; GLMM: 0.84; Fig. 2) but 
favoured the dominant class (absences), with high precision, 
specificity, and MDT, moderate Kappa and F1 scores, and 
low sensitivity, accuracy balance, and MST (see Table 1 for 
definition and calculation of fit metrics). Despite having high 
overall accuracy, sensitivity was low (RF: 0.40, GLMM: 0.43) 
indicating only 40–43% of true presences were predicted accu-
rately. Weighted models prioritize presence accuracy, hence, 

sensitivity increased drastically (RF: 0.77; GLMM: 0.79), with 
greater accuracy balance and a small increase in F1 score, but 
at a penalty to overall model accuracy (RF: 0.76; GLMM: 
0.74), specificity, and Kappa (Fig. 2). These differences were 
more pronounced in overweighted models, increasing sen-
sitivity (RF: 0.91; GLMM: 0.91) at the penalty of accuracy 
(RF: 0.64; GLMM: 0.63), precision, sensitivity, and accu-
racy balance. Decreasing probability thresholds for presence 
assignment generally had a similar effect to model weighting, 
and both combined had cumulative effects shifting models to 
higher sensitivity, but lower accuracy and precision. However, 
the effect of threshold variation was much greater in GLMM 
than RF (Fig. 2). Overall, weighted and overweighted GLMM 
and RF at a presence threshold of 0.5 had similar performance 
metrics and generally offered a better trade-off with sensitiv-
ity, precision, specificity, accuracy, and accuracy balance than 
decreasing model thresholds (Fig. 2).

Examining model weighting more closely with RF mod-
els, differently weighted models resulted in variations in 
variable importance and interaction scores (Fig. 3b) along 
with model fit metrics (Fig. 3a). Interactions between season 
and depth, SAV, and exposure were all important, as were 
all of the predictors alone, explaining a substantial amount 
of variation in largemouth bass occupancy (Fig. 3b). How-
ever, the order of predictor importance changed with differ-
ent model weighting.

Largemouth bass were generally present most often at 
sites in Toronto Harbour in the summer, spring, and fall 
seasons, with marked decline in the winter (Fig. 4). Large-
mouth bass associated most often with either very low or 
moderate to high SAV, moderately shallow water depths, 
and low exposure environments, although sampling of 
higher exposure locations was sparse (Fig. 4). Examining 
the interaction between season and SAV, different patterns 
were generated amongst model weightings (Fig. 5). The best 
fitting RF model, RF weighted, found consistently high use 
of moderate-high SAV habitats amongst seasons, with the 
highest association with high SAV in the summer, and very 
low SAV in all seasons but winter (Fig. 5). Use of moder-
ate water depths was more consistent seasonally (Fig. 5). 
The unweighted RF model generally failed to capture lar-
gemouth bass habitat associations, while the overweighted 
model exaggerated them, predicting greater probability of 
presences than raw data would suggest (Figs. 4, 5). This is 
reflected in the spatial–temporal patterns of model predic-
tion amongst seasons in Toronto Harbour (Fig. 6).

Discussion

Modeling the spatial distribution and habitat associations 
of wild animals is of major relevance to ecosystem manage-
ment and conservation. For example, understanding essential 
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habitat needed to complete life cycles enables development 
of habitat protection measures (Goodchild 2004; Levin and 
Stunz 2005; Rosenfeld and Hatfield 2006; Heinrichs et al. 
2010; Camaclang et al. 2015) and can also be used to iden-
tify opportunities for habitat restoration and enhancement 
(Miller et al. 2016). Advanced techniques like telemetry 

enable more extensive measurements of animal space use, 
habitat associations, and distributions than point estimates 
from in person sampling, but large and complex datasets 
require particular analytical techniques to translate these 
data into usable knowledge. Treating acoustic telemetry data 
as a presence/absence classification exercise and focusing 

