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Abstract
Freshwater biodiversity is under great threat across the globe as evidenced by more severe declines relative to other types

of ecosystems. Some of the main stressors responsible for these concerning trends is habitat fragmentation, degradation, and
loss stemming from anthropogenic activities, including energy production, urbanization, agriculture, and resource extraction.
Habitat protection and restoration both play an integral role in efforts to save freshwater biodiversity and associated ecosystem
services from further decline. In this paper, we summarize the sources of threats associated with habitat fragmentation, degra-
dation, and loss and then outline response options to protect and restore freshwater habitats. Specific response options are to
legislate the protection of healthy and productive freshwater ecosystems, prioritize habitats for protection and restoration, en-
act durable protections, conserve habitat in a coordinated and integrated manner, engage in evidence-based restoration using
an adaptive management approach, ensure that potential freshwater habitat alterations are mitigated or off-set, and future-
proof protection and restoration actions. Such work should be done through a lens that engages and involves local community
members. We identify three broad categories of obstacles that could arise during the implementation of the response options
outlined: (a) scientific (e.g., inaccessible data or uncertainties), (b) institutional and management (e.g., capacity issues or differ-
ing goals across agencies), and (c) social and political (e.g., prioritizing economic development over conservation initiatives).
The protection and restoration of habitats is key to Bend the Curve for freshwater biodiversity, with a comprehensive, con-
nected, and coordinated effort of response options needed to protect intact habitats and restore fragmented, degraded, and
lost habitats and the biodiversity and ecosystem services that they support.
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Introduction
Despite covering a very small proportion of the Earth’s sur-

face, freshwater ecosystems support a high amount of bio-
diversity (WWF 2022), providing important ecosystem func-
tions and services (Postel and Carpenter 1997; Creed et al.
2017) and forming the foundation of livelihoods for bil-
lions of people (Lynch et al. 2016). Unfortunately, freshwa-
ter ecosystems and their biota are facing many threats and
are in a crisis state (Harrison et al. 2018; Tickner et al. 2020).
Specifically, freshwater species are experiencing rapid popu-

lation declines of 83% (WWF 2022), and habitat fragmenta-
tion, degradation, and loss have been identified as the lead-
ing threat to freshwater biodiversity (Dudgeon et al. 2006;
Reid et al. 2019). Given the remarkable declines of freshwa-
ter species, it is imperative that we protect remaining intact
systems, avoid further habitat deterioration, and promote re-
covery (Tickner et al. 2020).

Global events and initiatives have been launched to
mitigate the ongoing loss of freshwater biodiversity, in-
cluding the UN Convention on Biodiversity (CBD), the UN
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Decade on Biodiversity (2011–2020), and the UN Decade
on Ecosystem Restoration (UN DER; 2021–2030). A major
constraint on the efficacy of these global initiatives to “Bend
the Curve” and reverse worldwide declines in freshwater
biodiversity loss is that until December 2022, freshwater
ecosystems were not explicitly mentioned in the UN CBD
(https://www.worldwildlife.org/blogs/sustainability-works/po
sts/inland-waters-finally-get-the-mention-they-deserve). Fur-
ther, the global agenda to protect 30% of lands and waters
by 2030 (i.e., 30 × 30) and the UN DER signify the chal-
lenges faced in curbing freshwater biodiversity losses and
restoring species populations (Moravek et al. 2023). As
we aim to elevate the profile of freshwater biodiversity,
we are starting to see positive trends in protection and
restoration efforts at local, regional, and global scales. For
example, there have been increasing numbers of bright
spots of freshwater habitat restoration, including the
provision of fishways (e.g., Baumgartner et al. 2014), the
removal of dams in the US and Europe to restore habitat
connectivity (e.g., Bellmore et al. 2017), and campaigns to
protect a million miles of rivers by 2030 in the US (https:
//www.americanrivers.org/protect-1-million-miles-of-rivers/).
The UN Water Conference, held in March 2023, included the
launch of the Freshwater Challenge, a nation-driven initiative
that aims to leverage the support needed to bring 300,000 km
of rivers and 350 million hectares of inland waters un-
der restoration by 2030 (https://www.unep.org/news-and-
stories/press-release/largest-river-and-wetland-restoration-in
itiative-history-launched-un).

Freshwater habitat is being identified explicitly as a pri-
ority for protection and restoration. Habitat protection has
been a dominant strategy for conservation of biodiversity,
where human disturbance is minimized or eliminated from
specific areas of the environment (Crivelli 2002). Relative
to marine protected areas, freshwater protected areas re-
main an underused strategy despite evidence suggesting
that they may be effective at reducing the impacts asso-
ciated with anthropogenic stressors (Saunders et al. 2002;
Suski and Cooke 2007; Azevedo-Santos et al. 2019). Habi-
tat protection, in the sense of protected areas, is usually fo-
cused on preserving areas that are more intact with lim-
iting extraction of biological resources. More recent devel-
opments of protection strategies are more broad ranging,
for example, including other effective area-based conserva-
tion measures (OECMs) and strategies such as “Rights of
Rivers” that may include protection of less intact ecosys-
tems (https://www.nature.org/content/dam/tnc/nature/en/doc
uments/Pathway_for_Inland_Waters_Nov_2022.pdf). On the
other hand, habitat restoration is usually focused on assisting
the recovery of ecosystems back to a more undisturbed state
through management actions (Hobbs and Harris 2001). Habi-
tat restoration and protection can be combined into multi-
dimensional strategies that can extend beyond habitat to spe-
cific species (e.g., headstarting imperiled freshwater turtles
in captive breeding facilities; Mullin et al. 2023) and entire
ecosystems (e.g., restoration of the lower Danube River across
multiple countries; Schiemer et al. 1999). Taken together,
these two strategies can mitigate past and present anthro-
pogenic stressors and reduce the risk of future threats.

In this paper, we offer a new vision for freshwater habitat
protection and restoration that is ambitious yet practical in
efforts to Bend the Curve. Although in Tickner et al. (2020),
the priority Action refers to critical habitat, we have opted to
examine habitat more broadly, due to variations in definition
and legality across species, populations, and political bound-
aries (Hagen and Hodges 2006; Rosenfeld and Hatfield 2006).
We first provide an overview on the impact of habitat frag-
mentation, degradation, and loss on increasingly imperiled
freshwater species. From there, we identify response options
that aim to prevent further biodiversity loss by protecting in-
tact habitats and restoring those habitats that are degraded
or destroyed. We share case studies of successful implementa-
tion of these response options, describing the conditions and
contexts that have enabled that success. We underscore the
need to go back to basics during the implementation of these
response options——starting with the identification of ecologi-
cal attributes and identification of key species that can drive
the design of effective interventions. This paper, in combina-
tion with the other five Emergency Recovery Plan Actions,
offers guidelines required to Bend the Curve to save fresh-
water biodiversity. Given that habitat protection and restora-
tion are inherently connected to other Actions (e.g., restor-
ing connectivity——see Thieme et al. 2023; use of protected ar-
eas to prevent overexploitation of biological and aggregate
resources——see Cooke et al. in press), we acknowledge that
there is perhaps more overlap between this Action and oth-
ers emphasizing the need to implement the Actions in a co-
ordinated manner.