Fig. 1   Generalized mixed effects model (GLMM) and random for-
ests (RF) model fit including true positive rate (TPR) false positive 
rate (FPR), true negative rate (TNR) and false negative rate (FNR) 
across a range of probability threshold values for predicting fish pres-
ences (left, center panels) and TPR vs FPR (receiver operating char-

acteristic; right panels). Weighted models are fit with penalization to 
prioritize the minority class where prediction accuracy is balanced 
amongst classes; overweighted models highly prioritize the minority 
class at 10:1
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Fig. 2   Model fit metrics for a GLMM and RF models with a range of weighting structures and presence probability thresholds (Cutoff). See 
Table 1 for definition of metrics
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on a variety of model fit metrics in non-training data, we 
demonstrated the importance of model tuning on derived 
habitat associations and predictions of spatial distribution 
using these techniques. Here we further discuss modeling 
considerations, including which model fit metrics should be 
the focus depending on the conservation application, as well 
as the ecological implications and further applications of our 
approach and findings.

Modeling considerations

In modeling species distributions and habitat associations, 
model fit is a universal concern regardless of which of the 
wide variety of model types are being applied (Elith et al. 
2006; Guillera-Arroita et al. 2015). The perils of focusing 
solely on overall model fit are well documented, especially 
when data are imbalanced (e.g., Fielding and Bell 1997; Ter-
mansen et al. 2006; Jiménez-Valverde and Lobo 2007; Velez 
et al. 2007). This was demonstrated with the largemouth 
bass telemetry dataset—the unweighted (default) RF model 
had the highest prediction accuracy (85% in non-training 
data), yet only 40% of the largemouth bass presences were 
classified accurately. The derived habitat suitability indices 
(Fig. 4) and spatial distribution predictions (Fig. 5) were 
therefore inaccurate, and application of this model for any 
environmental management purpose would likely be inef-
fective. Altering model probability thresholds for presence 
assignment, as well as model weighting to prioritizing accu-
rate classification of the minority class, both effectively 
addressed this issue with GLMM. However, RF were far 
less sensitive to probability thresholds and a limited range 
of TPR could be achieved without model weighting.

Weighting RF and GLMM models to balance class accu-
racy produced better models in terms of a complex set of fit 
metrics, warranting further discussion here. With classifica-
tion problems there are a wide range of model fit metrics 
available (e.g., Fielding and Bell 1997; Kuhn et al. 2019), 
of which we consider a subset of relevant ones (Table 1). 
Despite the overwhelming number of fit metrics available, 
at their core classification problems come down to the bal-
ance of true positives, false positives, true negatives, and 
false negatives, from which fit metrics are derived. Some 
of these also consider the prevalence of each level of the 
response variable in the dataset (e.g., Kappa). For conser-
vation issues related to animal distributions and habitat, in 
addition to overall model accuracy, researchers should focus 
on sensitivity (true presence accuracy), precision (predictive 
presence accuracy), and specificity (true negative accuracy), 
with a particular focus on the trade-off between sensitiv-
ity and precision. Although other commonly used metrics 
such as Area under the ROC curve (AUC), Kappa, and F1 
can be informative of overall model fit and are insensitive 
to species prevalence (Lawson et al. 2014), for ecological/

conservation applications it is also prudent to consider the 
optimal trade-off between sensitivity and precision (i.e., 
the location along the ROC curve) given their influence on 
derived habitat associations and spatial distribution predic-
tions (Figs. 3,4,5,6). In this way, consideration of model sen-
sitivity and precision may be warranted in many applications 
regardless of whether the data are imbalanced.

By fitting GLMMs with a random effect of receiver loca-
tion, they were capable of making similar quality of pre-
dictions as RF at the default probability assignment thresh-
old (0.5). However, this case was a very simple one with a 
minimal number of predictors; with more complex datasets 
machine learning models such as RF, boosted regression 
trees, and neural networks have a number of advantages 
over common frequentist-based models (Cutler et al. 2007; 
Elith et al. 2008; Christin et al. 2019). Importantly, SAV 
and water depth were highly correlated, which we accepted 
for making predictions with GLMMs, but would likely bias 
the predictor coefficients (Morrissey and Ruxton 2018). RF 
and other machine learning algorithms assume no relation-
ship between the predictors and response, but instead learn 
it algorithmically. They are generally more robust in this 
respect, enabling the inclusion of a large number of diverse 
predictor types to model complex, hierarchical relation-
ships (Breiman 2001; Cutler et al. 2007; Elith et al. 2008). 
Although not well illustrated with our relatively simple 
application here, more advanced machine learning algo-
rithms have many advantages for animal distribution and 
habitat models, especially for complex datasets derived from 
methods like telemetry. However, the relative insensitivity 
of RF to probability thresholds may result in poor model fit 
if continuous probability of occurrence is of interest (unless 
modelled explicitly), opposed to presence/absence (Pearce 
and Ferrier 2000). The major advantage that frequentist-
based and Bayesian inference-based approaches have over 
machine learning algorithms is the capacity to integrate 
random effects, correlation structures, and variance struc-
tures to account for dependencies and autocorrelation in the 
data (Bolker et al. 2009; Zuur et al. 2009, 2017). Gener-
ally, machine learning algorithms rarely consider this (but 
see Buston and Elith 2011). Model fit is certainly some-
thing modelers should always assess amongst the predic-
tors and over space and time where applicable. In this case 
we observed no obvious issues in this respect with either 
model type, perhaps due to the random subsampling regime 
implemented with cross validation, as well as the scale of the 
predictors chosen (i.e., season, rather than day).

A final modelling consideration is that animal presences 
are rarely, if ever, 100% detectable. It is for this reason 
that occupancy models often integrate uncertainty meas-
ures for measured ‘absences’ by generating presences at a 
frequency relative to the inverse of detection probability 
(MacKenzie et al. 2002; Lamothe et al. 2019). Acoustic 
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telemetry detection efficiency does vary predictably with 
environmental conditions (Brownscombe et al. 2020), and 
analytical approaches have been developed to integrate 
this in some contexts (e.g. Winton et al. 2018), yet, to date 
we are unaware of any studies that have integrated it into 
telemetry-based habitat or occupancy models. Temporal 
scale is likely an important consideration; for example, in 
our application with largemouth bass we focused on daily 
level presence/absence, with which only two detections 
were required on a given day to assign a presence. This 
approach may help to buffer the impacts of variations in 
detection efficiency, but we are not aware of any studies 
that have examined how telemetry receiver detection effi-
ciency varies at this scale, nor do we have the data avail-
able to do so.

Applications

The optimal balance between model sensitivity and preci-
sion discussed above ultimately depends on the conserva-
tion application. In some scenarios, having a highly sensitive 
model would be a precautionary approach. For example, in 
a situation where environmental managers are advising a 
shoreline development project, they may wish to ensure a 
species (perhaps a highly sensitive species at risk) is unlikely 
to be occupying this location/habitat at a specific time to 
advise when and where the work can be completed. Over-
weighting a model to have high sensitivity for making pre-
dictions would be more precautionary, despite the fact that 
precision would be low, i.e., there is a reasonable chance the 
species is not there. In this case false negatives are more of 
a conservation concern. Highly sensitive models may also 

Fig. 3   a Model fit metrics and 
b predictor importance values 
from random forest models with 
a range of weighting structures
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help to buffer detection probability errors, although this has 
not been explored experimentally.

In other contexts, practitioners may prefer to prioritize 
model precision over sensitivity. For example, overestima-
tion of species distributions could create pitfalls in conser-
vation planning by focusing conservation and management 
efforts (e.g., habitat restoration) on the wrong areas (Loiselle 
et al. 2003; Rondinini et al. 2006). Similarly, in working with 
species at risk, models that generate overestimates of species 
distribution may result in failures to take necessary conser-
vation actions. In such cases, models with higher precision 
may be more precautionary. Notably, in population recovery 
contexts, predicted suitable habitats may be worthwhile of 
resource allocation even if they are not currently occupied.