The issue
Freshwater ecosystems include many different types of

habitats, including rivers, wetlands, ponds, streams, and
lakes, which collectively support at least 126 000 species, rep-
resenting 10% of all known species on Earth (Balian et al.
2008) from glacial fed streams in high mountains to carbon-
storing peatlands to brackish estuaries where freshwater
rivers meet saline waters. Collectively, there are three cate-
gories of freshwater ecosystems: lentic (i.e., ponds or lakes),
lotic (i.e., rivers or streams), and palustrine habitats (e.g., soils
that are at least partially inundated, wetlands). Societies and
economies across the globe rely on the estimated 20–32 dif-
ferent ecosystem services provided by freshwater ecosystems
(Postel and Carpenter 1997; Vári et al. 2022). These ecosystem
services include provisioning (i.e., food, fiber, and drinking
water), regulating (i.e., flood and drought mitigation, erosion
control, and water quality), and cultural (i.e., recreational,
symbolic, and well-being) services. There will always be in-
herent conflict between humans and organisms due to the
mutual and perpetual need for freshwaters (Vári et al. 2022).
Yet, for sustainable ecosystem management and water secu-
rity, we should strive to strike a balance between all com-
peting interests (Zeitoun 2014). Further, freshwater ecosys-
tems have suffered more extensive declines relative to other
ecosystem types. Although there are many different causes
for biodiversity declines (see Dudgeon et al. 2006; Reid et al.
2019), habitat damage and destruction are among the most
devastating.

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
99

.2
55

.1
96

.2
14

 o
n 

02
/2

0/
24

http://dx.doi.org/10.1139/er-2023-0034
https://www.worldwildlife.org/blogs/sustainability-works/posts/inland-waters-finally-get-the-mention-they-deserve
https://www.americanrivers.org/protect-1-million-miles-of-rivers/
https://www.unep.org/news-and-stories/press-release/largest-river-and-wetland-restoration-initiative-history-launched-un
https://www.nature.org/content/dam/tnc/nature/en/documents/Pathway_for_Inland_Waters_Nov_2022.pdf


Canadian Science Publishing

Environ. Rev. 00: 1–19 (2023) | dx.doi.org/10.1139/er-2023-0034 3

Population viability is highly dependent on the availabil-
ity of habitat. Habitat is defined as the resources and envi-
ronmental conditions (i.e., physical, chemical, and biologi-
cal) required for individuals to persist (Hall et al. 1997). Habi-
tats can be broken down into patches, where animals may
move among them to achieve at least one ecological func-
tion linked to demographic success (e.g., reproduction, sur-
vival, growth, or refuging) (Lapointe et al. 2014). Freshwater
habitats can be negatively impacted by anthropogenic activ-
ities through direct (e.g., substrate extraction; see Cooke et
al. in press) or indirect (e.g., forestry or agriculture within
the watershed) manipulations (Dudgeon et al. 2006). Anthro-
pogenic effects on habitats can be categorized into the frag-
mentation (i.e., configuration), degradation (i.e., quality), or
loss (e.g., infill) of habitats, as well as the cumulative effects
of anthropogenic stressors that have deleterious impacts on
species and the ecosystems they inhabit.

Habitat fragmentation (which is related to habitat loss)
can occur when patches of contiguous habitat become al-
tered, resulting in smaller, more disparate areas, therefore
negatively impacting connectivity. A highly recognizable ex-
ample of habitat fragmentation within freshwater ecosys-
tems are dams used for hydropower, irrigation, water con-
trol, weirs, and the like on rivers, but other types of bar-
riers include crossings (e.g., roads or railway), water with-
drawals, or water quality (e.g., thermal or chemical barri-
ers). Decreased connectivity via habitat fragmentation im-
pacts the distribution and movement of aquatic organisms, as
well as energy/nutrient exchange. For freshwater fishes, de-
creased connectivity has been shown to reduce growth rates,
decrease feeding, and force individuals into sub-optimal en-
vironments, which negatively impact performance and ulti-
mately populations, putting species in jeopardy (Jeffrey et al.
2015).

Habitat degradation can occur when anthropogenic activ-
ities decrease the quality of the habitat (while the quantity
may remain intact), which may still be able to support some
of the original biodiversity (Dudgeon et al. 2006). Specifi-
cally, the physical, chemical, or biological attributes within
that habitat become altered (Minns 1997). The degradation
of freshwater habitats can occur from source (e.g., wastew-
ater treatment plant on a river) or non-point source (e.g.,
the application of fertilizer to agricultural fields within the
watershed) pollutants (Albert et al. 2021). For example, the
occurrence of Eurasian otters (Lutra lutra) in Spain was di-
rectly linked to several habitat quality measures: water pol-
lution, conductivity, temperature, and flow (Prenda et al.
2001).

Habitat loss occurs when destroyed areas no longer pro-
vide many of the resources or conditions of the pre-existing
ecosystem, ultimately leading to a decrease in the quantity
of habitat (Pardini et al. 2017). Examples of anthropogenic ac-
tivities that contribute to the reduction of freshwater habitat
quantity include land infilling or dredging, as well as water
withdrawal, draining, or diversions. Habitat loss is not lim-
ited to the freshwaters alone; destruction of riparian habi-
tat (e.g., through deforestation) or floodplains can also have
a significant negative impact on freshwater ecosystems (Dala-
Corte et al. 2020). Habitat loss can have devastating impacts

on populations, lead to species endangerment, and have cas-
cading adverse effects throughout freshwater ecosystems. In-
deed, both fish abundance and biomass have been positively
linked to the quantity of available suitable habitat (Lapointe
et al. 2014).

It is rare that freshwater habitat alterations occur indepen-
dently of each other. Multiple sub-lethal alterations can ac-
cumulate, affecting freshwater biodiversity and their ecosys-
tems (Langer 2000). Unfortunately, due to the interacting na-
ture of these multiple alterations that are now being exac-
erbated by climate change, it can be difficult to assess and
manage, although their importance has received increased
recognition as of late (e.g., the inclusion of inland waters in
the UN CBD or Fisheries and Ocean Canada’s Consideration of
Cumulative Effects; see https://www.dfo-mpo.gc.ca/csas-sccs/
Publications/SAR-AS/2022/2022_055-eng.html).

Response options
Tickner et al. (2020) identified the Action of protecting and

restoring habitats to Bend the Curve for global freshwater
biodiversity. To expand upon this Action, we identify seven
response options (Fig. 1) and explore the application of each
response option through case studies, providing examples of
protection (Table 1) and restoration (Table 2). All response op-
tions must be founded on the best available scientific evi-
dence. Readers are encouraged to consult Conservation Ev-
idence (summaries of evidence on conservation actions; see
https://www.conservationevidence.com/) or evidence synthe-
ses conducted to the standards of the Collaboration for En-
vironmental Evidence (an independent source of reliable evi-
dence informing decision-making in environmental manage-
ment; see https://environmentalevidence.org/). Those sources
of evidence should be supplemented with knowledge of com-
munity members (including rights holders) and practition-
ers given that much of the knowledge about protection and
restoration efforts (especially failed attempts) do not appear
in traditional peer-reviewed outlets.

1. Legislate the protection of healthy and
productive freshwater ecosystems

The most straightforward measure for protecting fresh-
water ecosystems is to have legislation, other policies, and
agreements that acknowledge habitat as the foundation for
healthy and productive freshwater ecosystems (Lapointe et
al. 2014). Yet, in practice, this is not always simple, given
complicating factors such as competing interests, weak gov-
ernance structures, prioritizing development over environ-
mental protections, corruption, and so on. We recognize that
development of infrastructure (e.g., housing, hydroelectric
capacity, irrigation systems, and roads) is essential to human
progress, and questioning such activities is beyond the scope
of this paper (see Forman 1993; Parisi 2022). However, when
such development activities are being considered, it is cru-
cial to ensure that all efforts are taken to consider the po-
tential consequences of such activities, evaluate alternative
sites (especially in the context of hydropower) and forms of
development, and embrace mitigation strategies (e.g., Robec
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Fig. 1. Response options to Bend the Curve for freshwater biodiversity through freshwater habitat protection and restoration.

and Hanson 2009; Person et al. 2014) or compensation efforts
(off-setting; Moilanen and Kotiaho 2018; see Guillet and Se-
mal 2018 for critique of off-setting; Accatino et al. 2018; Creed
et al. 2022) that collectively achieve no net loss of freshwater
habitats.