Analytical approaches applied to telemetry data com-
monly focus on modeling animal movement and space use at 

broader temporal scales (Brownscombe et al. 2019; Whoris-
key et al. 2019). Using kernel density estimation methods 
to estimate broader space use outside of acoustic receiver 
stations, Midwood et al. (2019) found similar patterns of 
largemouth bass space use in Toronto Harbour using the 
same dataset applied here. However, a major notable differ-
ence is in movement pathways, where total detections and 
residency were low, but occupancy at the daily level was 
frequent. Hence, the occupancy modeling approach applied 
here identified these deeper-water habitats as important and 
predicted largemouth bass presence there. In terms of man-
agement applications, movement pathways are an essential 
component of critical habitat (Rosenfeld and Hatfield 2006) 
and may also be well captured using network methods (Finn 
et al. 2014; Jacoby and Freeman 2016; Whoriskey et al. 
2019).

Fig. 4   Partial dependency plots of marginal predicted values (ŷ; colors) from random forests models of largemouth bass site occupancy amongst 
environmental and seasonal predictors including raw data fit with a loess smoother (black)
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There is a wide range of applications of species occu-
pancy models, of which some cursory applications for gen-
erating species distribution and habitat associations are 
illustrated here. In the context of fish habitat management, 
habitat suitability indices (HSI) play an important role for 
understanding fish-habitat relationships for managing hab-
itat protection and restoration (Ahmadi-Nedushan et al. 
2006; de Kerckhove et al. 2008). By focusing on presence/
absence of largemouth bass relative to habitat conditions 

and seasons, we generated a type II HSI, a measure of 
habitat use, rather than a type III HSI, which represents 
habitat selection relative to availability (de Kerckhove 
et al. 2008). The advantages of one approach over the other 
appear to vary depending on context (Long et al. 2009). 
There are methods readily available to calculate habitat 
selection using acoustic telemetry data, which requires 
data on the habitat availability in the system (e.g., Griffin 
et al. 2020).

Fig. 5   Partial dependency plots of marginal predicted values (ŷ) from random forests models of largemouth bass site occupancy showing inter-
actions between season, submerged aquatic vegetation (%), and water depth (m)
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With our dataset we were able to determine that large-
mouth bass occupied moderately shallow, high SAV habitats 
with low wind exposure most frequently, followed by deep, 
low SAV habitats, with lower use of intermediate habitats. 
These moderately shallow-high SAV-low exposure envi-
ronments were sheltered embayments in Toronto Harbour 
(Fig. 6), which were especially important largemouth bass 
habitats in the summer season (Fig. 5). Largemouth bass 
presence was markedly lower in the winter season, which, 
based on occupancy alone, might lead to the conclusion 
they are exiting Toronto Harbour. However, patterns of 
movement suggest they remain in the Harbour, but are just 

rarely detected by the receiver configuration (Midwood et al. 
2019). This highlights the need to combine a range of move-
ment and occupancy approaches to understand habitat use 
at multiple scales.

Summary

We applied several modelling techniques with a range 
of tuning parameters to assess their impact on derived 
habitat and species distribution models using a long-term 
fish tracking data set. The findings highlight the poten-
tial for telemetry data to contribute to the development 

Fig. 6   Predicted largemouth bass occupancy probabilities amongst 
seasons with random forests models with three different weighting 
structures including unweighted (RF; red), weighted for class balance 

(RF weighted; green) and overweighted with a focus on presence 
accuracy (RF overweighted; blue)
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of comprehensive models of habitat and distribution with 
applicability to environmental management and conser-
vation. However, they also emphasize the importance 
of appropriate model tuning for effective application. 
Although there are many model fit metrics available, we 
suggest the primary concern for species occupancy appli-
cations should be, in addition to accuracy, model sensitiv-
ity and precision, with which there is a general trade-off 
between true positive and predictive positive accuracy. 
This extends beyond model selection (e.g., AUC), to 
model tuning to select the optimal trade-off for the appli-
cation. GLMMs produced similar quality models to RFs 
in this simple application, although RF and other more 
complex algorithms may be more robust to complex data-
sets. In future applications of telemetry to model habitat, 
researchers may consider integrating measures of detec-
tion efficiency to account for false absences, as well as the 
potential for model weighting and temporal averaging to 
correct for this issue. Our findings highlight the need to 
consider more complex aspects of model fit than overall 
accuracy in many applications modelling animal distribu-
tions and habitat associations.
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tary material available at https://​doi.​org/​10.​1007/​s00027-​021-​00797-5.
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