Around the globe, protection efforts for freshwater habi-
tat range from reasonably robust to entirely absent (Higgins
et al. 2021; Perry et al. 2021a). Creating a minimum level of
protection (Yagerman 1990) and embedding that within all
government bodies (Moynihan and Magsig 2020) would be a
significant advance over the status quo. In more recent years,
there have been increasing actions to legally grant rivers
personhood status (e.g., in New Zealand, India, Australia,
and Ecuador), which transforms these ecosystems from be-
ing subjects of rights to a legal entity that owns their rights
(see Table 1; Hutchison 2014; Clark et al. 2019; Cyrus R. Vance
Center for International Justice 2020). Nonetheless, it is one
thing to have such protective legislation in place, but it is an-
other to provide developers (proponents) and regulators with
functional tools to operationalize policies in ways that yield
desired goals (e.g., Toews and Brownlee 1981; Braden et al.
1989; Clare and Creed 2022). For example, if legislation and
regulations are in place, there needs to be mechanisms to en-
sure compliance (Quigley and Harper 2006). This means that
institutions need compliance staff as well as the necessary

legal mechanisms to bring charges or levy penalties. When
charges are laid, it then requires the judiciary to take those
cases seriously rather than dismiss them to focus on other so-
cietal criminal issues (e.g., violence and theft). Judicial tone is
often dictated by societal values (Mishler and Sheehan 1996),
emphasizing the role of public and politicians in recogniz-
ing the value of protecting freshwater habitat (Cooke et al.
2013). In summary, protecting individual freshwater species
has value but given that all aquatic life is dependent upon
freshwater habitat, efforts that protect habitat have manifold
benefits that transcend species while also benefiting human-
ity. Making freshwater habitat protections explicit and sup-
ported by all branches of government (executive, legislative,
and judicial) and spanning levels (international to regional)
is essential.

Case study: legislating minimal flows for
ecological protection in Mexico

The San Pedro Mezquital river (SPM) crosses the western
Sierra Madre connecting the Chihuahuan Desert in the Mexi-
can highlands with the wetland of international importance,
Marismas Nacionales Nayarit Biosphere Reserve (200,000 ha
Ramsar Site 732; see Fig. 2A). Given the role that instream wa-
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Table 1. Examples of habitat protection focused on various freshwater taxa.

Location of protected habitat Taxa Details Reference

Protected areas throughout
China

Amphibian Predicted declines of amphibian species
richness were lower in protected versus
unprotected habitats

Chen et al. (2017)

Protected areas across Myanmar Bird Woolly necked storks (Ciconia episcopus) used
wetlands more inside protected areas
compared to outside

Non and Sundar (2020)

Phu Luang Wildlife Sanctuary,
Thailand

Crustacean Six species of freshwater crabs will lose the
amount of suitable habitat within protected
areas under climate change, while two
species will experience gains

Yousefi et al. (2022)

Freshwater protected areas in
Ontario, Canada

Fish Freshwater protected areas resulted in higher
abundances for largemouth bass (Micropterus
salmoides) and shiner species, with evidence of
spillover to adjacent areas

Zolderdo et al. (2019)

Periyar Tiger Reserve, Western
Ghats, India

Fish Within this key biodiversity area (as designated
by the IUCN), eight endangered fish species
have triggered additional protection under
the Alliance for Zero Extinction

Molur and Raghavan (2014)

Mae Ngao Community Fish
Reserve, Thailand

Fish This OECM is a fisheries reserve that is
managed by Indigenous P’ganyaw (Karen)
communities where they enforce boundaries,
develop penalties for noncompliance, and sell
licenses for angling

Koning et al. (2020)

Keibul Lamjao National Park
(Ramsar site), India

Insect While the protected site did support aquatic
insect diversity, they were impacted by
anthropogenic activities outside the
protected areas in the watershed

Takhelmayum and Gupta
(2015)

Manu National Park, Peru Mammal Giant otter (Ptreronura brasiliensis) are
particularly sensitive to human disturbance,
emphasizing the importance of protected
areas

Groenendijk et al. (2014)

Kejimkujik National Park, Nova
Scotia, Canada

Reptile Protection of at-risk Blanding’s turtles
(Emydoidea blandingii) within a national park
was required to mitigate against depredation
of eggs

Standing et al. (2000)

5-Country Biosphere Reserve
Mura–Drava–Danube, Europe

Multi-species Protection of freshwater lotic and floodplain
habitats for various endangered species at a
UNESCO OECM that connects Austria,
Croatia, Hungary, Serbia, and Slovenia

Köck et al. (2022)

Riparian Zones, Mongolia Multi-species The Mongolian government has designated
millions of hectares of riparian habitats
through OECM to protect aquatic habitat,
water quality, and connectivity from mining
activities and development

The Nature Conservancy,
Conservation
International, IUCN
World Commission on
Protected Areas and
WWF (2022)

Whanganui River, New Zealand Multi-species The river was granted legal personhood status,
changing it from a property subject to rights
to a person who is an owner of rights.

Hutchison (2014)

Note: Although the application of protected areas within freshwaters remains underutilized, this is a promising strategy that has been used more extensively throughout
terrestrial and oceanic ecosystems. More research is required to improve the implementation and efficacy of protected areas. OECMs = other effective area-based
conservation measures.

ter, sediments, and nutrients play in Marismas Nacionales,
flow variability of discharging rivers is a protected area man-
agement plan milestone for sustaining the crucial habitat of
aquatic species, the ecosystem’s ecological integrity, wetland
dynamics, and related environmental services (SEMARNAT-
CONANP 2013). In 2014, the SPM river became the first wa-
tershed out of nearly 300 in Mexico with a water reserve
enacted for environmental protection for about 84% of the
mean annual runoff based on current flow regime attributes
and components (Presidencia de la República 2014; Moir et

al. 2016; Harwood et al. 2017; Salinas-Rodríguez et al. 2018,
2020). Such an amount of water for the environment protects
the riverine ecosystem against unsustainable use rates. Ac-
cording to Mexican legislation, an environmental water re-
serve (EWR) is the volume of water to “guarantee minimal
flows for ecological protection, including the conservation
or restoration of vital ecosystems” (National Water Law, Ar-
ticle 41; Presidencia de la República 1992), and is determined
based on the technical norm or standard for conducting en-
vironmental flow assessments (Barrios Ordóñez et al. 2015;

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
99

.2
55

.1
96

.2
14

 o
n 

02
/2

0/
24

http://dx.doi.org/10.1139/er-2023-0034


Canadian Science Publishing

6 Environ. Rev. 00: 1–19 (2023) | dx.doi.org/10.1139/er-2023-0034

Table 2. Examples of targeted restoration or enhancement activities focus on a specific site or taxa.

Restoration activity Taxa Details Reference

Pond and wetland creation
and enhancement Amphibian

Crested newt (Triturus cristatus) and the common spadefoot toad
(Pelobates fuscus) in southern and southeastern Estonia;
breeding activity and population size increased with
restoration

Rannap et al. 2009

Wetland and floodplain
restoration

Bird Various freshwater waterbirds benefit from restoration of
wetlands and floodplains

Hagy et al. 2017

Stream restoration benefits
crayfish populations
when added to streams

Crustacean
Crayfish (Paranephrops planifrons) benefitted from addition of

natural wood products to streams in New Zealand
Parkyn et al. 2009

Wood addition to create
complex habitat for fish

Fish Wood led to increases in juvenile salmonid biomass and
abundance in an Oregan, USA coastal stream

Johnson et al. 2005

Pond restoration (planting
of submergent
vegetation)

Insect Odonata biodiversity in ponds in southern Germany increased
with restoration of shoreline vegetation

Janssen et al. 2018

Using beavers to aid in
habitat restoration

Mammal The re-introduction of Eurasian beavers (Castor fiber) to an
agriculturally degraded fen-assisted expedited restoration

Law et al. 2017

Captive breeding of
imperiled freshwater
mussels

Bivalve Freshwater pearl mussel (Margaritifera margaritifera) can be
successfully reared and raised in captivity for eventual
release for targeted restoration projects where they have
been extirpated

Gum et al. 2011

Wetland creation benefits
at-risk turtles

Reptile Wetlands created were colonized and used by three species of
freshwater turtles in Ontario, Canada

Dupuis-Desormeaux
et al. 2018

Note: Alone, these actions are insufficient to restore freshwater biodiversity, but when aggregated and combined with other broader scale restoration and protection
initiatives, they can have substantial benefit. It is important to note that context matters such that not all restoration and enhancement activities will be successful or
achieve meaningful conservation gains. Indeed, some activities intended to benefit biodiversity may in fact do harm (Cooke et al. 2018). Building a robust evidence base
to enable evidence-based decision-making is necessary to ensure limited resources directed toward restoration or enhancement activities are effective.

Salinas-Rodríguez et al. 2018, 2020). To date, this EWR in this
river successfully coexists with two other reserves, one for
domestic-urban use and the other for public hydropower use.
Although the latter was also legitimately enacted, the EWR
supporting environmental flows prescription has proven to
be an effective legislative tool to guarantee healthy aquatic
habitat against unsustainable water infrastructure as it is
grounded on flow–ecology relationships. Despite the Mexican
government having reserved water for electricity generation
in the SPM, “Las Cruces” hydropower project was rejected
by the environmental authority because its design would
have compromised such critical relationships to sustain habi-
tat functioning in the wetland of international importance,
Marismas Nacionales (National Marshlands) (Opperman et
al. 2018, 2019; Salinas-Rodríguez et al. 2020, 2021). As a re-
sult, the “Las Cruces” hydropower project in the SPM was
rejected by the environmental authority due to the fact it
would have compromised critical processes that sustain habi-
tat functioning in the wetland of international importance
Marismas Nacionales (National Marshlands) (Opperman et
al. 2018, 2019; Salinas-Rodríguez et al. 2020, 2021). Among
the many biodiversity and ecosystem service benefits, San
Pedro’s EWR secures the water flow connectivity along its
main course and its floodplain. Sediment transport in the
river and nutrient deposition in its delta provide suitable
aquatic habitat conditions in 65–175 km2 of the river’s flood-
plain ruled by the set of peak flood events and instream flows
that sustain the salinity gradient of nearly 63 ,600 ha of 2–
8 m height mangrove forest with three species-differentiated
freshwater requirements. Such conditions support up to 50
species of plants, macroinvertebrates, and fishes surveyed in
riparian and wetland freshwater and brackish environments.

This includes 37 species protected by international listings
and 6 species of fishes that are strictly freshwater-dependent
(Salinas-Rodríguez et al. 2018, 2021).

2. Prioritize habitats for protection and
restoration

Freshwater ecosystems across the world are poorly pro-
tected (Abell 2002; Finlayson et al. 2018), having experienced
disproportionately larger habitat loss compared to other
ecosystems (Dudgeon et al. 2006). It is crucial to increase mit-
igative actions that protect and restore freshwater habitat.
With limited funding and capacity (Lapointe et al. 2014), it
is important to allocate resources for freshwater habitat pro-
tection and restoration in an efficient and effective manner
(Golden et al. 2017; Proctor et al. 2022). Due to the uneven al-
location of resources across freshwater ecosystems, taxa, and
populations (Noss et al. 2009), both scientists and decision-
makers have determined that prioritization is required to
minimize biodiversity loss (Bottrill et al. 2008). Conservation
projects can be prioritized using methods such as biodiver-
sity indices (e.g., richness; Jenkins et al. 2015; Zaffaroni et al.
2019), optimizing algorithms (Hanson et al. 2019), or ranking
projects based on efficiency and effectiveness (Cawardine et
al. 2019). Further, decisions regarding protection and restora-
tion of freshwater habitat often occur rapidly and in the face
of uncertainty (e.g., species lacking sufficient data). It is there-
fore important that factors such as costs, benefits, goals, and
values (i.e., of the community and (or) stakeholders) are taken
into consideration in addition to more traditional aspects
during prioritization (Bottrill et al. 2008). While the priori-
tization process may be time consuming, frameworks such

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
99

.2
55

.1
96

.2
14

 o
n 

02
/2

0/
24

http://dx.doi.org/10.1139/er-2023-0034


Canadian Science Publishing

Environ. Rev. 00: 1–19 (2023) | dx.doi.org/10.1139/er-2023-0034 7

Fig. 2. (A) Wetland of international importance, Marismas Nacionales, dependent on instream flows from the environmen-
tal water reserve of the San Pedro Mezquital River to sustain habitat functioning (Photo: A. Martínez/WWF). (B) Members a
community fishery committee (CFi), Cambodian Department of Fisheries Inland Fisheries Research and Development Insti-
tute, Conservation International, and USAID-funded Wonders of the Mekong Project inspect and map a corner marker for
community-establish no-take fishing reserve in Tonle Sap Lake near Peam Bang, Cambodia. (C) Implementation of the success-
ful Sea to Lake Hume fish passage program that constructed 15 fishways to open 2225 km of the Murray River in south-eastern
Australia required extensive collaboration across four jurisdictions, many agencies and between fish ecologists, managers, and
engineers (Photo: J. O’Connor, ARI). (D) Salmonid-bearing streams have been the focus of extensive restoration efforts, and in
the process, a large evidence base has been generated through research to guide future initiatives (Photo: S. Landsman). (E)
Construction of offsetting spawning habitat for Lake Sturgeon (Acipenser fulvescens) in the tailrace downstream of a powerhouse
during its development in 2019 at Keeyask Generating Station, Nelson River, Manitoba, Canada (Photo: Keeyask Hydropower
Limited Partnership).

as Structured-Decision-Making can expedite decisions while
maintaining a deliberate process (Gregory et al. 2012). It is
impossible to protect every intact freshwater habitat or re-
store every degraded freshwater habitat, so we argue that
prioritization will play an important role in the protection
and restoration of freshwater ecosystems (Visconti et al. 2019;
Guetz et al. 2022).

Case study: prioritizing protected areas based on
cross-taxa interactions

Prioritization can be used to inform conservation deci-
sions, including the identification of areas that could be pro-
tected or restored. Prioritization can be based on various
criteria, including the belief that a species is becoming en-
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dangered, that an area has significant biodiversity, or that
an area’s biodiversity offers significant ecosystem services
(McGowan et al. 2017). For example, Nogueira et al. (2023) ex-
amined biotic interactions across multiple freshwater species
in the Duoro River basin within Spain and Portugal to guide
the establishment or enlargement of protected areas. Imper-
iled bivalves, including the freshwater pearl mussel (Margar-
itifera margaritifera), have a parasitic stage that includes its
attachment to specific fish species, including brown trout
(Salmo trutta) and Atlantic salmon (Salmo salar), among oth-
ers. In addition to considering these three species indepen-
dently, their biotic interactions were incorporated into spa-
tial prioritization analysis as the mussels are fully dependent
on the fishes to complete their life cycle. Species distribu-
tions were modeled based on field surveys for the mussels
and their obligate hosts, as well as habitat characteristics.
From there, a spatial prioritization tool (Marxan) was used
to identify priority areas based on three scenarios: mussels
alone, mussels and fishes together, and species and interac-
tions (i.e., that mussels rely on fish to complete their life cy-
cle). An important finding was that the species and interac-
tion scenario captured more areas within the Duoro River
watershed, which were missed by the other two scenarios.
If the species interaction had not been considered, these im-
portant areas would not have been able to be considered for
protected areas, which could further jeopardize the mussels.
Specifically, based on the results, the authors recommended
that the western portion of the Duoro River watershed be the
focus of protected areas, as there is lower anthropogenic dis-
turbance (i.e., agriculture and habitat fragmentation).

3. Enact durable protections
Although 30% of freshwater ecosystems have disappeared

since 1970 (Dixon et al. 2016), we still have a chance to “get it
right” by increasing protection for remaining intact habitat
to conserve biodiversity. Habitat protection has been a popu-
lar strategy for both terrestrial and marine ecosystems, where
the goal is to minimize anthropogenic disturbances within
specific areas of the environment such as angling/harvesting
or boating (Suski and Cooke 2007; Higgins et al. 2021). An
important consideration is that freshwater ecosystems are
directly connected to their watersheds (Craig et al. 2017;
Lane et al. 2023) and riparian zones (Richardson et al. 2010),
as water and materials (e.g., sediment or nutrients) flow over
land until reaching receiving waters (e.g., lakes or rivers).
In addition to the freshwater itself, protection should also
be applied to the watershed, mitigating the anthropogenic
impacts of urbanization, agriculture, forestry, or mining
(Lapointe et al. 2014). Additionally, most of the habitat pro-
tections that do exist currently focus on above-ground areas,
leaving important groundwater ecosystems vulnerable to
exploitation (Huggins et al. 2023). Habitat protection can
be implemented in many ways, ranging from top-down
measures such as those initiated by international governing
bodies (e.g., the International Union for Conservation of Na-
ture’s Key Biodiversity Areas, https://www.iucn.org/resourc
es/conservation-tool/key-biodiversity-areas; Key Biodiversity
Alliance partnership of several global conservation organi-

sations, https://www.keybiodiversityareas.org/working-with-
kbas/programme/partnership#:∼:text=The%20KBA%20Partn
ership%20will%20enhance,most%20important%20places%20
for%20nature) and policy initiatives (e.g., the 30 × 30 goal
of the Kunming–Montreal Global Biodiversity Framework
to protect 30% of land and water) to bottom-up initiatives
such as community-based management (e.g., Campos-Silva
and Peres 2016; Jumani et al. 2022) and non-governmental
organizations (e.g., the purchasing of property for protec-
tion; Prahalad and Kriwoken 2010). Some of these protection
initiatives can be classified as OECMs, which are governed
in ways to achieve positive outcomes for biodiversity (e.g.,
fisheries reserves or UNESCO World Heritage sites; The Na-
ture Conservancy, Conservation International, IUCN World
Commission on Protected Areas and WWF 2022). Land-use
planning could play a substantial role in habitat protection,
whereby developments must take into consideration spe-
cially designated areas (e.g., Provincially Significant Peatlands
Designation under the Peatlands Stewardship Act of Manitoba,
Canada; https://web2.gov.mb.ca/bills/40-3/b061e.php). It will
be important to ensure that protections are durable over
time (e.g., maintained across political regime shifts), where
durability refers to having a high probability of providing
dedicated and enforceable protection into the future (Higgins
et al. 2021). An unfortunate example of weak durability is
the changes to Provincially Significant Wetlands protections
in Ontario, Canada, whereby economic development is now
permitted despite the potential presence of endangered
freshwater species (https://www.ola.org/en/legislative-busin
ess/bills/parliament-43/session-1/bill-23). Although there may
be many challenges associated with the implementation
of freshwater habitat protection (e.g., prioritization), this
response option could decrease anthropogenic disturbances,
therefore benefiting biodiversity.

Case study: community fisheries management in
Mekong

Cambodia’s inland fisheries are among the most produc-
tive in the world, producing an estimated 505,000 tons of
fish each year, primarily for local and regional consump-
tion ( Baran and Gallego 2015). Most of this annual har-
vest comes from Tonle Sap, a seasonally inundated flood-
plain lake of the Mekong River. For nearly a century, ac-
cess to the most productive fishing locations in the Lake
and the Tonle Sap River, which connects the lake with the
Mekong mainstem, were auctioned off to private, commer-
cial fishing operations. While private “dai” fishing leases
on the Tonle Sap River continue to be auctioned, all for-
merly leased fishing lots in the lake were abolished by 2012
(Cooperman et al. 2012). In 2012, Cambodian Fisheries law
was amended to establish a community-based fisheries (CFi)
model of government-community fisheries co-management,
wherein communities delineate harvest zones and establish
and enforce their own regulations in cooperation with Cam-
bodia’s Department of Fisheries (Fig. 2B). These arrangements
are legally documented and must be renewed by commu-
nities and approved by the Department of Fisheries every
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5 years. Many communities also implement small, no-take
fish refugia during the six-month dry season. During this
time, fish that spend the dry season in the lake and re-
cently hatched young-of-year fish are protected during the
low-water conditions that increase vulnerability to harvest.
Communities recognize the protection of refugia in helping
to sustain local catches, and many have dedicated larger ar-
eas for seasonal protection based on perceived benefits. Like
other community-based no-take reserves in the region (e.g.,
Loury et al. 2018; Koning et al. 2020), there is growing evi-
dence to suggest these small refugia also harbor substantially
higher fish richness, abundance, and biomass than adjacent
unprotected areas (Koning, unpublished data). As well as de-
termining the size of refuge areas, community members of-
ten enforce these no-take areas via volunteer committees or
paid guards, typically in collaboration with international con-
servation organizations. The size of the refuge areas is typi-
cally scaled to the community’s capacity to enforce protec-
tion. The high densities of fish in these protected areas, often
located in deeper tributary channels, also attract a variety of
water birds, snakes, and endangered hairy-nosed otters (Lu-
tra sumatrana; Heng et al. 2016), indicating the biodiversity
benefits of these reserves extend beyond fish. Although the
community no-take areas show small-scale success, the lim-
ited capacity of communities to enforce their exclusive ac-
cess to extensive CFi areas and the widespread illegal fishing
practices around the lake have challenged the success of the
broader co-management plan. A controversial national crack-
down on illegal fishing operations in Tonle Sap that began
in April 2022 and continues today appears to be effective in
reducing large-scale illegal fishing efforts, and early reports
from fishers suggest improved catches six months later. Not
enough time has passed to assess the impact of the increased
enforcement on larger, long-lived species, but the Tonle Sap
catch is mostly composed of small-bodied fishes (<15 cm)
that have rapid population turnover. The crackdown on ille-
gal trawling, seining, and electrofishing operations that rou-
tinely catch larval and juvenile fish may be responsible for
increased recruitment of these species and for fishers’ re-
ports of improved catches. The success of small community-
managed fish refugia as part of broader collaboratively man-
aged CFi, with continuing support of high-level legal actions
to enforce standing fishery laws, could provide the founda-
tion for more sustainable and durable protections for com-
munity fisheries as well as the Lake’s important biodiversity.

4. Protect and restore habitat in a coordinated
and integrated manner

For decades, conservation scholars have advocated for
engaging in conservation actions that transcend scales
(Paloniemi et al. 2012) and that are conducted in a coordi-
nated and integrated fashion (Soulé 1985; Salafsky et al. 2002;
Knight et al. 2006). This is particularly salient for freshwa-
ter ecosystems given their inherent connection to the sur-
rounding landscape (Hynes 1975; Hermoso et al. 2012; Lane
et al. 2023) and that everything flows downstream (Vannote et
al. 1980; Dodds and Oakes 2008). Yet, the norm for freshwa-
ter conservation efforts is to focus on a specific population

or species, or specific places or spaces, rather than consid-
ering the scale at which freshwater systems function (Gomi
et al. 2002; Vaughn 2010), the scale at which threats operate
(Collen et al. 2014; Albert et al. 2021), and the scale at which
conservation interventions need to be applied (Albert et al.
2021). Therefore, key to freshwater conservation is embrac-
ing measures that consider all relevant scales (Hermoso et al.
2012), with a particular eye to integrating different processes
and doing so in a coordinated manner (Cid et al. 2022).

Coordination of conservation measures is particularly im-
portant in freshwater ecosystems given how they operate. If
efforts in an upstream reach are not coordinated with those
in a downstream reach, it is easy to yield conflict; for exam-
ple, hydropower dam planning is rarely conducted at a water-
shed scale. There is a wide body of literature advocating for a
watershed approach to protect (Saunders et al. 2002; Vollmer
et al. 2023), restore (Wissmar and Beschta 1998; Roni et al.
2002), and manage (Nguyen et al. 2016) freshwater ecosys-
tems. Achieving such an approach requires embracing the
idea that traditional management boundaries may fail to
fully encapsulate the logical planning and management unit
that is a watershed (Warner et al. 2008). An additional con-
sideration will be the provisioning of freshwater organisms
that migrate across jurisdictional boundaries (e.g., migrating
salmon; Worthington et al. 2022). In some instances, this may
mean creating multi-national bodies to coordinate manage-
ment given that neither water nor biota adhere to geographi-
cal boundaries (Davidson and de Loë 2014). Although the tools
for embracing a watershed approach have existed for more
than a decade (Cohen and Davidson 2011), governance issues
remain with implementation (Loures and Rieu-Clarke 2013;
de Loë and Patterson 2017).

Case study: restoring native fishes in the
Murray–Darling Basin in Australia

The Murray–Darling Basin (MDB) covers 1.1 million km2,
involving six legislative jurisdictions and myriad agencies,
providing an excellent example of the complexities of co-
ordinated and integrated management across large spatial
scales. Fish compete for water with agriculture (Koehn 2015),
and MDB’s highly regulated rivers are generally in poor eco-
logical condition (Davies et al. 2010). Native fish populations
are estimated to be at <10% of pre-European (∼1850s) abun-
dances (MDBC 2004). These fishes are prized for their en-
demic biodiversity and their social (e.g., recreational fish-
ing), economic, and cultural values, yet there are consider-
able public concerns about their future. Two major long-
term (10–50 years) initiatives have been developed to im-
prove MDB’s river health and fishes. The MDB Plan addresses
overuse of water to better balance environmental, social, and
economic outcomes through infrastructure improvements
and water license buybacks (MDBA 2011). The Native Fish
Strategy addresses threats and rehabilitates fish populations
(MDBC 2004; Koehn and Lintermans 2012). For example, one
of many successful projects was the Sea to Lake Hume fish
passage program that constructed 15 fishways to open con-
nectivity along 2225 km of the Murray River (Baumgartner et
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al. 2014; Fig. 2C). Both initiatives existed within existing gov-
ernance structures and management programs (Koehn and
Lintermans 2012). Despite extensive consultation across the
MDB jurisdictions, state agencies, stakeholders, and political
tiers, the MDB Plan has proven to be one of the most contro-
versial natural resource management reforms in Australia’s
history, generating high levels of political debate and protest
from irrigation interests (Koehn 2015). Progress is ongoing
but implementation has not been straightforward. The Native
Fish Strategy provided powerful changes to MDB fish manage-
ment; however, its funding was largely discontinued after 10
years, not because of its lack of success or its ongoing need,
but due to jurisdictional political changes and cuts to its col-
laborative funding structure (Koehn et al. 2014, 2019; MDBA
2020). While programs to address priority conservation issues
may have great intent, their large-scale and long-term nature
can put them at risk from changing jurisdictional and sec-
toral politics.

5. Engage in evidence-based restoration using
an adaptive management approach

Ecological restoration seeks to repair habitats that have
been destroyed, with the aim of conserving biodiversity and
associated ecosystem services (Gann et al. 2019). Despite
restoration ecology being founded in science, personal biases
can often creep in throughout the process, resulting in ef-
forts that are ineffective or even counterproductive (Cooke et
al. 2018). For example, plastic “habitat” structures for fresh-
water fishes have been deployed in the US despite a limited
evidence base, potentially leading to more harm than good
(Cooke et al. 2023). We posit that ecological restoration must
be based on the best available scientific evidence (e.g., sys-
tematic reviews) (Pullin et al. 2004) that includes both west-
ern and Indigenous science (Esselman and Opperman 2009)
and an adaptive management approach whereby continuous
learning feeds back into actions (Gann et al. 2019). To ad-
vance the evidence base, rigorous monitoring should be de-
signed as true experiments to allow for stronger inferences
(Block et al. 2001) and be conducted throughout all phases
of restoration (i.e., before, during, and after). Although eco-
logical restoration is often focused on habitat, other forms
of restoration could also benefit freshwater species. For ex-
ample, in cases where recruitment may be limited due to de-
creased availability of critical habitats, captive breeding (i.e.,
ex situ conservation) can be used to augment wild popula-
tions (e.g., pearl mussels; Gum et al. 2011; Blanding’s turtles,
Emydoidea blandingii; Thompson et al. 2020).

Case study: restoration lessons emerging from
decades of salmonid stream restoration

More effort has been devoted to the restoration of
salmonid-bearing streams than any other freshwater ecosys-
tem (Fig. 2D). Decades of experimentation (going back to the
1800s; Van Cleef 1885) have generated a massive evidence
base. Key lessons that have emerged from this evidence base
are relevant to other freshwater ecosystems. The first les-
son is that habitat restoration must address the underlying

causes of degradation rather than the symptoms (Frissell and
Nawa 1992; Boudell et al. 2015). There are many examples
of failed restoration attempts arising from symptom-focused
restoration efforts (Wohl et al. 2015). A second lesson is to
look beyond the stream itself and include restoration of ad-
jacent riparian areas. From shading to bank stabilization to
input of allochthonous materials, protecting and restoring
riparian habitats is an essential aspect of stream restora-
tion (Goodwin et al. 1997). A third lesson is to ensure that
restoration efforts emulate nature and use natural materi-
als (Kauffman et al. 1997) that require minimal maintenance
(Moore and Rutherfurd 2017). Working with nature and nat-
ural processes (e.g., fluvial geomorphology, sediment trans-
port, and hydrology) is crucial to long-term success (Shields
et al. 2003; Beechie et al. 2010). A review of spawning habi-
tat creation or enhancement found that the addition or alter-
ation of rock material (e.g., addition of gravel and substrate
washing) was an effective means of enhancing spawning habi-
tat (Taylor et al. 2019). Further, the placement of coarse woody
material had demonstrated benefits to the physical habitat
and associated benefits for fish abundance (Roni et al. 2015).
Collectively, these reviews have provided support for contin-
ued restoration efforts but also emphasize the value of robust
monitoring to continuously assess the efficiency and effec-
tiveness of interventions (see Block et al. 2001), particularly
across long time scales (years to decades; Rubin et al. 2017). A
fourth lesson is the need to engage with multiple disciplinary
domains spanning groundwater hydrologists, fluvial geomor-
phologists, ecologists, engineers, landscape architects, and
watershed planners to ensure a holistic restoration praxis
(Bennett et al. 2011; Serra-Llobet et al. 2022). A final lesson
emerging from salmonid stream restoration is that it is possi-
ble to engage and mobilize volunteers (community members)
in such efforts. Volunteers can fundraise, implement, and (or)
monitor to ensure the broad-scale, long-term success of the
salmonid stream restoration (e.g., see volunteer engagement
through stewardship groups such as Trout Unlimited). Sup-
porting these key lessons are science-based guidance docu-
ments (e.g., Hunt 1993; Jenkinson et al. 2006; Yochum and
Reynolds 2018) that provide practical direction on how to do
restoration that works.

6. Ensure that potential freshwater habitat
alterations are compensated or off-set

The human population is projected to continually increase
in coming decades, and habitat destruction caused by an-
thropogenic development will almost certainly follow suit.
Although limiting the amount of development or making
wiser decisions (i.e., not building on pristine habitat) would
be advisable, policy makers have turned to habitat compen-
sation to offset human activities (Moilanen et al. 2009). Eco-
logical compensation includes actions that mitigate losses or
result in a “net gain” by requiring habitat restoration (i.e.,
enhancement or creation) or habitat protection in another
area but with similar structure and function (Quintero and
Mathur 2011; BBOP 2012). For example, Canada has adopted
the No Net Loss policy under the Fisheries Act (FA) (Harper
and Quigley 2005) and Colombia has implemented environ-
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mental compensation under the National Policy for the Integral
Management of Biodiversity and its Ecosystem Services (Reid et al.
2015). In one application, offsite habitat compensation for
threatened golden bell frogs (Litoria aurea) in Australia was
found to achieve a no net loss in population, although a large
amount of habitat was required (Pickett et al. 2013). Habitat
compensation is not intended to be an “easy way out” for de-
velopers; it should only be used as a worst-case scenario after
all other forms of harm avoidance and mitigation have been
exhausted (Quetier and Lavorel 2011; Maron et al. 2015). To
maximize success of habitat compensation, it has been rec-
ommended that a high offset ratio be used (i.e., create more
habitat than was lost; Bruggeman et al. 2005), that the offset
habitat be built within close proximity to the lost habitat (i.e.,
to maximize connectivity; Moilanen et al. 2009), and that de-
velopment is delayed to increase the chances of colonization
and ecosystem structure (Morris et al. 2006).

Case study: the Canadian experience of habitat
policy and management

Canada has a long history of legislation protecting its valu-
able fishery resources, starting with the first enactment of
the FA in 1868 and then with the addition of specific habi-
tat protection provisions in 1977. Since that time, the FA and
supporting policy have evolved, culminating in the current
2019 version that provides comprehensive protection for all
fish and supporting aquatic organisms (including mollusks)
and for fish and riparian habitat in Canada (Fig. 2E). The fo-
cus on habitat recognizes its foundational role in supporting
healthy and productive fish populations (Lapointe et al. 2014).
A key aspect of current policy is the prohibition against the
harmful alteration, disruption, or destruction of fish habi-
tat (HADD) and against the “death of fish, other than by
fishing” unless authorized. The federal Department of Fish-
eries and Oceans Canada (DFO) is responsible for implement-
ing these provisions of the FA, which allows broad latitude
to maintain regulatory oversight of works, undertakings, or
activities that affect fish and fish habitat in Canada. How-
ever, the ability to grant authorizations does allow HADD
and death of fish to occur but only with appropriate offset-
ting measures to counterbalance the residual effects (after
avoidance and mitigation are implemented but unable to re-
duce the negative effect to zero) of the project. There are a
number of guiding principles that are considered when de-
signing an offset project (see https://www.dfo-mpo.gc.ca/pn
w-ppe/reviews-revues/policies-politiques-eng.html#_688), in-
cluding the need to support fisheries management objec-
tives; giving priority to restoration of degraded fish habi-
tat; ensuring that they balance the adverse effects resulting
from the works, undertakings, or activities; ensuring that
offsets provide additional benefits to the ecosystem; and en-
suring that benefits are self-sustaining. Working with pro-
ponents, DFO habitat managers apply the policy to ensure
that there is a “net gain” in habitat during offsetting ef-
forts (Goodchild 2004). Previous efforts to achieve no net loss
have been mixed (Quigley and Harper 2006), emphasizing
the need for additional research on offset science as well as

better monitoring. Monitoring for effectiveness of these off-
sets is required, but DFO is working toward implementing a
new standardized monitoring system that would transform
the utility of monitoring data, contribute to more effective
decision-making, and provide a scientifically sound under-
standing of whether fish habitat losses are indeed being bal-
anced effectively with habitat offsets for future generations.
Similar freshwater habitat protections are lacking in many
jurisdictions around the globe. Given the manifold impor-
tance of habitat for freshwater ecosystems, there is need for
improved governance and habitat management policies and
practices that could be modeled after experiences in Canada
as well as the US (the National Fish Habitat Partnership; ht
tps://www.fishhabitat.org/; Whelan 2019), Australia (the New
South Wales Policy for Fish Habitat Conservation and Man-
agement; https://www.dpi.nsw.gov.au/__data/assets/pdf_file/
0009/468927/Policy-and-guidelines-for-fish-habitat.pdf), and
other locales with such experiences.

7. Future-proof protection and restoration
actions

Protection and restoration actions for freshwater ecosys-
tems need to happen now, yet the world is changing so that
there is dire need to ensure that those decisions and invest-
ments are effective both in the short and long term (Barmuta
et al. 2011). As such, there is a need to “future-proof” protec-
tion (van Kerkhoff et al. 2019) and restoration measures for
freshwater biodiversity (Rowell 2010). Doing so has the po-
tential to enhance system resiliency, a concept that has been
explicitly recognized as essential when addressing threats to
waters and associated social–ecological systems (Folke 2003).
Unfortunately, this way of thinking has yet to fully perme-
ate conservation practice and become a normal part of plan-
ning for protection and restoration in freshwater systems
(Rowell 2010). Operationalizing future-proofing means ensur-
ing that practitioners are equipped with the skills and tools to
make good decisions about how different interventions will
perform across different time periods and contexts (e.g., cli-
mate change; Grantham et al. 2019; Gupta and Schmeir 2020).
It also means ensuring that politicians are thinking beyond
the term of holding an elected position and instead focus on
what is good for the planet and its peoples. Future proofing
of freshwater conservation is in its early days (Lynch et al.
in press) and requires dedicated research and opportunities
for learning through adaptive management. What is most ap-
parent is that the protections and restoration efforts of today
may be moot in the future in a warming world (Pittock et
al. 2008). Failure to think about the future risks freshwater
ecosystems and the ecosystem services they provide, empha-
sizing the need for forward-looking conservation planning
and action (Nel et al. 2009). This will require a recalibration
of relevant temporal and spatial scales for thinking about
management as well as an adaptive management approach
whereby learnings are used to inform ongoing conservation
efforts. Ensuring system resiliency will provide capacity for
adaptation (Folke 2003); however, that also needs to be sup-
plemented with more dynamic protection options that can
themselves adapt to changing conditions. Dynamic protec-
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tions have had some early success in marine systems (Game
et al. 2009) and policies such as the US Wild and Scenic Rivers Act
allow for adaptive management and inclusion of new conser-
vation concerns in a changing climate (e.g., refugia, climate
buffers; Perry 2021).

Case study: are protected areas for freshwater
fishes in South America future-proof?

Species distributions are changing across the globe because
of climate change, and previously established protected areas
may not be appropriate for the intended species in warmer
waters. To assess whether protected areas can achieve in-
tended goals, retain climate suitability, and persist effectively
into the future, Oliveira et al. (2021) examined the distribu-
tion of 496 native fishes under current and future climate sce-
narios. The Parana–Paraguay watershed within South Amer-
ica occupies Argentina, Bolivia, Brazil, and Paraguay and in-
cludes various freshwater habitats, including wetlands, lakes,
and rivers that collectively support rich biodiversity. The au-
thors used fish occurrence records to generate habitat suit-
ability with species distribution models based on current and
future (2050 and 2080) conditions. From there, they calcu-
lated species richness and phylogenetic diversity within pro-
tected areas. Their analysis determined that the protected ar-
eas within the watershed would not be effective at protect-
ing the areas with the highest richness of freshwater fishes
for both current and future climate scenarios. Further, they
found that the areas that supported the most species were in-
sufficiently protected (i.e., outside the protected areas). These
types of analyses highlight the shortcomings of current con-
servation strategies such as habitat protection. To future-
proof and preserve freshwater biodiversity, as well as the eco-
logical roles and services these fishes provide, protected ar-
eas that reflect new climate conditions must be established
(Oliveira et al. 2021). Similarly, protection policies need to be
designed to be adaptive and responsive to climate and other
non-stationary changes (e.g., human settlement and use pat-
terns).

Overcoming obstacles to implement
response options

Freshwater biodiversity will almost certainly continue on
the path of decline without drastic intervention, owing to
threats associated with habitat, which contribute to popu-
lation and species loss. We have proposed response options
to save freshwater biodiversity with habitat protection and
restoration. However, there are several challenges that can
be anticipated to the implementation of these responses, and
these fall broadly into three groups: (a) knowledge gaps and
uncertainties, (b) institutional and management, and (c) so-
cial and political will. In addition to identifying these barri-
ers, we also suggest mechanisms and interventions to over-
come challenges.

All response options require a strong evidence base, which
should be derived from many different types of knowledge,
including scientific, Indigenous, and local. Throughout the

access and use of data, it is important to ensure that involved
organizations use the data to serve not only biodiversity but
the needs of the local people (i.e., communities). Unfortu-
nately, throughout decision-making and environmental man-
agement processes, there will always be data gaps and uncer-
tainties (López-Gamero et al. 2011). These data gaps and un-
certainties can stem from a variety of sources such as a lack
of data (e.g., in many areas, data are simply not collected) or
lack of data accessibility (e.g., behind paywalls or within in-
accessible databases; Piczak et al. 2022). There has been an
increasing use of tools to operate in the face of data gaps
and uncertainties, including adaptive management that it-
eratively incorporates learning into decisions (Runge 2011),
and structured decision-making that is an organized frame-
work designed to incorporate uncertainty while maintaining
a deliberate process (Gregory et al. 2012). Yet, uncertainty is
growing because of global climate change. For example, cli-
mate change is predicted to alter species ranges (Jarić et al.
2019) and hydrological and biogeochemical regimes (Knouft
and Ficklin 2017), which will need to be considered while
implementing response options. Furthermore, other global
processes such as anthropogenic modification to flows or sys-
temic pollution can have substantial impacts on various geo-
graphic scales, from local populations to entire species range
(Lapointe et al. 2014; Reid et al. 2019). These challenges are
daunting and the task at hand is massive, requiring large
programs that are holistic (spanning habitats, biota, and en-
tire systems) at scales that range from individuals to ecosys-
tems and from reaches/sites to entire watersheds.

All response options require strong institutions across all
jurisdictional scales: local, regional, national, or interna-
tional. While the goal is to Bend the Curve of freshwater
biodiversity, this is inherently a human-oriented problem, in
that a lot of the challenges stem from institutions’ strategic
and operational plans. One obstacle that has been cited as
a barrier for both habitat protection (Kingsford et al. 2011)
and restoration (Geist and Hawkins 2016) is conflicting priori-
ties or competing interests across agencies/stakeholders (e.g.,
human water use and conservation goals) involved. To miti-
gate this, it is crucial to develop relationships across stake-
holders and rights holders early and outline goals together,
which can increase relevancy throughout conservation ac-
tions (Cook et al. 2013; Bair et al. 2019). Another obstacle is
that often there is a lack of funding or that the typical funding
timelines are not conducive to habitat protection and restora-
tion, which can occur over multiple years or even decades.
Although under-funding is a problem encountered in conser-
vation in general, a disproportionately small amount of fund-
ing was allocated to conservation of freshwaters (Cracknell
et al. 2016). Further, conservation funding can also be mis-
allocated or even mismanaged, including corruption or de-
lays (Catalano et al. 2019). Similarly, operational challenges
can also stem from limited capacity and time of stakehold-
ers and rights holders, many of whom are the true “own-
ers” of public aquatic resources. It will be important that
funding regimes shift to an increased timeline to ensure that
habitat protection and restoration are adequately supported
throughout the entire process. Lack of knowledge (i.e., un-
knowns; as previously described) and knowledge exchange
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can also hinder conservation. Specifically, knowledge gener-
ators (e.g., scientists and researchers) and knowledge users
(e.g., managers and decision-makers) have operated indepen-
dently for decades, resulting in the knowledge–action gap
whereby generated science is not applied in the real world
(Cook et al. 2013; Clare and Creed 2022). Strategies to bridge
this gap include boundary organizations (to facilitate com-
munication; Cash et al. 2003), knowledge co-production and
co-dissemination (to conduct research in a collaborative man-
ner; Djenontin and Meadow 2018), and ensuring scientists op-
erate within planning and management agencies (Cook et al.
2013). For example, knowledge co-production has been suc-
cessfully used to implement habitat restoration aimed at na-
tive freshwater fishes in the Laurentian Great Lakes (Piczak
et al. 2022).

All response options require strong political will. Social and
political aspects of conservation have also been cited as ob-
stacles to conservation. For example, political aspects that
have been cited as impediments include lack of incentives
for conservation and restoration, the prioritization of eco-
nomic development, and shifting political conditions (e.g.,
across elections; Catalano et al. 2019). Although the public
is generally aware of threats facing biodiversity (e.g., climate
change), there is a lack of understanding of the importance
of freshwater ecosystems and their species to society (Monroe
et al. 2019). To raise the profile of freshwater ecosystems,
an increase in the awareness of the importance of freshwa-
ter habitats through education across demographic scales,
from politicians, businesses, elementary pupils, university
students to those in assisted living, will be needed. To raise
the resources to protect and restore freshwater habitat, com-
munities, champions, volunteers, tourists, and sectors (e.g.,
industry) should be engaged. A more educated public that
values freshwater biodiversity can help generate the polit-
ical support and willingness to vote for conservation mea-
sures (Cooke et al. 2022). We should also build off the momen-
tum of initiatives such as the UN DER or Rights of Wetlands
(https://www.rightsofwetlands.org/) in terms of public aware-
ness and political actions. Other social and cultural driven
movements, including the Rights of Rivers and Rights of Wet-
lands, can provide mechanisms for the conservation and pro-
tection of freshwater ecosystems and their services.

Conclusion
Freshwater ecosystems are diverse and support a large

number of species, providing various ecosystem services, in-
cluding provisioning, regulating, and cultural services. How-
ever, human activities have caused extensive declines in
freshwater ecosystems, particularly through habitat damage
and destruction. Habitat refers to the resources and environ-
mental conditions required for individuals to persist in each
location, and freshwater habitats can be negatively impacted
by anthropogenic activities through habitat fragmentation,
degradation, or loss. Building off of Tickner et al. (2020), we
identified response options to Bend the Curve to save fresh-
water biodiversity through habitat protection and restora-
tion (see Fig. 1), and we identified major obstacles that will
need to be overcome to successfully implement these re-

sponse options. Reflecting upon our case studies and exam-
ples of protection and restoration projects (Tables 1 and 2),
there are bright spots in the fight to save freshwater biodi-
versity that offer glimmers of hope. Past, present, and future
habitat alterations continue to demonstrate the urgency and
importance of habitat protection and restoration to benefit
freshwater biodiversity and the ecosystem services generated
by intact and healthy freshwater ecosystems.
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